/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrContext.h" #include "GrBufferAllocPool.h" #include "GrClipIterator.h" #include "GrGpu.h" #include "GrIndexBuffer.h" #include "GrInOrderDrawBuffer.h" #include "GrPathRenderer.h" #include "GrPathUtils.h" #include "GrResourceCache.h" #include "GrStencilBuffer.h" #include "GrTextStrike.h" #include "SkTLazy.h" #include "SkTrace.h" // Using MSAA seems to be slower for some yet unknown reason. #define PREFER_MSAA_OFFSCREEN_AA 0 #define OFFSCREEN_SSAA_SCALE 4 // super sample at 4x4 #define DEFER_TEXT_RENDERING 1 #define BATCH_RECT_TO_RECT (1 && !GR_STATIC_RECT_VB) // When we're using coverage AA but the blend is incompatible (given gpu // limitations) should we disable AA or draw wrong? #define DISABLE_COVERAGE_AA_FOR_BLEND 1 static const size_t MAX_TEXTURE_CACHE_COUNT = 256; static const size_t MAX_TEXTURE_CACHE_BYTES = 16 * 1024 * 1024; static const size_t DRAW_BUFFER_VBPOOL_BUFFER_SIZE = 1 << 18; static const int DRAW_BUFFER_VBPOOL_PREALLOC_BUFFERS = 4; // We are currently only batching Text and drawRectToRect, both // of which use the quad index buffer. static const size_t DRAW_BUFFER_IBPOOL_BUFFER_SIZE = 0; static const int DRAW_BUFFER_IBPOOL_PREALLOC_BUFFERS = 0; #define ASSERT_OWNED_RESOURCE(R) GrAssert(!(R) || (R)->getContext() == this) GrContext* GrContext::Create(GrEngine engine, GrPlatform3DContext context3D) { GrContext* ctx = NULL; GrGpu* fGpu = GrGpu::Create(engine, context3D); if (NULL != fGpu) { ctx = new GrContext(fGpu); fGpu->unref(); } return ctx; } GrContext::~GrContext() { this->flush(); delete fTextureCache; delete fFontCache; delete fDrawBuffer; delete fDrawBufferVBAllocPool; delete fDrawBufferIBAllocPool; GrSafeUnref(fAAFillRectIndexBuffer); GrSafeUnref(fAAStrokeRectIndexBuffer); fGpu->unref(); GrSafeUnref(fPathRendererChain); } void GrContext::contextLost() { contextDestroyed(); this->setupDrawBuffer(); } void GrContext::contextDestroyed() { // abandon first to so destructors // don't try to free the resources in the API. fGpu->abandonResources(); // a path renderer may be holding onto resources that // are now unusable GrSafeSetNull(fPathRendererChain); delete fDrawBuffer; fDrawBuffer = NULL; delete fDrawBufferVBAllocPool; fDrawBufferVBAllocPool = NULL; delete fDrawBufferIBAllocPool; fDrawBufferIBAllocPool = NULL; GrSafeSetNull(fAAFillRectIndexBuffer); GrSafeSetNull(fAAStrokeRectIndexBuffer); fTextureCache->removeAll(); fFontCache->freeAll(); fGpu->markContextDirty(); } void GrContext::resetContext() { fGpu->markContextDirty(); } void GrContext::freeGpuResources() { this->flush(); fTextureCache->removeAll(); fFontCache->freeAll(); // a path renderer may be holding onto resources GrSafeSetNull(fPathRendererChain); } //////////////////////////////////////////////////////////////////////////////// int GrContext::PaintStageVertexLayoutBits( const GrPaint& paint, const bool hasTexCoords[GrPaint::kTotalStages]) { int stageMask = paint.getActiveStageMask(); int layout = 0; for (int i = 0; i < GrPaint::kTotalStages; ++i) { if ((1 << i) & stageMask) { if (NULL != hasTexCoords && hasTexCoords[i]) { layout |= GrDrawTarget::StageTexCoordVertexLayoutBit(i, i); } else { layout |= GrDrawTarget::StagePosAsTexCoordVertexLayoutBit(i); } } } return layout; } //////////////////////////////////////////////////////////////////////////////// enum { // flags for textures kNPOTBit = 0x1, kFilterBit = 0x2, kScratchBit = 0x4, // resource type kTextureBit = 0x8, kStencilBufferBit = 0x10 }; GrTexture* GrContext::TextureCacheEntry::texture() const { if (NULL == fEntry) { return NULL; } else { return (GrTexture*) fEntry->resource(); } } namespace { // returns true if this is a "special" texture because of gpu NPOT limitations bool gen_texture_key_values(const GrGpu* gpu, const GrSamplerState* sampler, GrContext::TextureKey clientKey, int width, int height, bool scratch, uint32_t v[4]) { GR_STATIC_ASSERT(sizeof(GrContext::TextureKey) == sizeof(uint64_t)); // we assume we only need 16 bits of width and height // assert that texture creation will fail anyway if this assumption // would cause key collisions. GrAssert(gpu->getCaps().fMaxTextureSize <= SK_MaxU16); v[0] = clientKey & 0xffffffffUL; v[1] = (clientKey >> 32) & 0xffffffffUL; v[2] = width | (height << 16); v[3] = 0; if (!gpu->getCaps().fNPOTTextureTileSupport) { bool isPow2 = GrIsPow2(width) && GrIsPow2(height); bool tiled = NULL != sampler && ((sampler->getWrapX() != GrSamplerState::kClamp_WrapMode) || (sampler->getWrapY() != GrSamplerState::kClamp_WrapMode)); if (tiled && !isPow2) { v[3] |= kNPOTBit; if (GrSamplerState::kNearest_Filter != sampler->getFilter()) { v[3] |= kFilterBit; } } } if (scratch) { v[3] |= kScratchBit; } v[3] |= kTextureBit; return v[3] & kNPOTBit; } // we should never have more than one stencil buffer with same combo of // (width,height,samplecount) void gen_stencil_key_values(int width, int height, int sampleCnt, uint32_t v[4]) { v[0] = width; v[1] = height; v[2] = sampleCnt; v[3] = kStencilBufferBit; } void gen_stencil_key_values(const GrStencilBuffer* sb, uint32_t v[4]) { gen_stencil_key_values(sb->width(), sb->height(), sb->numSamples(), v); } // This should be subsumed by a future version of GrDrawState // It does not reset stage textures/samplers or per-vertex-edge-aa state since // they aren't used unless the vertex layout references them. // It also doesn't set the render target. void reset_draw_state(GrDrawState* drawState){ drawState->setViewMatrix(GrMatrix::I()); drawState->setColorFilter(0, SkXfermode::kDst_Mode); drawState->resetStateFlags(); drawState->setEdgeAAData(NULL, 0); drawState->disableStencil(); drawState->setAlpha(0xFF); drawState->setBlendFunc(kOne_BlendCoeff, kZero_BlendCoeff); drawState->setFirstCoverageStage(GrDrawState::kNumStages); drawState->setDrawFace(GrDrawState::kBoth_DrawFace); } } GrContext::TextureCacheEntry GrContext::findAndLockTexture( TextureKey key, int width, int height, const GrSamplerState* sampler) { uint32_t v[4]; gen_texture_key_values(fGpu, sampler, key, width, height, false, v); GrResourceKey resourceKey(v); return TextureCacheEntry(fTextureCache->findAndLock(resourceKey, GrResourceCache::kNested_LockType)); } bool GrContext::isTextureInCache(TextureKey key, int width, int height, const GrSamplerState* sampler) const { uint32_t v[4]; gen_texture_key_values(fGpu, sampler, key, width, height, false, v); GrResourceKey resourceKey(v); return fTextureCache->hasKey(resourceKey); } GrResourceEntry* GrContext::addAndLockStencilBuffer(GrStencilBuffer* sb) { ASSERT_OWNED_RESOURCE(sb); uint32_t v[4]; gen_stencil_key_values(sb, v); GrResourceKey resourceKey(v); return fTextureCache->createAndLock(resourceKey, sb); } GrStencilBuffer* GrContext::findStencilBuffer(int width, int height, int sampleCnt) { uint32_t v[4]; gen_stencil_key_values(width, height, sampleCnt, v); GrResourceKey resourceKey(v); GrResourceEntry* entry = fTextureCache->findAndLock(resourceKey, GrResourceCache::kSingle_LockType); if (NULL != entry) { GrStencilBuffer* sb = (GrStencilBuffer*) entry->resource(); return sb; } else { return NULL; } } void GrContext::unlockStencilBuffer(GrResourceEntry* sbEntry) { ASSERT_OWNED_RESOURCE(sbEntry->resource()); fTextureCache->unlock(sbEntry); } static void stretchImage(void* dst, int dstW, int dstH, void* src, int srcW, int srcH, int bpp) { GrFixed dx = (srcW << 16) / dstW; GrFixed dy = (srcH << 16) / dstH; GrFixed y = dy >> 1; int dstXLimit = dstW*bpp; for (int j = 0; j < dstH; ++j) { GrFixed x = dx >> 1; void* srcRow = (uint8_t*)src + (y>>16)*srcW*bpp; void* dstRow = (uint8_t*)dst + j*dstW*bpp; for (int i = 0; i < dstXLimit; i += bpp) { memcpy((uint8_t*) dstRow + i, (uint8_t*) srcRow + (x>>16)*bpp, bpp); x += dx; } y += dy; } } GrContext::TextureCacheEntry GrContext::createAndLockTexture( TextureKey key, const GrSamplerState* sampler, const GrTextureDesc& desc, void* srcData, size_t rowBytes) { SK_TRACE_EVENT0("GrContext::createAndLockTexture"); #if GR_DUMP_TEXTURE_UPLOAD GrPrintf("GrContext::createAndLockTexture [%d %d]\n", desc.fWidth, desc.fHeight); #endif TextureCacheEntry entry; uint32_t v[4]; bool special = gen_texture_key_values(fGpu, sampler, key, desc.fWidth, desc.fHeight, false, v); GrResourceKey resourceKey(v); if (special) { GrAssert(NULL != sampler); TextureCacheEntry clampEntry = this->findAndLockTexture(key, desc.fWidth, desc.fHeight, NULL); if (NULL == clampEntry.texture()) { clampEntry = this->createAndLockTexture(key, NULL, desc, srcData, rowBytes); GrAssert(NULL != clampEntry.texture()); if (NULL == clampEntry.texture()) { return entry; } } GrTextureDesc rtDesc = desc; rtDesc.fFlags = rtDesc.fFlags | kRenderTarget_GrTextureFlagBit | kNoStencil_GrTextureFlagBit; rtDesc.fWidth = GrNextPow2(GrMax(desc.fWidth, 64)); rtDesc.fHeight = GrNextPow2(GrMax(desc.fHeight, 64)); GrTexture* texture = fGpu->createTexture(rtDesc, NULL, 0); if (NULL != texture) { GrDrawTarget::AutoStateRestore asr(fGpu); GrDrawState* drawState = fGpu->drawState(); reset_draw_state(drawState); drawState->setRenderTarget(texture->asRenderTarget()); drawState->setTexture(0, clampEntry.texture()); GrSamplerState::Filter filter; // if filtering is not desired then we want to ensure all // texels in the resampled image are copies of texels from // the original. if (GrSamplerState::kNearest_Filter == sampler->getFilter()) { filter = GrSamplerState::kNearest_Filter; } else { filter = GrSamplerState::kBilinear_Filter; } drawState->sampler(0)->reset(GrSamplerState::kClamp_WrapMode, filter); static const GrVertexLayout layout = GrDrawTarget::StageTexCoordVertexLayoutBit(0,0); GrDrawTarget::AutoReleaseGeometry arg(fGpu, layout, 4, 0); if (arg.succeeded()) { GrPoint* verts = (GrPoint*) arg.vertices(); verts[0].setIRectFan(0, 0, texture->width(), texture->height(), 2*sizeof(GrPoint)); verts[1].setIRectFan(0, 0, 1, 1, 2*sizeof(GrPoint)); fGpu->drawNonIndexed(kTriangleFan_PrimitiveType, 0, 4); entry.set(fTextureCache->createAndLock(resourceKey, texture)); } texture->releaseRenderTarget(); } else { // TODO: Our CPU stretch doesn't filter. But we create separate // stretched textures when the sampler state is either filtered or // not. Either implement filtered stretch blit on CPU or just create // one when FBO case fails. rtDesc.fFlags = kNone_GrTextureFlags; // no longer need to clamp at min RT size. rtDesc.fWidth = GrNextPow2(desc.fWidth); rtDesc.fHeight = GrNextPow2(desc.fHeight); int bpp = GrBytesPerPixel(desc.fConfig); SkAutoSMalloc<128*128*4> stretchedPixels(bpp * rtDesc.fWidth * rtDesc.fHeight); stretchImage(stretchedPixels.get(), rtDesc.fWidth, rtDesc.fHeight, srcData, desc.fWidth, desc.fHeight, bpp); size_t stretchedRowBytes = rtDesc.fWidth * bpp; GrTexture* texture = fGpu->createTexture(rtDesc, stretchedPixels.get(), stretchedRowBytes); GrAssert(NULL != texture); entry.set(fTextureCache->createAndLock(resourceKey, texture)); } fTextureCache->unlock(clampEntry.cacheEntry()); } else { GrTexture* texture = fGpu->createTexture(desc, srcData, rowBytes); if (NULL != texture) { entry.set(fTextureCache->createAndLock(resourceKey, texture)); } } return entry; } namespace { inline void gen_scratch_tex_key_values(const GrGpu* gpu, const GrTextureDesc& desc, uint32_t v[4]) { // Instead of a client-provided key of the texture contents // we create a key of from the descriptor. GrContext::TextureKey descKey = desc.fAALevel | (desc.fFlags << 8) | ((uint64_t) desc.fConfig << 32); // this code path isn't friendly to tiling with NPOT restricitons // We just pass ClampNoFilter() gen_texture_key_values(gpu, NULL, descKey, desc.fWidth, desc.fHeight, true, v); } } GrContext::TextureCacheEntry GrContext::lockScratchTexture( const GrTextureDesc& inDesc, ScratchTexMatch match) { GrTextureDesc desc = inDesc; if (kExact_ScratchTexMatch != match) { // bin by pow2 with a reasonable min static const int MIN_SIZE = 256; desc.fWidth = GrMax(MIN_SIZE, GrNextPow2(desc.fWidth)); desc.fHeight = GrMax(MIN_SIZE, GrNextPow2(desc.fHeight)); } uint32_t p0 = desc.fConfig; uint32_t p1 = (desc.fAALevel << 16) | desc.fFlags; GrResourceEntry* entry; int origWidth = desc.fWidth; int origHeight = desc.fHeight; bool doubledW = false; bool doubledH = false; do { uint32_t v[4]; gen_scratch_tex_key_values(fGpu, desc, v); GrResourceKey key(v); entry = fTextureCache->findAndLock(key, GrResourceCache::kNested_LockType); // if we miss, relax the fit of the flags... // then try doubling width... then height. if (NULL != entry || kExact_ScratchTexMatch == match) { break; } if (!(desc.fFlags & kRenderTarget_GrTextureFlagBit)) { desc.fFlags = desc.fFlags | kRenderTarget_GrTextureFlagBit; } else if (desc.fFlags & kNoStencil_GrTextureFlagBit) { desc.fFlags = desc.fFlags & ~kNoStencil_GrTextureFlagBit; } else if (!doubledW) { desc.fFlags = inDesc.fFlags; desc.fWidth *= 2; doubledW = true; } else if (!doubledH) { desc.fFlags = inDesc.fFlags; desc.fWidth = origWidth; desc.fHeight *= 2; doubledH = true; } else { break; } } while (true); if (NULL == entry) { desc.fFlags = inDesc.fFlags; desc.fWidth = origWidth; desc.fHeight = origHeight; GrTexture* texture = fGpu->createTexture(desc, NULL, 0); if (NULL != texture) { uint32_t v[4]; gen_scratch_tex_key_values(fGpu, desc, v); GrResourceKey key(v); entry = fTextureCache->createAndLock(key, texture); } } // If the caller gives us the same desc/sampler twice we don't want // to return the same texture the second time (unless it was previously // released). So we detach the entry from the cache and reattach at release. if (NULL != entry) { fTextureCache->detach(entry); } return TextureCacheEntry(entry); } void GrContext::unlockTexture(TextureCacheEntry entry) { ASSERT_OWNED_RESOURCE(entry.texture()); // If this is a scratch texture we detached it from the cache // while it was locked (to avoid two callers simultaneously getting // the same texture). if (kScratchBit & entry.cacheEntry()->key().getValue32(3)) { fTextureCache->reattachAndUnlock(entry.cacheEntry()); } else { fTextureCache->unlock(entry.cacheEntry()); } } GrTexture* GrContext::createUncachedTexture(const GrTextureDesc& desc, void* srcData, size_t rowBytes) { return fGpu->createTexture(desc, srcData, rowBytes); } void GrContext::getTextureCacheLimits(int* maxTextures, size_t* maxTextureBytes) const { fTextureCache->getLimits(maxTextures, maxTextureBytes); } void GrContext::setTextureCacheLimits(int maxTextures, size_t maxTextureBytes) { fTextureCache->setLimits(maxTextures, maxTextureBytes); } int GrContext::getMaxTextureSize() const { return fGpu->getCaps().fMaxTextureSize; } int GrContext::getMaxRenderTargetSize() const { return fGpu->getCaps().fMaxRenderTargetSize; } /////////////////////////////////////////////////////////////////////////////// GrTexture* GrContext::createPlatformTexture(const GrPlatformTextureDesc& desc) { return fGpu->createPlatformTexture(desc); } GrRenderTarget* GrContext::createPlatformRenderTarget(const GrPlatformRenderTargetDesc& desc) { return fGpu->createPlatformRenderTarget(desc); } GrResource* GrContext::createPlatformSurface(const GrPlatformSurfaceDesc& desc) { // validate flags here so that GrGpu subclasses don't have to check if (kTexture_GrPlatformSurfaceType == desc.fSurfaceType && 0 != desc.fRenderTargetFlags) { return NULL; } if (desc.fSampleCnt && (kGrCanResolve_GrPlatformRenderTargetFlagBit & desc.fRenderTargetFlags)) { return NULL; } if (kTextureRenderTarget_GrPlatformSurfaceType == desc.fSurfaceType && desc.fSampleCnt && !(kGrCanResolve_GrPlatformRenderTargetFlagBit & desc.fRenderTargetFlags)) { return NULL; } return fGpu->createPlatformSurface(desc); } /////////////////////////////////////////////////////////////////////////////// bool GrContext::supportsIndex8PixelConfig(const GrSamplerState* sampler, int width, int height) const { const GrDrawTarget::Caps& caps = fGpu->getCaps(); if (!caps.f8BitPaletteSupport) { return false; } bool isPow2 = GrIsPow2(width) && GrIsPow2(height); if (!isPow2) { bool tiled = NULL != sampler && (sampler->getWrapX() != GrSamplerState::kClamp_WrapMode || sampler->getWrapY() != GrSamplerState::kClamp_WrapMode); if (tiled && !caps.fNPOTTextureTileSupport) { return false; } } return true; } //////////////////////////////////////////////////////////////////////////////// const GrClip& GrContext::getClip() const { return fGpu->getClip(); } void GrContext::setClip(const GrClip& clip) { fGpu->setClip(clip); fGpu->drawState()->enableState(GrDrawState::kClip_StateBit); } void GrContext::setClip(const GrIRect& rect) { GrClip clip; clip.setFromIRect(rect); fGpu->setClip(clip); } //////////////////////////////////////////////////////////////////////////////// void GrContext::clear(const GrIRect* rect, const GrColor color) { this->flush(); fGpu->clear(rect, color); } void GrContext::drawPaint(const GrPaint& paint) { // set rect to be big enough to fill the space, but not super-huge, so we // don't overflow fixed-point implementations GrRect r; r.setLTRB(0, 0, GrIntToScalar(getRenderTarget()->width()), GrIntToScalar(getRenderTarget()->height())); GrMatrix inverse; SkTLazy tmpPaint; const GrPaint* p = &paint; GrDrawState* drawState = fGpu->drawState(); GrAutoMatrix am; // We attempt to map r by the inverse matrix and draw that. mapRect will // map the four corners and bound them with a new rect. This will not // produce a correct result for some perspective matrices. if (!this->getMatrix().hasPerspective()) { if (!drawState->getViewInverse(&inverse)) { GrPrintf("Could not invert matrix"); return; } inverse.mapRect(&r); } else { if (paint.getActiveMaskStageMask() || paint.getActiveStageMask()) { if (!drawState->getViewInverse(&inverse)) { GrPrintf("Could not invert matrix"); return; } tmpPaint.set(paint); tmpPaint.get()->preConcatActiveSamplerMatrices(inverse); p = tmpPaint.get(); } am.set(this, GrMatrix::I()); } // by definition this fills the entire clip, no need for AA if (paint.fAntiAlias) { if (!tmpPaint.isValid()) { tmpPaint.set(paint); p = tmpPaint.get(); } GrAssert(p == tmpPaint.get()); tmpPaint.get()->fAntiAlias = false; } this->drawRect(*p, r); } //////////////////////////////////////////////////////////////////////////////// namespace { inline bool disable_coverage_aa_for_blend(GrDrawTarget* target) { return DISABLE_COVERAGE_AA_FOR_BLEND && !target->canApplyCoverage(); } } struct GrContext::OffscreenRecord { enum Downsample { k4x4SinglePass_Downsample, kFSAA_Downsample } fDownsample; int fTileSizeX; int fTileSizeY; int fTileCountX; int fTileCountY; int fScale; GrAutoScratchTexture fOffscreen; GrDrawTarget::SavedDrawState fSavedState; GrClip fClip; }; bool GrContext::doOffscreenAA(GrDrawTarget* target, bool isHairLines) const { #if !GR_USE_OFFSCREEN_AA return false; #else // Line primitves are always rasterized as 1 pixel wide. // Super-sampling would make them too thin but MSAA would be OK. if (isHairLines && (!PREFER_MSAA_OFFSCREEN_AA || !fGpu->getCaps().fFSAASupport)) { return false; } if (target->getDrawState().getRenderTarget()->isMultisampled()) { return false; } if (disable_coverage_aa_for_blend(target)) { #if GR_DEBUG //GrPrintf("Turning off AA to correctly apply blend.\n"); #endif return false; } return true; #endif } bool GrContext::prepareForOffscreenAA(GrDrawTarget* target, bool requireStencil, const GrIRect& boundRect, GrPathRenderer* pr, OffscreenRecord* record) { GrAssert(GR_USE_OFFSCREEN_AA); GrAssert(NULL == record->fOffscreen.texture()); GrAssert(!boundRect.isEmpty()); int boundW = boundRect.width(); int boundH = boundRect.height(); GrTextureDesc desc; desc.fWidth = GrMin(fMaxOffscreenAASize, boundW); desc.fHeight = GrMin(fMaxOffscreenAASize, boundH); if (requireStencil) { desc.fFlags = kRenderTarget_GrTextureFlagBit; } else { desc.fFlags = kRenderTarget_GrTextureFlagBit | kNoStencil_GrTextureFlagBit; } desc.fConfig = kRGBA_8888_PM_GrPixelConfig; if (PREFER_MSAA_OFFSCREEN_AA && fGpu->getCaps().fFSAASupport) { record->fDownsample = OffscreenRecord::kFSAA_Downsample; record->fScale = 1; desc.fAALevel = kMed_GrAALevel; } else { record->fDownsample = OffscreenRecord::k4x4SinglePass_Downsample; record->fScale = OFFSCREEN_SSAA_SCALE; // both downsample paths assume this GR_STATIC_ASSERT(4 == OFFSCREEN_SSAA_SCALE); desc.fAALevel = kNone_GrAALevel; } desc.fWidth *= record->fScale; desc.fHeight *= record->fScale; record->fOffscreen.set(this, desc); if (NULL == record->fOffscreen.texture()) { return false; } // the approximate lookup might have given us some slop space, might as well // use it when computing the tiles size. // these are scale values, will adjust after considering // the possible second offscreen. record->fTileSizeX = record->fOffscreen.texture()->width(); record->fTileSizeY = record->fOffscreen.texture()->height(); record->fTileSizeX /= record->fScale; record->fTileSizeY /= record->fScale; record->fTileCountX = GrIDivRoundUp(boundW, record->fTileSizeX); record->fTileCountY = GrIDivRoundUp(boundH, record->fTileSizeY); record->fClip = target->getClip(); target->saveCurrentDrawState(&record->fSavedState); return true; } void GrContext::setupOffscreenAAPass1(GrDrawTarget* target, const GrIRect& boundRect, int tileX, int tileY, OffscreenRecord* record) { GrRenderTarget* offRT = record->fOffscreen.texture()->asRenderTarget(); GrAssert(NULL != offRT); GrPaint tempPaint; tempPaint.reset(); this->setPaint(tempPaint, target); GrDrawState* drawState = target->drawState(); drawState->setRenderTarget(offRT); #if PREFER_MSAA_OFFSCREEN_AA drawState->enableState(GrDrawState::kHWAntialias_StateBit); #endif GrMatrix transM; int left = boundRect.fLeft + tileX * record->fTileSizeX; int top = boundRect.fTop + tileY * record->fTileSizeY; transM.setTranslate(-left * GR_Scalar1, -top * GR_Scalar1); drawState->viewMatrix()->postConcat(transM); GrMatrix scaleM; scaleM.setScale(record->fScale * GR_Scalar1, record->fScale * GR_Scalar1); drawState->viewMatrix()->postConcat(scaleM); int w = (tileX == record->fTileCountX-1) ? boundRect.fRight - left : record->fTileSizeX; int h = (tileY == record->fTileCountY-1) ? boundRect.fBottom - top : record->fTileSizeY; GrIRect clear = SkIRect::MakeWH(record->fScale * w, record->fScale * h); target->setClip(GrClip(clear)); #if 0 // visualize tile boundaries by setting edges of offscreen to white // and interior to tranparent. black. target->clear(&clear, 0xffffffff); static const int gOffset = 2; GrIRect clear2 = SkIRect::MakeLTRB(gOffset, gOffset, record->fScale * w - gOffset, record->fScale * h - gOffset); target->clear(&clear2, 0x0); #else target->clear(&clear, 0x0); #endif } void GrContext::doOffscreenAAPass2(GrDrawTarget* target, const GrPaint& paint, const GrIRect& boundRect, int tileX, int tileY, OffscreenRecord* record) { SK_TRACE_EVENT0("GrContext::doOffscreenAAPass2"); GrAssert(NULL != record->fOffscreen.texture()); GrDrawTarget::AutoGeometryPush agp(target); GrIRect tileRect; tileRect.fLeft = boundRect.fLeft + tileX * record->fTileSizeX; tileRect.fTop = boundRect.fTop + tileY * record->fTileSizeY, tileRect.fRight = (tileX == record->fTileCountX-1) ? boundRect.fRight : tileRect.fLeft + record->fTileSizeX; tileRect.fBottom = (tileY == record->fTileCountY-1) ? boundRect.fBottom : tileRect.fTop + record->fTileSizeY; GrSamplerState::Filter filter; if (OffscreenRecord::k4x4SinglePass_Downsample == record->fDownsample) { filter = GrSamplerState::k4x4Downsample_Filter; } else { filter = GrSamplerState::kBilinear_Filter; } GrTexture* src = record->fOffscreen.texture(); int scale; enum { kOffscreenStage = GrPaint::kTotalStages, }; GrDrawState* drawState = target->drawState(); if (OffscreenRecord::kFSAA_Downsample == record->fDownsample) { scale = 1; GrIRect rect = SkIRect::MakeWH(tileRect.width(), tileRect.height()); src->asRenderTarget()->overrideResolveRect(rect); } else { GrAssert(OffscreenRecord::k4x4SinglePass_Downsample == record->fDownsample); scale = 4; } // setup for draw back to main RT, we use the original // draw state setup by the caller plus an additional coverage // stage to handle the AA resolve. Also, we use an identity // view matrix and so pre-concat sampler matrices with view inv. int stageMask = paint.getActiveStageMask(); target->restoreDrawState(record->fSavedState); target->setClip(record->fClip); if (stageMask) { GrMatrix invVM; if (drawState->getViewInverse(&invVM)) { drawState->preConcatSamplerMatrices(stageMask, invVM); } } // This is important when tiling, otherwise second tile's // pass 1 view matrix will be incorrect. GrDrawState::AutoViewMatrixRestore avmr(drawState, GrMatrix::I()); drawState->setTexture(kOffscreenStage, src); GrSamplerState* sampler = drawState->sampler(kOffscreenStage); sampler->reset(GrSamplerState::kClamp_WrapMode, filter); sampler->matrix()->setScale(scale * GR_Scalar1 / src->width(), scale * GR_Scalar1 / src->height()); sampler->matrix()->preTranslate(SkIntToScalar(-tileRect.fLeft), SkIntToScalar(-tileRect.fTop)); GrRect dstRect; int stages = (1 << kOffscreenStage) | stageMask; dstRect.set(tileRect); target->drawSimpleRect(dstRect, NULL, stages); } void GrContext::cleanupOffscreenAA(GrDrawTarget* target, GrPathRenderer* pr, OffscreenRecord* record) { target->restoreDrawState(record->fSavedState); } //////////////////////////////////////////////////////////////////////////////// /* create a triangle strip that strokes the specified triangle. There are 8 unique vertices, but we repreat the last 2 to close up. Alternatively we could use an indices array, and then only send 8 verts, but not sure that would be faster. */ static void setStrokeRectStrip(GrPoint verts[10], GrRect rect, GrScalar width) { const GrScalar rad = GrScalarHalf(width); rect.sort(); verts[0].set(rect.fLeft + rad, rect.fTop + rad); verts[1].set(rect.fLeft - rad, rect.fTop - rad); verts[2].set(rect.fRight - rad, rect.fTop + rad); verts[3].set(rect.fRight + rad, rect.fTop - rad); verts[4].set(rect.fRight - rad, rect.fBottom - rad); verts[5].set(rect.fRight + rad, rect.fBottom + rad); verts[6].set(rect.fLeft + rad, rect.fBottom - rad); verts[7].set(rect.fLeft - rad, rect.fBottom + rad); verts[8] = verts[0]; verts[9] = verts[1]; } static void setInsetFan(GrPoint* pts, size_t stride, const GrRect& r, GrScalar dx, GrScalar dy) { pts->setRectFan(r.fLeft + dx, r.fTop + dy, r.fRight - dx, r.fBottom - dy, stride); } static const uint16_t gFillAARectIdx[] = { 0, 1, 5, 5, 4, 0, 1, 2, 6, 6, 5, 1, 2, 3, 7, 7, 6, 2, 3, 0, 4, 4, 7, 3, 4, 5, 6, 6, 7, 4, }; int GrContext::aaFillRectIndexCount() const { return GR_ARRAY_COUNT(gFillAARectIdx); } GrIndexBuffer* GrContext::aaFillRectIndexBuffer() { if (NULL == fAAFillRectIndexBuffer) { fAAFillRectIndexBuffer = fGpu->createIndexBuffer(sizeof(gFillAARectIdx), false); if (NULL != fAAFillRectIndexBuffer) { #if GR_DEBUG bool updated = #endif fAAFillRectIndexBuffer->updateData(gFillAARectIdx, sizeof(gFillAARectIdx)); GR_DEBUGASSERT(updated); } } return fAAFillRectIndexBuffer; } static const uint16_t gStrokeAARectIdx[] = { 0 + 0, 1 + 0, 5 + 0, 5 + 0, 4 + 0, 0 + 0, 1 + 0, 2 + 0, 6 + 0, 6 + 0, 5 + 0, 1 + 0, 2 + 0, 3 + 0, 7 + 0, 7 + 0, 6 + 0, 2 + 0, 3 + 0, 0 + 0, 4 + 0, 4 + 0, 7 + 0, 3 + 0, 0 + 4, 1 + 4, 5 + 4, 5 + 4, 4 + 4, 0 + 4, 1 + 4, 2 + 4, 6 + 4, 6 + 4, 5 + 4, 1 + 4, 2 + 4, 3 + 4, 7 + 4, 7 + 4, 6 + 4, 2 + 4, 3 + 4, 0 + 4, 4 + 4, 4 + 4, 7 + 4, 3 + 4, 0 + 8, 1 + 8, 5 + 8, 5 + 8, 4 + 8, 0 + 8, 1 + 8, 2 + 8, 6 + 8, 6 + 8, 5 + 8, 1 + 8, 2 + 8, 3 + 8, 7 + 8, 7 + 8, 6 + 8, 2 + 8, 3 + 8, 0 + 8, 4 + 8, 4 + 8, 7 + 8, 3 + 8, }; int GrContext::aaStrokeRectIndexCount() const { return GR_ARRAY_COUNT(gStrokeAARectIdx); } GrIndexBuffer* GrContext::aaStrokeRectIndexBuffer() { if (NULL == fAAStrokeRectIndexBuffer) { fAAStrokeRectIndexBuffer = fGpu->createIndexBuffer(sizeof(gStrokeAARectIdx), false); if (NULL != fAAStrokeRectIndexBuffer) { #if GR_DEBUG bool updated = #endif fAAStrokeRectIndexBuffer->updateData(gStrokeAARectIdx, sizeof(gStrokeAARectIdx)); GR_DEBUGASSERT(updated); } } return fAAStrokeRectIndexBuffer; } static GrVertexLayout aa_rect_layout(const GrDrawTarget* target, bool useCoverage) { GrVertexLayout layout = 0; for (int s = 0; s < GrDrawState::kNumStages; ++s) { if (NULL != target->getDrawState().getTexture(s)) { layout |= GrDrawTarget::StagePosAsTexCoordVertexLayoutBit(s); } } if (useCoverage) { layout |= GrDrawTarget::kCoverage_VertexLayoutBit; } else { layout |= GrDrawTarget::kColor_VertexLayoutBit; } return layout; } void GrContext::fillAARect(GrDrawTarget* target, const GrRect& devRect, bool useVertexCoverage) { GrVertexLayout layout = aa_rect_layout(target, useVertexCoverage); size_t vsize = GrDrawTarget::VertexSize(layout); GrDrawTarget::AutoReleaseGeometry geo(target, layout, 8, 0); if (!geo.succeeded()) { GrPrintf("Failed to get space for vertices!\n"); return; } GrIndexBuffer* indexBuffer = this->aaFillRectIndexBuffer(); if (NULL == indexBuffer) { GrPrintf("Failed to create index buffer!\n"); return; } intptr_t verts = reinterpret_cast(geo.vertices()); GrPoint* fan0Pos = reinterpret_cast(verts); GrPoint* fan1Pos = reinterpret_cast(verts + 4 * vsize); setInsetFan(fan0Pos, vsize, devRect, -GR_ScalarHalf, -GR_ScalarHalf); setInsetFan(fan1Pos, vsize, devRect, GR_ScalarHalf, GR_ScalarHalf); verts += sizeof(GrPoint); for (int i = 0; i < 4; ++i) { *reinterpret_cast(verts + i * vsize) = 0; } GrColor innerColor; if (useVertexCoverage) { innerColor = 0xffffffff; } else { innerColor = target->getDrawState().getColor(); } verts += 4 * vsize; for (int i = 0; i < 4; ++i) { *reinterpret_cast(verts + i * vsize) = innerColor; } target->setIndexSourceToBuffer(indexBuffer); target->drawIndexed(kTriangles_PrimitiveType, 0, 0, 8, this->aaFillRectIndexCount()); } void GrContext::strokeAARect(GrDrawTarget* target, const GrRect& devRect, const GrVec& devStrokeSize, bool useVertexCoverage) { const GrScalar& dx = devStrokeSize.fX; const GrScalar& dy = devStrokeSize.fY; const GrScalar rx = GrMul(dx, GR_ScalarHalf); const GrScalar ry = GrMul(dy, GR_ScalarHalf); GrScalar spare; { GrScalar w = devRect.width() - dx; GrScalar h = devRect.height() - dy; spare = GrMin(w, h); } if (spare <= 0) { GrRect r(devRect); r.inset(-rx, -ry); fillAARect(target, r, useVertexCoverage); return; } GrVertexLayout layout = aa_rect_layout(target, useVertexCoverage); size_t vsize = GrDrawTarget::VertexSize(layout); GrDrawTarget::AutoReleaseGeometry geo(target, layout, 16, 0); if (!geo.succeeded()) { GrPrintf("Failed to get space for vertices!\n"); return; } GrIndexBuffer* indexBuffer = this->aaStrokeRectIndexBuffer(); if (NULL == indexBuffer) { GrPrintf("Failed to create index buffer!\n"); return; } intptr_t verts = reinterpret_cast(geo.vertices()); GrPoint* fan0Pos = reinterpret_cast(verts); GrPoint* fan1Pos = reinterpret_cast(verts + 4 * vsize); GrPoint* fan2Pos = reinterpret_cast(verts + 8 * vsize); GrPoint* fan3Pos = reinterpret_cast(verts + 12 * vsize); setInsetFan(fan0Pos, vsize, devRect, -rx - GR_ScalarHalf, -ry - GR_ScalarHalf); setInsetFan(fan1Pos, vsize, devRect, -rx + GR_ScalarHalf, -ry + GR_ScalarHalf); setInsetFan(fan2Pos, vsize, devRect, rx - GR_ScalarHalf, ry - GR_ScalarHalf); setInsetFan(fan3Pos, vsize, devRect, rx + GR_ScalarHalf, ry + GR_ScalarHalf); verts += sizeof(GrPoint); for (int i = 0; i < 4; ++i) { *reinterpret_cast(verts + i * vsize) = 0; } GrColor innerColor; if (useVertexCoverage) { innerColor = 0xffffffff; } else { innerColor = target->getDrawState().getColor(); } verts += 4 * vsize; for (int i = 0; i < 8; ++i) { *reinterpret_cast(verts + i * vsize) = innerColor; } verts += 8 * vsize; for (int i = 0; i < 8; ++i) { *reinterpret_cast(verts + i * vsize) = 0; } target->setIndexSourceToBuffer(indexBuffer); target->drawIndexed(kTriangles_PrimitiveType, 0, 0, 16, aaStrokeRectIndexCount()); } /** * Returns true if the rects edges are integer-aligned. */ static bool isIRect(const GrRect& r) { return GrScalarIsInt(r.fLeft) && GrScalarIsInt(r.fTop) && GrScalarIsInt(r.fRight) && GrScalarIsInt(r.fBottom); } static bool apply_aa_to_rect(GrDrawTarget* target, const GrRect& rect, GrScalar width, const GrMatrix* matrix, GrMatrix* combinedMatrix, GrRect* devRect, bool* useVertexCoverage) { // we use a simple coverage ramp to do aa on axis-aligned rects // we check if the rect will be axis-aligned, and the rect won't land on // integer coords. // we are keeping around the "tweak the alpha" trick because // it is our only hope for the fixed-pipe implementation. // In a shader implementation we can give a separate coverage input // TODO: remove this ugliness when we drop the fixed-pipe impl *useVertexCoverage = false; if (!target->canTweakAlphaForCoverage()) { if (disable_coverage_aa_for_blend(target)) { #if GR_DEBUG //GrPrintf("Turning off AA to correctly apply blend.\n"); #endif return false; } else { *useVertexCoverage = true; } } const GrDrawState& drawState = target->getDrawState(); if (drawState.getRenderTarget()->isMultisampled()) { return false; } if (0 == width && target->willUseHWAALines()) { return false; } if (!drawState.getViewMatrix().preservesAxisAlignment()) { return false; } if (NULL != matrix && !matrix->preservesAxisAlignment()) { return false; } *combinedMatrix = drawState.getViewMatrix(); if (NULL != matrix) { combinedMatrix->preConcat(*matrix); GrAssert(combinedMatrix->preservesAxisAlignment()); } combinedMatrix->mapRect(devRect, rect); devRect->sort(); if (width < 0) { return !isIRect(*devRect); } else { return true; } } void GrContext::drawRect(const GrPaint& paint, const GrRect& rect, GrScalar width, const GrMatrix* matrix) { SK_TRACE_EVENT0("GrContext::drawRect"); GrDrawTarget* target = this->prepareToDraw(paint, kUnbuffered_DrawCategory); int stageMask = paint.getActiveStageMask(); GrRect devRect = rect; GrMatrix combinedMatrix; bool useVertexCoverage; bool needAA = paint.fAntiAlias && !this->getRenderTarget()->isMultisampled(); bool doAA = needAA && apply_aa_to_rect(target, rect, width, matrix, &combinedMatrix, &devRect, &useVertexCoverage); if (doAA) { GrDrawTarget::AutoDeviceCoordDraw adcd(target, stageMask); if (width >= 0) { GrVec strokeSize;; if (width > 0) { strokeSize.set(width, width); combinedMatrix.mapVectors(&strokeSize, 1); strokeSize.setAbs(strokeSize); } else { strokeSize.set(GR_Scalar1, GR_Scalar1); } strokeAARect(target, devRect, strokeSize, useVertexCoverage); } else { fillAARect(target, devRect, useVertexCoverage); } return; } if (width >= 0) { // TODO: consider making static vertex buffers for these cases. // Hairline could be done by just adding closing vertex to // unitSquareVertexBuffer() GrVertexLayout layout = PaintStageVertexLayoutBits(paint, NULL); static const int worstCaseVertCount = 10; GrDrawTarget::AutoReleaseGeometry geo(target, layout, worstCaseVertCount, 0); if (!geo.succeeded()) { GrPrintf("Failed to get space for vertices!\n"); return; } GrPrimitiveType primType; int vertCount; GrPoint* vertex = geo.positions(); if (width > 0) { vertCount = 10; primType = kTriangleStrip_PrimitiveType; setStrokeRectStrip(vertex, rect, width); } else { // hairline vertCount = 5; primType = kLineStrip_PrimitiveType; vertex[0].set(rect.fLeft, rect.fTop); vertex[1].set(rect.fRight, rect.fTop); vertex[2].set(rect.fRight, rect.fBottom); vertex[3].set(rect.fLeft, rect.fBottom); vertex[4].set(rect.fLeft, rect.fTop); } GrDrawState::AutoViewMatrixRestore avmr; if (NULL != matrix) { GrDrawState* drawState = target->drawState(); avmr.set(drawState); drawState->preConcatViewMatrix(*matrix); drawState->preConcatSamplerMatrices(stageMask, *matrix); } target->drawNonIndexed(primType, 0, vertCount); } else { #if GR_STATIC_RECT_VB GrVertexLayout layout = PaintStageVertexLayoutBits(paint, NULL); const GrVertexBuffer* sqVB = fGpu->getUnitSquareVertexBuffer(); if (NULL == sqVB) { GrPrintf("Failed to create static rect vb.\n"); return; } target->setVertexSourceToBuffer(layout, sqVB); GrDrawState* drawState = target->drawState(); GrDrawState::AutoViewMatrixRestore avmr(drawState); GrMatrix m; m.setAll(rect.width(), 0, rect.fLeft, 0, rect.height(), rect.fTop, 0, 0, GrMatrix::I()[8]); if (NULL != matrix) { m.postConcat(*matrix); } drawState->preConcatViewMatrix(m); drawState->preConcatSamplerMatrices(stageMask, m); target->drawNonIndexed(kTriangleFan_PrimitiveType, 0, 4); #else target->drawSimpleRect(rect, matrix, stageMask); #endif } } void GrContext::drawRectToRect(const GrPaint& paint, const GrRect& dstRect, const GrRect& srcRect, const GrMatrix* dstMatrix, const GrMatrix* srcMatrix) { SK_TRACE_EVENT0("GrContext::drawRectToRect"); // srcRect refers to paint's first texture if (NULL == paint.getTexture(0)) { drawRect(paint, dstRect, -1, dstMatrix); return; } GR_STATIC_ASSERT(!BATCH_RECT_TO_RECT || !GR_STATIC_RECT_VB); #if GR_STATIC_RECT_VB GrDrawTarget* target = this->prepareToDraw(paint, kUnbuffered_DrawCategory); GrDrawState* drawState = target->drawState(); GrVertexLayout layout = PaintStageVertexLayoutBits(paint, NULL); GrDrawState::AutoViewMatrixRestore avmr(drawState); GrMatrix m; m.setAll(dstRect.width(), 0, dstRect.fLeft, 0, dstRect.height(), dstRect.fTop, 0, 0, GrMatrix::I()[8]); if (NULL != dstMatrix) { m.postConcat(*dstMatrix); } drawState->preConcatViewMatrix(m); // srcRect refers to first stage int otherStageMask = paint.getActiveStageMask() & (~(1 << GrPaint::kFirstTextureStage)); if (otherStageMask) { drawState->preConcatSamplerMatrices(otherStageMask, m); } m.setAll(srcRect.width(), 0, srcRect.fLeft, 0, srcRect.height(), srcRect.fTop, 0, 0, GrMatrix::I()[8]); if (NULL != srcMatrix) { m.postConcat(*srcMatrix); } drawState->sampler(GrPaint::kFirstTextureStage)->preConcatMatrix(m); const GrVertexBuffer* sqVB = fGpu->getUnitSquareVertexBuffer(); if (NULL == sqVB) { GrPrintf("Failed to create static rect vb.\n"); return; } target->setVertexSourceToBuffer(layout, sqVB); target->drawNonIndexed(kTriangleFan_PrimitiveType, 0, 4); #else GrDrawTarget* target; #if BATCH_RECT_TO_RECT target = this->prepareToDraw(paint, kBuffered_DrawCategory); #else target = this->prepareToDraw(paint, kUnbuffered_DrawCategory); #endif const GrRect* srcRects[GrDrawState::kNumStages] = {NULL}; const GrMatrix* srcMatrices[GrDrawState::kNumStages] = {NULL}; srcRects[0] = &srcRect; srcMatrices[0] = srcMatrix; target->drawRect(dstRect, dstMatrix, 1, srcRects, srcMatrices); #endif } void GrContext::drawVertices(const GrPaint& paint, GrPrimitiveType primitiveType, int vertexCount, const GrPoint positions[], const GrPoint texCoords[], const GrColor colors[], const uint16_t indices[], int indexCount) { SK_TRACE_EVENT0("GrContext::drawVertices"); GrDrawTarget::AutoReleaseGeometry geo; GrDrawTarget* target = this->prepareToDraw(paint, kUnbuffered_DrawCategory); bool hasTexCoords[GrPaint::kTotalStages] = { NULL != texCoords, // texCoordSrc provides explicit stage 0 coords 0 // remaining stages use positions }; GrVertexLayout layout = PaintStageVertexLayoutBits(paint, hasTexCoords); if (NULL != colors) { layout |= GrDrawTarget::kColor_VertexLayoutBit; } int vertexSize = GrDrawTarget::VertexSize(layout); if (sizeof(GrPoint) != vertexSize) { if (!geo.set(target, layout, vertexCount, 0)) { GrPrintf("Failed to get space for vertices!\n"); return; } int texOffsets[GrDrawState::kMaxTexCoords]; int colorOffset; GrDrawTarget::VertexSizeAndOffsetsByIdx(layout, texOffsets, &colorOffset, NULL, NULL); void* curVertex = geo.vertices(); for (int i = 0; i < vertexCount; ++i) { *((GrPoint*)curVertex) = positions[i]; if (texOffsets[0] > 0) { *(GrPoint*)((intptr_t)curVertex + texOffsets[0]) = texCoords[i]; } if (colorOffset > 0) { *(GrColor*)((intptr_t)curVertex + colorOffset) = colors[i]; } curVertex = (void*)((intptr_t)curVertex + vertexSize); } } else { target->setVertexSourceToArray(layout, positions, vertexCount); } // we don't currently apply offscreen AA to this path. Need improved // management of GrDrawTarget's geometry to avoid copying points per-tile. if (NULL != indices) { target->setIndexSourceToArray(indices, indexCount); target->drawIndexed(primitiveType, 0, 0, vertexCount, indexCount); } else { target->drawNonIndexed(primitiveType, 0, vertexCount); } } /////////////////////////////////////////////////////////////////////////////// void GrContext::drawPath(const GrPaint& paint, const GrPath& path, GrPathFill fill, const GrPoint* translate) { if (path.isEmpty()) { if (GrIsFillInverted(fill)) { this->drawPaint(paint); } return; } GrDrawTarget* target = this->prepareToDraw(paint, kUnbuffered_DrawCategory); bool prAA = paint.fAntiAlias && !this->getRenderTarget()->isMultisampled(); // An Assumption here is that path renderer would use some form of tweaking // the src color (either the input alpha or in the frag shader) to implement // aa. If we have some future driver-mojo path AA that can do the right // thing WRT to the blend then we'll need some query on the PR. if (disable_coverage_aa_for_blend(target)) { #if GR_DEBUG //GrPrintf("Turning off AA to correctly apply blend.\n"); #endif prAA = false; } bool doOSAA = false; GrPathRenderer* pr = NULL; if (prAA) { pr = this->getPathRenderer(path, fill, true); if (NULL == pr) { prAA = false; doOSAA = this->doOffscreenAA(target, kHairLine_PathFill == fill); pr = this->getPathRenderer(path, fill, false); } } else { pr = this->getPathRenderer(path, fill, false); } if (NULL == pr) { #if GR_DEBUG GrPrintf("Unable to find path renderer compatible with path.\n"); #endif return; } GrPathRenderer::AutoClearPath arp(pr, target, &path, fill, prAA, translate); GrDrawState::StageMask stageMask = paint.getActiveStageMask(); if (doOSAA) { bool needsStencil = pr->requiresStencilPass(target, path, fill); const GrRenderTarget* rt = target->getDrawState().getRenderTarget(); // compute bounds as intersection of rt size, clip, and path GrIRect bound = SkIRect::MakeWH(rt->width(), rt->height()); GrIRect clipIBounds; if (target->getClip().hasConservativeBounds()) { target->getClip().getConservativeBounds().roundOut(&clipIBounds); if (!bound.intersect(clipIBounds)) { return; } } GrRect pathBounds = path.getBounds(); if (!pathBounds.isEmpty()) { if (NULL != translate) { pathBounds.offset(*translate); } target->getDrawState().getViewMatrix().mapRect(&pathBounds, pathBounds); GrIRect pathIBounds; pathBounds.roundOut(&pathIBounds); if (!bound.intersect(pathIBounds)) { return; } } OffscreenRecord record; if (this->prepareForOffscreenAA(target, needsStencil, bound, pr, &record)) { for (int tx = 0; tx < record.fTileCountX; ++tx) { for (int ty = 0; ty < record.fTileCountY; ++ty) { this->setupOffscreenAAPass1(target, bound, tx, ty, &record); pr->drawPath(0); this->doOffscreenAAPass2(target, paint, bound, tx, ty, &record); } } this->cleanupOffscreenAA(target, pr, &record); if (GrIsFillInverted(fill) && bound != clipIBounds) { GrDrawTarget::AutoDeviceCoordDraw adcd(target, stageMask); GrRect rect; if (clipIBounds.fTop < bound.fTop) { rect.iset(clipIBounds.fLeft, clipIBounds.fTop, clipIBounds.fRight, bound.fTop); target->drawSimpleRect(rect, NULL, stageMask); } if (clipIBounds.fLeft < bound.fLeft) { rect.iset(clipIBounds.fLeft, bound.fTop, bound.fLeft, bound.fBottom); target->drawSimpleRect(rect, NULL, stageMask); } if (clipIBounds.fRight > bound.fRight) { rect.iset(bound.fRight, bound.fTop, clipIBounds.fRight, bound.fBottom); target->drawSimpleRect(rect, NULL, stageMask); } if (clipIBounds.fBottom > bound.fBottom) { rect.iset(clipIBounds.fLeft, bound.fBottom, clipIBounds.fRight, clipIBounds.fBottom); target->drawSimpleRect(rect, NULL, stageMask); } } return; } } pr->drawPath(stageMask); } //////////////////////////////////////////////////////////////////////////////// void GrContext::flush(int flagsBitfield) { if (kDiscard_FlushBit & flagsBitfield) { fDrawBuffer->reset(); } else { this->flushDrawBuffer(); } if (kForceCurrentRenderTarget_FlushBit & flagsBitfield) { fGpu->forceRenderTargetFlush(); } } void GrContext::flushText() { if (kText_DrawCategory == fLastDrawCategory) { flushDrawBuffer(); } } void GrContext::flushDrawBuffer() { #if BATCH_RECT_TO_RECT || DEFER_TEXT_RENDERING if (fDrawBuffer) { fDrawBuffer->playback(fGpu); fDrawBuffer->reset(); } #endif } void GrContext::internalWriteTexturePixels(GrTexture* texture, int left, int top, int width, int height, GrPixelConfig config, const void* buffer, size_t rowBytes, uint32_t flags) { SK_TRACE_EVENT0("GrContext::writeTexturePixels"); ASSERT_OWNED_RESOURCE(texture); if (!(kDontFlush_PixelOpsFlag & flags)) { this->flush(); } // TODO: use scratch texture to perform conversion if (GrPixelConfigIsUnpremultiplied(texture->config()) != GrPixelConfigIsUnpremultiplied(config)) { return; } fGpu->writeTexturePixels(texture, left, top, width, height, config, buffer, rowBytes); } bool GrContext::internalReadTexturePixels(GrTexture* texture, int left, int top, int width, int height, GrPixelConfig config, void* buffer, size_t rowBytes, uint32_t flags) { SK_TRACE_EVENT0("GrContext::readTexturePixels"); ASSERT_OWNED_RESOURCE(texture); // TODO: code read pixels for textures that aren't also rendertargets GrRenderTarget* target = texture->asRenderTarget(); if (NULL != target) { return this->internalReadRenderTargetPixels(target, left, top, width, height, config, buffer, rowBytes, flags); } else { return false; } } bool GrContext::internalReadRenderTargetPixels(GrRenderTarget* target, int left, int top, int width, int height, GrPixelConfig config, void* buffer, size_t rowBytes, uint32_t flags) { SK_TRACE_EVENT0("GrContext::readRenderTargetPixels"); ASSERT_OWNED_RESOURCE(target); if (NULL == target) { target = fGpu->drawState()->getRenderTarget(); if (NULL == target) { return false; } } // PM <-> UPM conversion requires a draw. Currently we only support drawing // into a UPM target, not reading from a UPM texture. Thus, UPM->PM is not // not supported at this time. if (GrPixelConfigIsUnpremultiplied(target->config()) && !GrPixelConfigIsUnpremultiplied(config)) { return false; } if (!(kDontFlush_PixelOpsFlag & flags)) { this->flush(); } GrTexture* src = target->asTexture(); bool swapRAndB = NULL != src && fGpu->preferredReadPixelsConfig(config) == GrPixelConfigSwapRAndB(config); bool flipY = NULL != src && fGpu->readPixelsWillPayForYFlip(target, left, top, width, height, config, rowBytes); bool alphaConversion = (!GrPixelConfigIsUnpremultiplied(target->config()) && GrPixelConfigIsUnpremultiplied(config)); if (NULL == src && alphaConversion) { // we should fallback to cpu conversion here. This could happen when // we were given an external render target by the client that is not // also a texture (e.g. FBO 0 in GL) return false; } // we draw to a scratch texture if any of these conversion are applied GrAutoScratchTexture ast; if (flipY || swapRAndB || alphaConversion) { GrAssert(NULL != src); if (swapRAndB) { config = GrPixelConfigSwapRAndB(config); GrAssert(kUnknown_GrPixelConfig != config); } // Make the scratch a render target because we don't have a robust // readTexturePixels as of yet (it calls this function). const GrTextureDesc desc = { kRenderTarget_GrTextureFlagBit, kNone_GrAALevel, width, height, config }; // When a full readback is faster than a partial we could always make // the scratch exactly match the passed rect. However, if we see many // different size rectangles we will trash our texture cache and pay the // cost of creating and destroying many textures. So, we only request // an exact match when the caller is reading an entire RT. ScratchTexMatch match = kApprox_ScratchTexMatch; if (0 == left && 0 == top && target->width() == width && target->height() == height && fGpu->fullReadPixelsIsFasterThanPartial()) { match = kExact_ScratchTexMatch; } ast.set(this, desc, match); GrTexture* texture = ast.texture(); if (!texture) { return false; } target = texture->asRenderTarget(); GrAssert(NULL != target); GrDrawTarget::AutoStateRestore asr(fGpu); GrDrawState* drawState = fGpu->drawState(); reset_draw_state(drawState); drawState->setRenderTarget(target); GrMatrix matrix; if (flipY) { matrix.setTranslate(SK_Scalar1 * left, SK_Scalar1 * (top + height)); matrix.set(GrMatrix::kMScaleY, -GR_Scalar1); } else { matrix.setTranslate(SK_Scalar1 *left, SK_Scalar1 *top); } matrix.postIDiv(src->width(), src->height()); drawState->sampler(0)->reset(matrix); drawState->sampler(0)->setRAndBSwap(swapRAndB); drawState->setTexture(0, src); GrRect rect; rect.setXYWH(0, 0, SK_Scalar1 * width, SK_Scalar1 * height); fGpu->drawSimpleRect(rect, NULL, 0x1); left = 0; top = 0; } return fGpu->readPixels(target, left, top, width, height, config, buffer, rowBytes, flipY); } void GrContext::copyTexture(GrTexture* src, GrRenderTarget* dst) { if (NULL == src || NULL == dst) { return; } ASSERT_OWNED_RESOURCE(src); GrDrawTarget::AutoStateRestore asr(fGpu); GrDrawState* drawState = fGpu->drawState(); reset_draw_state(drawState); drawState->setRenderTarget(dst); GrMatrix sampleM; sampleM.setIDiv(src->width(), src->height()); drawState->setTexture(0, src); drawState->sampler(0)->reset(sampleM); SkRect rect = SkRect::MakeXYWH(0, 0, src->width(), src->height()); fGpu->drawSimpleRect(rect, NULL, 1 << 0); } void GrContext::internalWriteRenderTargetPixels(GrRenderTarget* target, int left, int top, int width, int height, GrPixelConfig config, const void* buffer, size_t rowBytes, uint32_t flags) { SK_TRACE_EVENT0("GrContext::writeRenderTargetPixels"); ASSERT_OWNED_RESOURCE(target); if (NULL == target) { target = fGpu->drawState()->getRenderTarget(); if (NULL == target) { return; } } // TODO: when underlying api has a direct way to do this we should use it // (e.g. glDrawPixels on desktop GL). // If the RT is also a texture and we don't have to do PM/UPM conversion // then take the texture path, which we expect to be at least as fast or // faster since it doesn't use an intermediate texture as we do below. #if !GR_MAC_BUILD // At least some drivers on the Mac get confused when glTexImage2D is called // on a texture attached to an FBO. The FBO still sees the old image. TODO: // determine what OS versions and/or HW is affected. if (NULL != target->asTexture() && GrPixelConfigIsUnpremultiplied(target->config()) == GrPixelConfigIsUnpremultiplied(config)) { this->internalWriteTexturePixels(target->asTexture(), left, top, width, height, config, buffer, rowBytes, flags); return; } #endif bool swapRAndB = fGpu->preferredReadPixelsConfig(config) == GrPixelConfigSwapRAndB(config); if (swapRAndB) { config = GrPixelConfigSwapRAndB(config); } const GrTextureDesc desc = { kNone_GrTextureFlags, kNone_GrAALevel, width, height, config }; GrAutoScratchTexture ast(this, desc); GrTexture* texture = ast.texture(); if (NULL == texture) { return; } this->internalWriteTexturePixels(texture, 0, 0, width, height, config, buffer, rowBytes, flags); GrDrawTarget::AutoStateRestore asr(fGpu); GrDrawState* drawState = fGpu->drawState(); reset_draw_state(drawState); GrMatrix matrix; matrix.setTranslate(GrIntToScalar(left), GrIntToScalar(top)); drawState->setViewMatrix(matrix); drawState->setRenderTarget(target); drawState->setTexture(0, texture); matrix.setIDiv(texture->width(), texture->height()); drawState->sampler(0)->reset(GrSamplerState::kClamp_WrapMode, GrSamplerState::kNearest_Filter, matrix); drawState->sampler(0)->setRAndBSwap(swapRAndB); GrVertexLayout layout = GrDrawTarget::StagePosAsTexCoordVertexLayoutBit(0); static const int VCOUNT = 4; // TODO: Use GrGpu::drawRect here GrDrawTarget::AutoReleaseGeometry geo(fGpu, layout, VCOUNT, 0); if (!geo.succeeded()) { GrPrintf("Failed to get space for vertices!\n"); return; } ((GrPoint*)geo.vertices())->setIRectFan(0, 0, width, height); fGpu->drawNonIndexed(kTriangleFan_PrimitiveType, 0, VCOUNT); } //////////////////////////////////////////////////////////////////////////////// void GrContext::setPaint(const GrPaint& paint, GrDrawTarget* target) { GrDrawState* drawState = target->drawState(); for (int i = 0; i < GrPaint::kMaxTextures; ++i) { int s = i + GrPaint::kFirstTextureStage; drawState->setTexture(s, paint.getTexture(i)); ASSERT_OWNED_RESOURCE(paint.getTexture(i)); if (paint.getTexture(i)) { *drawState->sampler(s) = paint.getTextureSampler(i); } } drawState->setFirstCoverageStage(GrPaint::kFirstMaskStage); for (int i = 0; i < GrPaint::kMaxMasks; ++i) { int s = i + GrPaint::kFirstMaskStage; drawState->setTexture(s, paint.getMask(i)); ASSERT_OWNED_RESOURCE(paint.getMask(i)); if (paint.getMask(i)) { *drawState->sampler(s) = paint.getMaskSampler(i); } } drawState->setColor(paint.fColor); if (paint.fDither) { drawState->enableState(GrDrawState::kDither_StateBit); } else { drawState->disableState(GrDrawState::kDither_StateBit); } if (paint.fAntiAlias) { drawState->enableState(GrDrawState::kHWAntialias_StateBit); } else { drawState->disableState(GrDrawState::kHWAntialias_StateBit); } if (paint.fColorMatrixEnabled) { drawState->enableState(GrDrawState::kColorMatrix_StateBit); } else { drawState->disableState(GrDrawState::kColorMatrix_StateBit); } drawState->setBlendFunc(paint.fSrcBlendCoeff, paint.fDstBlendCoeff); drawState->setColorFilter(paint.fColorFilterColor, paint.fColorFilterXfermode); drawState->setColorMatrix(paint.fColorMatrix); if (paint.getActiveMaskStageMask() && !target->canApplyCoverage()) { GrPrintf("Partial pixel coverage will be incorrectly blended.\n"); } } GrDrawTarget* GrContext::prepareToDraw(const GrPaint& paint, DrawCategory category) { if (category != fLastDrawCategory) { flushDrawBuffer(); fLastDrawCategory = category; } this->setPaint(paint, fGpu); GrDrawTarget* target = fGpu; switch (category) { case kText_DrawCategory: #if DEFER_TEXT_RENDERING target = fDrawBuffer; fDrawBuffer->initializeDrawStateAndClip(*fGpu); #else target = fGpu; #endif break; case kUnbuffered_DrawCategory: target = fGpu; break; case kBuffered_DrawCategory: target = fDrawBuffer; fDrawBuffer->initializeDrawStateAndClip(*fGpu); break; } return target; } GrPathRenderer* GrContext::getPathRenderer(const GrPath& path, GrPathFill fill, bool antiAlias) { if (NULL == fPathRendererChain) { fPathRendererChain = new GrPathRendererChain(this, GrPathRendererChain::kNone_UsageFlag); } return fPathRendererChain->getPathRenderer(fGpu->getCaps(), path, fill, antiAlias); } //////////////////////////////////////////////////////////////////////////////// void GrContext::setRenderTarget(GrRenderTarget* target) { ASSERT_OWNED_RESOURCE(target); this->flush(false); fGpu->drawState()->setRenderTarget(target); } GrRenderTarget* GrContext::getRenderTarget() { return fGpu->drawState()->getRenderTarget(); } const GrRenderTarget* GrContext::getRenderTarget() const { return fGpu->getDrawState().getRenderTarget(); } const GrMatrix& GrContext::getMatrix() const { return fGpu->getDrawState().getViewMatrix(); } void GrContext::setMatrix(const GrMatrix& m) { fGpu->drawState()->setViewMatrix(m); } void GrContext::concatMatrix(const GrMatrix& m) const { fGpu->drawState()->preConcatViewMatrix(m); } static inline intptr_t setOrClear(intptr_t bits, int shift, intptr_t pred) { intptr_t mask = 1 << shift; if (pred) { bits |= mask; } else { bits &= ~mask; } return bits; } void GrContext::resetStats() { fGpu->resetStats(); } const GrGpuStats& GrContext::getStats() const { return fGpu->getStats(); } void GrContext::printStats() const { fGpu->printStats(); } GrContext::GrContext(GrGpu* gpu) { fGpu = gpu; fGpu->ref(); fGpu->setContext(this); fPathRendererChain = NULL; fTextureCache = new GrResourceCache(MAX_TEXTURE_CACHE_COUNT, MAX_TEXTURE_CACHE_BYTES); fFontCache = new GrFontCache(fGpu); fLastDrawCategory = kUnbuffered_DrawCategory; fDrawBuffer = NULL; fDrawBufferVBAllocPool = NULL; fDrawBufferIBAllocPool = NULL; fAAFillRectIndexBuffer = NULL; fAAStrokeRectIndexBuffer = NULL; int gpuMaxOffscreen = gpu->getCaps().fMaxRenderTargetSize; if (!PREFER_MSAA_OFFSCREEN_AA || !gpu->getCaps().fFSAASupport) { gpuMaxOffscreen /= OFFSCREEN_SSAA_SCALE; } fMaxOffscreenAASize = GrMin(GR_MAX_OFFSCREEN_AA_SIZE, gpuMaxOffscreen); this->setupDrawBuffer(); } void GrContext::setupDrawBuffer() { GrAssert(NULL == fDrawBuffer); GrAssert(NULL == fDrawBufferVBAllocPool); GrAssert(NULL == fDrawBufferIBAllocPool); #if DEFER_TEXT_RENDERING || BATCH_RECT_TO_RECT fDrawBufferVBAllocPool = new GrVertexBufferAllocPool(fGpu, false, DRAW_BUFFER_VBPOOL_BUFFER_SIZE, DRAW_BUFFER_VBPOOL_PREALLOC_BUFFERS); fDrawBufferIBAllocPool = new GrIndexBufferAllocPool(fGpu, false, DRAW_BUFFER_IBPOOL_BUFFER_SIZE, DRAW_BUFFER_IBPOOL_PREALLOC_BUFFERS); fDrawBuffer = new GrInOrderDrawBuffer(fGpu, fDrawBufferVBAllocPool, fDrawBufferIBAllocPool); #endif #if BATCH_RECT_TO_RECT fDrawBuffer->setQuadIndexBuffer(this->getQuadIndexBuffer()); #endif } GrDrawTarget* GrContext::getTextTarget(const GrPaint& paint) { GrDrawTarget* target; #if DEFER_TEXT_RENDERING target = prepareToDraw(paint, kText_DrawCategory); #else target = prepareToDraw(paint, kUnbuffered_DrawCategory); #endif this->setPaint(paint, target); return target; } const GrIndexBuffer* GrContext::getQuadIndexBuffer() const { return fGpu->getQuadIndexBuffer(); } void GrContext::convolveInX(GrTexture* texture, const SkRect& rect, const float* kernel, int kernelWidth) { ASSERT_OWNED_RESOURCE(texture); float imageIncrement[2] = {1.0f / texture->width(), 0.0f}; convolve(texture, rect, imageIncrement, kernel, kernelWidth); } void GrContext::convolveInY(GrTexture* texture, const SkRect& rect, const float* kernel, int kernelWidth) { ASSERT_OWNED_RESOURCE(texture); float imageIncrement[2] = {0.0f, 1.0f / texture->height()}; convolve(texture, rect, imageIncrement, kernel, kernelWidth); } void GrContext::convolve(GrTexture* texture, const SkRect& rect, float imageIncrement[2], const float* kernel, int kernelWidth) { ASSERT_OWNED_RESOURCE(texture); GrDrawTarget::AutoStateRestore asr(fGpu); GrDrawState* drawState = fGpu->drawState(); GrMatrix sampleM; sampleM.setIDiv(texture->width(), texture->height()); drawState->sampler(0)->reset(GrSamplerState::kClamp_WrapMode, GrSamplerState::kConvolution_Filter, sampleM); drawState->sampler(0)->setConvolutionParams(kernelWidth, kernel, imageIncrement); drawState->setViewMatrix(GrMatrix::I()); drawState->setTexture(0, texture); drawState->setAlpha(0xFF); drawState->setBlendFunc(kOne_BlendCoeff, kZero_BlendCoeff); fGpu->drawSimpleRect(rect, NULL, 1 << 0); } ///////////////////////////////////////////////////////////////////////////////