/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrContext.h" #include "effects/GrConvolutionEffect.h" #include "effects/GrSingleTextureEffect.h" #include "effects/GrConfigConversionEffect.h" #include "GrBufferAllocPool.h" #include "GrGpu.h" #include "GrDrawTargetCaps.h" #include "GrIndexBuffer.h" #include "GrInOrderDrawBuffer.h" #include "GrOvalRenderer.h" #include "GrPathRenderer.h" #include "GrPathUtils.h" #include "GrResourceCache.h" #include "GrSoftwarePathRenderer.h" #include "GrStencilBuffer.h" #include "GrTextStrike.h" #include "SkRTConf.h" #include "SkStrokeRec.h" #include "SkTLazy.h" #include "SkTLS.h" #include "SkTrace.h" SK_DEFINE_INST_COUNT(GrContext) SK_DEFINE_INST_COUNT(GrDrawState) // It can be useful to set this to false to test whether a bug is caused by using the // InOrderDrawBuffer, to compare performance of using/not using InOrderDrawBuffer, or to make // debugging simpler. SK_CONF_DECLARE(bool, c_Defer, "gpu.deferContext", true, "Defers rendering in GrContext via GrInOrderDrawBuffer."); #define BUFFERED_DRAW (c_Defer ? kYes_BufferedDraw : kNo_BufferedDraw) #define MAX_BLUR_SIGMA 4.0f // When we're using coverage AA but the blend is incompatible (given gpu // limitations) should we disable AA or draw wrong? #define DISABLE_COVERAGE_AA_FOR_BLEND 1 #if GR_DEBUG // change this to a 1 to see notifications when partial coverage fails #define GR_DEBUG_PARTIAL_COVERAGE_CHECK 0 #else #define GR_DEBUG_PARTIAL_COVERAGE_CHECK 0 #endif static const size_t MAX_TEXTURE_CACHE_COUNT = 2048; static const size_t MAX_TEXTURE_CACHE_BYTES = GR_DEFAULT_TEXTURE_CACHE_MB_LIMIT * 1024 * 1024; static const size_t DRAW_BUFFER_VBPOOL_BUFFER_SIZE = 1 << 15; static const int DRAW_BUFFER_VBPOOL_PREALLOC_BUFFERS = 4; static const size_t DRAW_BUFFER_IBPOOL_BUFFER_SIZE = 1 << 11; static const int DRAW_BUFFER_IBPOOL_PREALLOC_BUFFERS = 4; #define ASSERT_OWNED_RESOURCE(R) GrAssert(!(R) || (R)->getContext() == this) GrContext* GrContext::Create(GrBackend backend, GrBackendContext backendContext) { GrContext* context = SkNEW(GrContext); if (context->init(backend, backendContext)) { return context; } else { context->unref(); return NULL; } } namespace { void* CreateThreadInstanceCount() { return SkNEW_ARGS(int, (0)); } void DeleteThreadInstanceCount(void* v) { delete reinterpret_cast(v); } #define THREAD_INSTANCE_COUNT \ (*reinterpret_cast(SkTLS::Get(CreateThreadInstanceCount, DeleteThreadInstanceCount))) } GrContext::GrContext() { ++THREAD_INSTANCE_COUNT; fDrawState = NULL; fGpu = NULL; fPathRendererChain = NULL; fSoftwarePathRenderer = NULL; fTextureCache = NULL; fFontCache = NULL; fDrawBuffer = NULL; fDrawBufferVBAllocPool = NULL; fDrawBufferIBAllocPool = NULL; fAARectRenderer = NULL; fOvalRenderer = NULL; } bool GrContext::init(GrBackend backend, GrBackendContext backendContext) { GrAssert(NULL == fGpu); fGpu = GrGpu::Create(backend, backendContext, this); if (NULL == fGpu) { return false; } fDrawState = SkNEW(GrDrawState); fGpu->setDrawState(fDrawState); fTextureCache = SkNEW_ARGS(GrResourceCache, (MAX_TEXTURE_CACHE_COUNT, MAX_TEXTURE_CACHE_BYTES)); fFontCache = SkNEW_ARGS(GrFontCache, (fGpu)); fLastDrawWasBuffered = kNo_BufferedDraw; fAARectRenderer = SkNEW(GrAARectRenderer); fOvalRenderer = SkNEW(GrOvalRenderer); fDidTestPMConversions = false; this->setupDrawBuffer(); return true; } int GrContext::GetThreadInstanceCount() { return THREAD_INSTANCE_COUNT; } GrContext::~GrContext() { for (int i = 0; i < fCleanUpData.count(); ++i) { (*fCleanUpData[i].fFunc)(this, fCleanUpData[i].fInfo); } if (NULL == fGpu) { return; } this->flush(); // Since the gpu can hold scratch textures, give it a chance to let go // of them before freeing the texture cache fGpu->purgeResources(); delete fTextureCache; fTextureCache = NULL; delete fFontCache; delete fDrawBuffer; delete fDrawBufferVBAllocPool; delete fDrawBufferIBAllocPool; fAARectRenderer->unref(); fOvalRenderer->unref(); fGpu->unref(); GrSafeUnref(fPathRendererChain); GrSafeUnref(fSoftwarePathRenderer); fDrawState->unref(); --THREAD_INSTANCE_COUNT; } void GrContext::contextLost() { this->contextDestroyed(); this->setupDrawBuffer(); } void GrContext::contextDestroyed() { // abandon first to so destructors // don't try to free the resources in the API. fGpu->abandonResources(); // a path renderer may be holding onto resources that // are now unusable GrSafeSetNull(fPathRendererChain); GrSafeSetNull(fSoftwarePathRenderer); delete fDrawBuffer; fDrawBuffer = NULL; delete fDrawBufferVBAllocPool; fDrawBufferVBAllocPool = NULL; delete fDrawBufferIBAllocPool; fDrawBufferIBAllocPool = NULL; fAARectRenderer->reset(); fTextureCache->purgeAllUnlocked(); fFontCache->freeAll(); fGpu->markContextDirty(); } void GrContext::resetContext() { fGpu->markContextDirty(); } void GrContext::freeGpuResources() { this->flush(); fGpu->purgeResources(); fAARectRenderer->reset(); fTextureCache->purgeAllUnlocked(); fFontCache->freeAll(); // a path renderer may be holding onto resources GrSafeSetNull(fPathRendererChain); GrSafeSetNull(fSoftwarePathRenderer); } size_t GrContext::getGpuTextureCacheBytes() const { return fTextureCache->getCachedResourceBytes(); } //////////////////////////////////////////////////////////////////////////////// namespace { void scale_rect(SkRect* rect, float xScale, float yScale) { rect->fLeft = SkScalarMul(rect->fLeft, SkFloatToScalar(xScale)); rect->fTop = SkScalarMul(rect->fTop, SkFloatToScalar(yScale)); rect->fRight = SkScalarMul(rect->fRight, SkFloatToScalar(xScale)); rect->fBottom = SkScalarMul(rect->fBottom, SkFloatToScalar(yScale)); } float adjust_sigma(float sigma, int *scaleFactor, int *radius) { *scaleFactor = 1; while (sigma > MAX_BLUR_SIGMA) { *scaleFactor *= 2; sigma *= 0.5f; } *radius = static_cast(ceilf(sigma * 3.0f)); GrAssert(*radius <= GrConvolutionEffect::kMaxKernelRadius); return sigma; } void convolve_gaussian(GrDrawTarget* target, GrTexture* texture, const SkRect& rect, float sigma, int radius, Gr1DKernelEffect::Direction direction) { GrRenderTarget* rt = target->drawState()->getRenderTarget(); GrDrawTarget::AutoStateRestore asr(target, GrDrawTarget::kReset_ASRInit); GrDrawState* drawState = target->drawState(); drawState->setRenderTarget(rt); SkAutoTUnref conv(GrConvolutionEffect::CreateGaussian(texture, direction, radius, sigma)); drawState->setEffect(0, conv); target->drawSimpleRect(rect, NULL); } } //////////////////////////////////////////////////////////////////////////////// GrTexture* GrContext::findAndRefTexture(const GrTextureDesc& desc, const GrCacheID& cacheID, const GrTextureParams* params) { GrResourceKey resourceKey = GrTexture::ComputeKey(fGpu, params, desc, cacheID); GrResource* resource = fTextureCache->find(resourceKey); SkSafeRef(resource); return static_cast(resource); } bool GrContext::isTextureInCache(const GrTextureDesc& desc, const GrCacheID& cacheID, const GrTextureParams* params) const { GrResourceKey resourceKey = GrTexture::ComputeKey(fGpu, params, desc, cacheID); return fTextureCache->hasKey(resourceKey); } void GrContext::addStencilBuffer(GrStencilBuffer* sb) { ASSERT_OWNED_RESOURCE(sb); GrResourceKey resourceKey = GrStencilBuffer::ComputeKey(sb->width(), sb->height(), sb->numSamples()); fTextureCache->addResource(resourceKey, sb); } GrStencilBuffer* GrContext::findStencilBuffer(int width, int height, int sampleCnt) { GrResourceKey resourceKey = GrStencilBuffer::ComputeKey(width, height, sampleCnt); GrResource* resource = fTextureCache->find(resourceKey); return static_cast(resource); } static void stretchImage(void* dst, int dstW, int dstH, void* src, int srcW, int srcH, int bpp) { GrFixed dx = (srcW << 16) / dstW; GrFixed dy = (srcH << 16) / dstH; GrFixed y = dy >> 1; int dstXLimit = dstW*bpp; for (int j = 0; j < dstH; ++j) { GrFixed x = dx >> 1; void* srcRow = (uint8_t*)src + (y>>16)*srcW*bpp; void* dstRow = (uint8_t*)dst + j*dstW*bpp; for (int i = 0; i < dstXLimit; i += bpp) { memcpy((uint8_t*) dstRow + i, (uint8_t*) srcRow + (x>>16)*bpp, bpp); x += dx; } y += dy; } } namespace { // position + local coordinate extern const GrVertexAttrib gVertexAttribs[] = { {kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding}, {kVec2f_GrVertexAttribType, sizeof(GrPoint), kLocalCoord_GrVertexAttribBinding} }; }; // The desired texture is NPOT and tiled but that isn't supported by // the current hardware. Resize the texture to be a POT GrTexture* GrContext::createResizedTexture(const GrTextureDesc& desc, const GrCacheID& cacheID, void* srcData, size_t rowBytes, bool needsFiltering) { SkAutoTUnref clampedTexture(this->findAndRefTexture(desc, cacheID, NULL)); if (NULL == clampedTexture) { clampedTexture.reset(this->createTexture(NULL, desc, cacheID, srcData, rowBytes)); if (NULL == clampedTexture) { return NULL; } } GrTextureDesc rtDesc = desc; rtDesc.fFlags = rtDesc.fFlags | kRenderTarget_GrTextureFlagBit | kNoStencil_GrTextureFlagBit; rtDesc.fWidth = GrNextPow2(GrMax(desc.fWidth, 64)); rtDesc.fHeight = GrNextPow2(GrMax(desc.fHeight, 64)); GrTexture* texture = fGpu->createTexture(rtDesc, NULL, 0); if (NULL != texture) { GrDrawTarget::AutoStateRestore asr(fGpu, GrDrawTarget::kReset_ASRInit); GrDrawState* drawState = fGpu->drawState(); drawState->setRenderTarget(texture->asRenderTarget()); // if filtering is not desired then we want to ensure all // texels in the resampled image are copies of texels from // the original. GrTextureParams params(SkShader::kClamp_TileMode, needsFiltering); drawState->createTextureEffect(0, clampedTexture, SkMatrix::I(), params); drawState->setVertexAttribs(SK_ARRAY_COUNT(gVertexAttribs)); GrDrawTarget::AutoReleaseGeometry arg(fGpu, 4, 0); if (arg.succeeded()) { GrPoint* verts = (GrPoint*) arg.vertices(); verts[0].setIRectFan(0, 0, texture->width(), texture->height(), 2 * sizeof(GrPoint)); verts[1].setIRectFan(0, 0, 1, 1, 2 * sizeof(GrPoint)); fGpu->drawNonIndexed(kTriangleFan_GrPrimitiveType, 0, 4); } } else { // TODO: Our CPU stretch doesn't filter. But we create separate // stretched textures when the texture params is either filtered or // not. Either implement filtered stretch blit on CPU or just create // one when FBO case fails. rtDesc.fFlags = kNone_GrTextureFlags; // no longer need to clamp at min RT size. rtDesc.fWidth = GrNextPow2(desc.fWidth); rtDesc.fHeight = GrNextPow2(desc.fHeight); int bpp = GrBytesPerPixel(desc.fConfig); SkAutoSMalloc<128*128*4> stretchedPixels(bpp * rtDesc.fWidth * rtDesc.fHeight); stretchImage(stretchedPixels.get(), rtDesc.fWidth, rtDesc.fHeight, srcData, desc.fWidth, desc.fHeight, bpp); size_t stretchedRowBytes = rtDesc.fWidth * bpp; SkDEBUGCODE(GrTexture* texture = )fGpu->createTexture(rtDesc, stretchedPixels.get(), stretchedRowBytes); GrAssert(NULL != texture); } return texture; } GrTexture* GrContext::createTexture(const GrTextureParams* params, const GrTextureDesc& desc, const GrCacheID& cacheID, void* srcData, size_t rowBytes) { SK_TRACE_EVENT0("GrContext::createTexture"); GrResourceKey resourceKey = GrTexture::ComputeKey(fGpu, params, desc, cacheID); GrTexture* texture; if (GrTexture::NeedsResizing(resourceKey)) { texture = this->createResizedTexture(desc, cacheID, srcData, rowBytes, GrTexture::NeedsFiltering(resourceKey)); } else { texture= fGpu->createTexture(desc, srcData, rowBytes); } if (NULL != texture) { fTextureCache->addResource(resourceKey, texture); } return texture; } GrTexture* GrContext::lockAndRefScratchTexture(const GrTextureDesc& inDesc, ScratchTexMatch match) { GrTextureDesc desc = inDesc; GrAssert((desc.fFlags & kRenderTarget_GrTextureFlagBit) || !(desc.fFlags & kNoStencil_GrTextureFlagBit)); if (kApprox_ScratchTexMatch == match) { // bin by pow2 with a reasonable min static const int MIN_SIZE = 16; desc.fWidth = GrMax(MIN_SIZE, GrNextPow2(desc.fWidth)); desc.fHeight = GrMax(MIN_SIZE, GrNextPow2(desc.fHeight)); } // Renderable A8 targets are not universally supported (e.g., not on ANGLE) GrAssert(this->isConfigRenderable(kAlpha_8_GrPixelConfig) || !(desc.fFlags & kRenderTarget_GrTextureFlagBit) || (desc.fConfig != kAlpha_8_GrPixelConfig)); GrResource* resource = NULL; int origWidth = desc.fWidth; int origHeight = desc.fHeight; do { GrResourceKey key = GrTexture::ComputeScratchKey(desc); // Ensure we have exclusive access to the texture so future 'find' calls don't return it resource = fTextureCache->find(key, GrResourceCache::kHide_OwnershipFlag); if (NULL != resource) { resource->ref(); break; } if (kExact_ScratchTexMatch == match) { break; } // We had a cache miss and we are in approx mode, relax the fit of the flags. // We no longer try to reuse textures that were previously used as render targets in // situations where no RT is needed; doing otherwise can confuse the video driver and // cause significant performance problems in some cases. if (desc.fFlags & kNoStencil_GrTextureFlagBit) { desc.fFlags = desc.fFlags & ~kNoStencil_GrTextureFlagBit; } else { break; } } while (true); if (NULL == resource) { desc.fFlags = inDesc.fFlags; desc.fWidth = origWidth; desc.fHeight = origHeight; GrTexture* texture = fGpu->createTexture(desc, NULL, 0); if (NULL != texture) { GrResourceKey key = GrTexture::ComputeScratchKey(texture->desc()); // Make the resource exclusive so future 'find' calls don't return it fTextureCache->addResource(key, texture, GrResourceCache::kHide_OwnershipFlag); resource = texture; } } return static_cast(resource); } void GrContext::addExistingTextureToCache(GrTexture* texture) { if (NULL == texture) { return; } // This texture should already have a cache entry since it was once // attached GrAssert(NULL != texture->getCacheEntry()); // Conceptually, the cache entry is going to assume responsibility // for the creation ref. GrAssert(1 == texture->getRefCnt()); // Since this texture came from an AutoScratchTexture it should // still be in the exclusive pile fTextureCache->makeNonExclusive(texture->getCacheEntry()); this->purgeCache(); } void GrContext::unlockScratchTexture(GrTexture* texture) { ASSERT_OWNED_RESOURCE(texture); GrAssert(NULL != texture->getCacheEntry()); // If this is a scratch texture we detached it from the cache // while it was locked (to avoid two callers simultaneously getting // the same texture). if (texture->getCacheEntry()->key().isScratch()) { fTextureCache->makeNonExclusive(texture->getCacheEntry()); } this->purgeCache(); } void GrContext::purgeCache() { if (NULL != fTextureCache) { fTextureCache->purgeAsNeeded(); } } GrTexture* GrContext::createUncachedTexture(const GrTextureDesc& descIn, void* srcData, size_t rowBytes) { GrTextureDesc descCopy = descIn; return fGpu->createTexture(descCopy, srcData, rowBytes); } void GrContext::getTextureCacheLimits(int* maxTextures, size_t* maxTextureBytes) const { fTextureCache->getLimits(maxTextures, maxTextureBytes); } void GrContext::setTextureCacheLimits(int maxTextures, size_t maxTextureBytes) { fTextureCache->setLimits(maxTextures, maxTextureBytes); } int GrContext::getMaxTextureSize() const { return fGpu->caps()->maxTextureSize(); } int GrContext::getMaxRenderTargetSize() const { return fGpu->caps()->maxRenderTargetSize(); } int GrContext::getMaxSampleCount() const { return fGpu->caps()->maxSampleCount(); } /////////////////////////////////////////////////////////////////////////////// GrTexture* GrContext::wrapBackendTexture(const GrBackendTextureDesc& desc) { return fGpu->wrapBackendTexture(desc); } GrRenderTarget* GrContext::wrapBackendRenderTarget(const GrBackendRenderTargetDesc& desc) { return fGpu->wrapBackendRenderTarget(desc); } /////////////////////////////////////////////////////////////////////////////// bool GrContext::supportsIndex8PixelConfig(const GrTextureParams* params, int width, int height) const { const GrDrawTargetCaps* caps = fGpu->caps(); if (!caps->eightBitPaletteSupport()) { return false; } bool isPow2 = GrIsPow2(width) && GrIsPow2(height); if (!isPow2) { bool tiled = NULL != params && params->isTiled(); if (tiled && !caps->npotTextureTileSupport()) { return false; } } return true; } //////////////////////////////////////////////////////////////////////////////// const GrClipData* GrContext::getClip() const { return fGpu->getClip(); } void GrContext::setClip(const GrClipData* clipData) { fGpu->setClip(clipData); fDrawState->setState(GrDrawState::kClip_StateBit, clipData && clipData->fClipStack && !clipData->fClipStack->isWideOpen()); } //////////////////////////////////////////////////////////////////////////////// void GrContext::clear(const GrIRect* rect, const GrColor color, GrRenderTarget* target) { this->prepareToDraw(NULL, BUFFERED_DRAW)->clear(rect, color, target); } void GrContext::drawPaint(const GrPaint& origPaint) { // set rect to be big enough to fill the space, but not super-huge, so we // don't overflow fixed-point implementations GrRect r; r.setLTRB(0, 0, SkIntToScalar(getRenderTarget()->width()), SkIntToScalar(getRenderTarget()->height())); SkMatrix inverse; SkTCopyOnFirstWrite paint(origPaint); AutoMatrix am; // We attempt to map r by the inverse matrix and draw that. mapRect will // map the four corners and bound them with a new rect. This will not // produce a correct result for some perspective matrices. if (!this->getMatrix().hasPerspective()) { if (!fDrawState->getViewInverse(&inverse)) { GrPrintf("Could not invert matrix\n"); return; } inverse.mapRect(&r); } else { if (!am.setIdentity(this, paint.writable())) { GrPrintf("Could not invert matrix\n"); return; } } // by definition this fills the entire clip, no need for AA if (paint->isAntiAlias()) { paint.writable()->setAntiAlias(false); } this->drawRect(*paint, r); } //////////////////////////////////////////////////////////////////////////////// namespace { inline bool disable_coverage_aa_for_blend(GrDrawTarget* target) { return DISABLE_COVERAGE_AA_FOR_BLEND && !target->canApplyCoverage(); } } //////////////////////////////////////////////////////////////////////////////// /* create a triangle strip that strokes the specified triangle. There are 8 unique vertices, but we repreat the last 2 to close up. Alternatively we could use an indices array, and then only send 8 verts, but not sure that would be faster. */ static void setStrokeRectStrip(GrPoint verts[10], GrRect rect, SkScalar width) { const SkScalar rad = SkScalarHalf(width); rect.sort(); verts[0].set(rect.fLeft + rad, rect.fTop + rad); verts[1].set(rect.fLeft - rad, rect.fTop - rad); verts[2].set(rect.fRight - rad, rect.fTop + rad); verts[3].set(rect.fRight + rad, rect.fTop - rad); verts[4].set(rect.fRight - rad, rect.fBottom - rad); verts[5].set(rect.fRight + rad, rect.fBottom + rad); verts[6].set(rect.fLeft + rad, rect.fBottom - rad); verts[7].set(rect.fLeft - rad, rect.fBottom + rad); verts[8] = verts[0]; verts[9] = verts[1]; } /** * Returns true if the rects edges are integer-aligned. */ static bool isIRect(const GrRect& r) { return SkScalarIsInt(r.fLeft) && SkScalarIsInt(r.fTop) && SkScalarIsInt(r.fRight) && SkScalarIsInt(r.fBottom); } static bool apply_aa_to_rect(GrDrawTarget* target, const GrRect& rect, SkScalar strokeWidth, const SkMatrix* matrix, SkMatrix* combinedMatrix, GrRect* devRect, bool* useVertexCoverage) { // we use a simple coverage ramp to do aa on axis-aligned rects // we check if the rect will be axis-aligned, and the rect won't land on // integer coords. // we are keeping around the "tweak the alpha" trick because // it is our only hope for the fixed-pipe implementation. // In a shader implementation we can give a separate coverage input // TODO: remove this ugliness when we drop the fixed-pipe impl *useVertexCoverage = false; if (!target->getDrawState().canTweakAlphaForCoverage()) { if (disable_coverage_aa_for_blend(target)) { #if GR_DEBUG //GrPrintf("Turning off AA to correctly apply blend.\n"); #endif return false; } else { *useVertexCoverage = true; } } const GrDrawState& drawState = target->getDrawState(); if (drawState.getRenderTarget()->isMultisampled()) { return false; } if (0 == strokeWidth && target->willUseHWAALines()) { return false; } #if defined(SHADER_AA_FILL_RECT) || !defined(IGNORE_ROT_AA_RECT_OPT) if (strokeWidth >= 0) { #endif if (!drawState.getViewMatrix().preservesAxisAlignment()) { return false; } if (NULL != matrix && !matrix->preservesAxisAlignment()) { return false; } #if defined(SHADER_AA_FILL_RECT) || !defined(IGNORE_ROT_AA_RECT_OPT) } else { if (!drawState.getViewMatrix().preservesAxisAlignment() && !drawState.getViewMatrix().preservesRightAngles()) { return false; } if (NULL != matrix && !matrix->preservesRightAngles()) { return false; } } #endif *combinedMatrix = drawState.getViewMatrix(); if (NULL != matrix) { combinedMatrix->preConcat(*matrix); #if GR_DEBUG #if defined(SHADER_AA_FILL_RECT) || !defined(IGNORE_ROT_AA_RECT_OPT) if (strokeWidth >= 0) { #endif GrAssert(combinedMatrix->preservesAxisAlignment()); #if defined(SHADER_AA_FILL_RECT) || !defined(IGNORE_ROT_AA_RECT_OPT) } else { GrAssert(combinedMatrix->preservesRightAngles()); } #endif #endif } combinedMatrix->mapRect(devRect, rect); if (strokeWidth < 0 #if defined(SHADER_AA_FILL_RECT) || !defined(IGNORE_ROT_AA_RECT_OPT) && drawState.getViewMatrix().preservesAxisAlignment() #endif ) { return !isIRect(*devRect); } else { return true; } } void GrContext::drawRect(const GrPaint& paint, const GrRect& rect, SkScalar width, const SkMatrix* matrix) { SK_TRACE_EVENT0("GrContext::drawRect"); GrDrawTarget* target = this->prepareToDraw(&paint, BUFFERED_DRAW); GrDrawState::AutoStageDisable atr(fDrawState); GrRect devRect; SkMatrix combinedMatrix; bool useVertexCoverage; bool needAA = paint.isAntiAlias() && !this->getRenderTarget()->isMultisampled(); bool doAA = needAA && apply_aa_to_rect(target, rect, width, matrix, &combinedMatrix, &devRect, &useVertexCoverage); if (doAA) { GrDrawState::AutoDeviceCoordDraw adcd(target->drawState()); if (!adcd.succeeded()) { return; } if (width >= 0) { GrVec strokeSize; if (width > 0) { strokeSize.set(width, width); combinedMatrix.mapVectors(&strokeSize, 1); strokeSize.setAbs(strokeSize); } else { strokeSize.set(SK_Scalar1, SK_Scalar1); } fAARectRenderer->strokeAARect(this->getGpu(), target, devRect, strokeSize, useVertexCoverage); } else { // filled AA rect fAARectRenderer->fillAARect(this->getGpu(), target, rect, combinedMatrix, devRect, useVertexCoverage); } return; } if (width >= 0) { // TODO: consider making static vertex buffers for these cases. // Hairline could be done by just adding closing vertex to // unitSquareVertexBuffer() static const int worstCaseVertCount = 10; target->drawState()->setDefaultVertexAttribs(); GrDrawTarget::AutoReleaseGeometry geo(target, worstCaseVertCount, 0); if (!geo.succeeded()) { GrPrintf("Failed to get space for vertices!\n"); return; } GrPrimitiveType primType; int vertCount; GrPoint* vertex = geo.positions(); if (width > 0) { vertCount = 10; primType = kTriangleStrip_GrPrimitiveType; setStrokeRectStrip(vertex, rect, width); } else { // hairline vertCount = 5; primType = kLineStrip_GrPrimitiveType; vertex[0].set(rect.fLeft, rect.fTop); vertex[1].set(rect.fRight, rect.fTop); vertex[2].set(rect.fRight, rect.fBottom); vertex[3].set(rect.fLeft, rect.fBottom); vertex[4].set(rect.fLeft, rect.fTop); } GrDrawState::AutoViewMatrixRestore avmr; if (NULL != matrix) { GrDrawState* drawState = target->drawState(); avmr.set(drawState, *matrix); } target->drawNonIndexed(primType, 0, vertCount); } else { // filled BW rect target->drawSimpleRect(rect, matrix); } } void GrContext::drawRectToRect(const GrPaint& paint, const GrRect& dstRect, const GrRect& localRect, const SkMatrix* dstMatrix, const SkMatrix* localMatrix) { SK_TRACE_EVENT0("GrContext::drawRectToRect"); GrDrawTarget* target = this->prepareToDraw(&paint, BUFFERED_DRAW); GrDrawState::AutoStageDisable atr(fDrawState); target->drawRect(dstRect, dstMatrix, &localRect, localMatrix); } namespace { extern const GrVertexAttrib gPosUVColorAttribs[] = { {kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding }, {kVec2f_GrVertexAttribType, sizeof(GrPoint), kLocalCoord_GrVertexAttribBinding }, {kVec4ub_GrVertexAttribType, 2*sizeof(GrPoint), kColor_GrVertexAttribBinding} }; extern const GrVertexAttrib gPosColorAttribs[] = { {kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding}, {kVec4ub_GrVertexAttribType, sizeof(GrPoint), kColor_GrVertexAttribBinding}, }; static void set_vertex_attributes(GrDrawState* drawState, const GrPoint* texCoords, const GrColor* colors, int* colorOffset, int* texOffset) { *texOffset = -1; *colorOffset = -1; if (NULL != texCoords && NULL != colors) { *texOffset = sizeof(GrPoint); *colorOffset = 2*sizeof(GrPoint); drawState->setVertexAttribs(3); } else if (NULL != texCoords) { *texOffset = sizeof(GrPoint); drawState->setVertexAttribs(2); } else if (NULL != colors) { *colorOffset = sizeof(GrPoint); drawState->setVertexAttribs(2); } else { drawState->setVertexAttribs(1); } } }; void GrContext::drawVertices(const GrPaint& paint, GrPrimitiveType primitiveType, int vertexCount, const GrPoint positions[], const GrPoint texCoords[], const GrColor colors[], const uint16_t indices[], int indexCount) { SK_TRACE_EVENT0("GrContext::drawVertices"); GrDrawTarget::AutoReleaseGeometry geo; GrDrawTarget* target = this->prepareToDraw(&paint, BUFFERED_DRAW); GrDrawState::AutoStageDisable atr(fDrawState); GrDrawState* drawState = target->drawState(); int colorOffset = -1, texOffset = -1; set_vertex_attributes(drawState, texCoords, colors, &colorOffset, &texOffset); size_t vertexSize = drawState->getVertexSize(); if (sizeof(GrPoint) != vertexSize) { if (!geo.set(target, vertexCount, 0)) { GrPrintf("Failed to get space for vertices!\n"); return; } void* curVertex = geo.vertices(); for (int i = 0; i < vertexCount; ++i) { *((GrPoint*)curVertex) = positions[i]; if (texOffset >= 0) { *(GrPoint*)((intptr_t)curVertex + texOffset) = texCoords[i]; } if (colorOffset >= 0) { *(GrColor*)((intptr_t)curVertex + colorOffset) = colors[i]; } curVertex = (void*)((intptr_t)curVertex + vertexSize); } } else { target->setVertexSourceToArray(positions, vertexCount); } // we don't currently apply offscreen AA to this path. Need improved // management of GrDrawTarget's geometry to avoid copying points per-tile. if (NULL != indices) { target->setIndexSourceToArray(indices, indexCount); target->drawIndexed(primitiveType, 0, 0, vertexCount, indexCount); target->resetIndexSource(); } else { target->drawNonIndexed(primitiveType, 0, vertexCount); } } /////////////////////////////////////////////////////////////////////////////// void GrContext::drawRRect(const GrPaint& paint, const SkRRect& rect, const SkStrokeRec& stroke) { GrDrawTarget* target = this->prepareToDraw(&paint, BUFFERED_DRAW); GrDrawState::AutoStageDisable atr(fDrawState); bool prAA = paint.isAntiAlias() && !this->getRenderTarget()->isMultisampled(); if (!fOvalRenderer->drawSimpleRRect(target, this, prAA, rect, stroke)) { SkPath path; path.addRRect(rect); this->internalDrawPath(target, prAA, path, stroke); } } /////////////////////////////////////////////////////////////////////////////// void GrContext::drawOval(const GrPaint& paint, const GrRect& oval, const SkStrokeRec& stroke) { GrDrawTarget* target = this->prepareToDraw(&paint, BUFFERED_DRAW); GrDrawState::AutoStageDisable atr(fDrawState); bool useAA = paint.isAntiAlias() && !this->getRenderTarget()->isMultisampled(); if (!fOvalRenderer->drawOval(target, this, useAA, oval, stroke)) { SkPath path; path.addOval(oval); this->internalDrawPath(target, useAA, path, stroke); } } void GrContext::drawPath(const GrPaint& paint, const SkPath& path, const SkStrokeRec& stroke) { if (path.isEmpty()) { if (path.isInverseFillType()) { this->drawPaint(paint); } return; } // Note that internalDrawPath may sw-rasterize the path into a scratch texture. // Scratch textures can be recycled after they are returned to the texture // cache. This presents a potential hazard for buffered drawing. However, // the writePixels that uploads to the scratch will perform a flush so we're // OK. GrDrawTarget* target = this->prepareToDraw(&paint, BUFFERED_DRAW); GrDrawState::AutoStageDisable atr(fDrawState); SkRect ovalRect; bool isOval = path.isOval(&ovalRect); bool useAA = paint.isAntiAlias() && !this->getRenderTarget()->isMultisampled(); if (!isOval || path.isInverseFillType() || !fOvalRenderer->drawOval(target, this, useAA, ovalRect, stroke)) { this->internalDrawPath(target, useAA, path, stroke); } } void GrContext::internalDrawPath(GrDrawTarget* target, bool useAA, const SkPath& path, const SkStrokeRec& stroke) { // An Assumption here is that path renderer would use some form of tweaking // the src color (either the input alpha or in the frag shader) to implement // aa. If we have some future driver-mojo path AA that can do the right // thing WRT to the blend then we'll need some query on the PR. if (disable_coverage_aa_for_blend(target)) { #if GR_DEBUG //GrPrintf("Turning off AA to correctly apply blend.\n"); #endif useAA = false; } GrPathRendererChain::DrawType type = useAA ? GrPathRendererChain::kColorAntiAlias_DrawType : GrPathRendererChain::kColor_DrawType; const SkPath* pathPtr = &path; SkPath tmpPath; SkStrokeRec strokeRec(stroke); // Try a 1st time without stroking the path and without allowing the SW renderer GrPathRenderer* pr = this->getPathRenderer(*pathPtr, strokeRec, target, false, type); if (NULL == pr) { if (!strokeRec.isHairlineStyle()) { // It didn't work the 1st time, so try again with the stroked path if (strokeRec.applyToPath(&tmpPath, *pathPtr)) { pathPtr = &tmpPath; strokeRec.setFillStyle(); } } // This time, allow SW renderer pr = this->getPathRenderer(*pathPtr, strokeRec, target, true, type); } if (NULL == pr) { #if GR_DEBUG GrPrintf("Unable to find path renderer compatible with path.\n"); #endif return; } pr->drawPath(*pathPtr, strokeRec, target, useAA); } //////////////////////////////////////////////////////////////////////////////// void GrContext::flush(int flagsBitfield) { if (kDiscard_FlushBit & flagsBitfield) { fDrawBuffer->reset(); } else { this->flushDrawBuffer(); } if (kForceCurrentRenderTarget_FlushBit & flagsBitfield) { fGpu->forceRenderTargetFlush(); } } void GrContext::flushDrawBuffer() { if (NULL != fDrawBuffer && !fDrawBuffer->isFlushing()) { fDrawBuffer->flush(); } } bool GrContext::writeTexturePixels(GrTexture* texture, int left, int top, int width, int height, GrPixelConfig config, const void* buffer, size_t rowBytes, uint32_t flags) { SK_TRACE_EVENT0("GrContext::writeTexturePixels"); ASSERT_OWNED_RESOURCE(texture); if ((kUnpremul_PixelOpsFlag & flags) || !fGpu->canWriteTexturePixels(texture, config)) { if (NULL != texture->asRenderTarget()) { return this->writeRenderTargetPixels(texture->asRenderTarget(), left, top, width, height, config, buffer, rowBytes, flags); } else { return false; } } if (!(kDontFlush_PixelOpsFlag & flags)) { this->flush(); } return fGpu->writeTexturePixels(texture, left, top, width, height, config, buffer, rowBytes); } bool GrContext::readTexturePixels(GrTexture* texture, int left, int top, int width, int height, GrPixelConfig config, void* buffer, size_t rowBytes, uint32_t flags) { SK_TRACE_EVENT0("GrContext::readTexturePixels"); ASSERT_OWNED_RESOURCE(texture); // TODO: code read pixels for textures that aren't also rendertargets GrRenderTarget* target = texture->asRenderTarget(); if (NULL != target) { return this->readRenderTargetPixels(target, left, top, width, height, config, buffer, rowBytes, flags); } else { return false; } } #include "SkConfig8888.h" namespace { /** * Converts a GrPixelConfig to a SkCanvas::Config8888. Only byte-per-channel * formats are representable as Config8888 and so the function returns false * if the GrPixelConfig has no equivalent Config8888. */ bool grconfig_to_config8888(GrPixelConfig config, bool unpremul, SkCanvas::Config8888* config8888) { switch (config) { case kRGBA_8888_GrPixelConfig: if (unpremul) { *config8888 = SkCanvas::kRGBA_Unpremul_Config8888; } else { *config8888 = SkCanvas::kRGBA_Premul_Config8888; } return true; case kBGRA_8888_GrPixelConfig: if (unpremul) { *config8888 = SkCanvas::kBGRA_Unpremul_Config8888; } else { *config8888 = SkCanvas::kBGRA_Premul_Config8888; } return true; default: return false; } } // It returns a configuration with where the byte position of the R & B components are swapped in // relation to the input config. This should only be called with the result of // grconfig_to_config8888 as it will fail for other configs. SkCanvas::Config8888 swap_config8888_red_and_blue(SkCanvas::Config8888 config8888) { switch (config8888) { case SkCanvas::kBGRA_Premul_Config8888: return SkCanvas::kRGBA_Premul_Config8888; case SkCanvas::kBGRA_Unpremul_Config8888: return SkCanvas::kRGBA_Unpremul_Config8888; case SkCanvas::kRGBA_Premul_Config8888: return SkCanvas::kBGRA_Premul_Config8888; case SkCanvas::kRGBA_Unpremul_Config8888: return SkCanvas::kBGRA_Unpremul_Config8888; default: GrCrash("Unexpected input"); return SkCanvas::kBGRA_Unpremul_Config8888;; } } } bool GrContext::readRenderTargetPixels(GrRenderTarget* target, int left, int top, int width, int height, GrPixelConfig dstConfig, void* buffer, size_t rowBytes, uint32_t flags) { SK_TRACE_EVENT0("GrContext::readRenderTargetPixels"); ASSERT_OWNED_RESOURCE(target); if (NULL == target) { target = fDrawState->getRenderTarget(); if (NULL == target) { return false; } } if (!(kDontFlush_PixelOpsFlag & flags)) { this->flush(); } // Determine which conversions have to be applied: flipY, swapRAnd, and/or unpremul. // If fGpu->readPixels would incur a y-flip cost then we will read the pixels upside down. We'll // either do the flipY by drawing into a scratch with a matrix or on the cpu after the read. bool flipY = fGpu->readPixelsWillPayForYFlip(target, left, top, width, height, dstConfig, rowBytes); // We ignore the preferred config if it is different than our config unless it is an R/B swap. // In that case we'll perform an R and B swap while drawing to a scratch texture of the swapped // config. Then we will call readPixels on the scratch with the swapped config. The swaps during // the draw cancels out the fact that we call readPixels with a config that is R/B swapped from // dstConfig. GrPixelConfig readConfig = dstConfig; bool swapRAndB = false; if (GrPixelConfigSwapRAndB(dstConfig) == fGpu->preferredReadPixelsConfig(dstConfig)) { readConfig = GrPixelConfigSwapRAndB(readConfig); swapRAndB = true; } bool unpremul = SkToBool(kUnpremul_PixelOpsFlag & flags); if (unpremul && !GrPixelConfigIs8888(dstConfig)) { // The unpremul flag is only allowed for these two configs. return false; } // If the src is a texture and we would have to do conversions after read pixels, we instead // do the conversions by drawing the src to a scratch texture. If we handle any of the // conversions in the draw we set the corresponding bool to false so that we don't reapply it // on the read back pixels. GrTexture* src = target->asTexture(); GrAutoScratchTexture ast; if (NULL != src && (swapRAndB || unpremul || flipY)) { // Make the scratch a render target because we don't have a robust readTexturePixels as of // yet. It calls this function. GrTextureDesc desc; desc.fFlags = kRenderTarget_GrTextureFlagBit; desc.fWidth = width; desc.fHeight = height; desc.fConfig = readConfig; desc.fOrigin = kTopLeft_GrSurfaceOrigin; // When a full read back is faster than a partial we could always make the scratch exactly // match the passed rect. However, if we see many different size rectangles we will trash // our texture cache and pay the cost of creating and destroying many textures. So, we only // request an exact match when the caller is reading an entire RT. ScratchTexMatch match = kApprox_ScratchTexMatch; if (0 == left && 0 == top && target->width() == width && target->height() == height && fGpu->fullReadPixelsIsFasterThanPartial()) { match = kExact_ScratchTexMatch; } ast.set(this, desc, match); GrTexture* texture = ast.texture(); if (texture) { // compute a matrix to perform the draw SkMatrix textureMatrix; textureMatrix.setTranslate(SK_Scalar1 *left, SK_Scalar1 *top); textureMatrix.postIDiv(src->width(), src->height()); SkAutoTUnref effect; if (unpremul) { effect.reset(this->createPMToUPMEffect(src, swapRAndB, textureMatrix)); if (NULL != effect) { unpremul = false; // we no longer need to do this on CPU after the read back. } } // If we failed to create a PM->UPM effect and have no other conversions to perform then // there is no longer any point to using the scratch. if (NULL != effect || flipY || swapRAndB) { if (!effect) { effect.reset(GrConfigConversionEffect::Create( src, swapRAndB, GrConfigConversionEffect::kNone_PMConversion, textureMatrix)); } swapRAndB = false; // we will handle the swap in the draw. // We protect the existing geometry here since it may not be // clear to the caller that a draw operation (i.e., drawSimpleRect) // can be invoked in this method GrDrawTarget::AutoGeometryAndStatePush agasp(fGpu, GrDrawTarget::kReset_ASRInit); GrDrawState* drawState = fGpu->drawState(); GrAssert(effect); drawState->setEffect(0, effect); drawState->setRenderTarget(texture->asRenderTarget()); GrRect rect = GrRect::MakeWH(SkIntToScalar(width), SkIntToScalar(height)); fGpu->drawSimpleRect(rect, NULL); // we want to read back from the scratch's origin left = 0; top = 0; target = texture->asRenderTarget(); } } } if (!fGpu->readPixels(target, left, top, width, height, readConfig, buffer, rowBytes)) { return false; } // Perform any conversions we weren't able to perform using a scratch texture. if (unpremul || swapRAndB) { // These are initialized to suppress a warning SkCanvas::Config8888 srcC8888 = SkCanvas::kNative_Premul_Config8888; SkCanvas::Config8888 dstC8888 = SkCanvas::kNative_Premul_Config8888; SkDEBUGCODE(bool c8888IsValid =) grconfig_to_config8888(dstConfig, false, &srcC8888); grconfig_to_config8888(dstConfig, unpremul, &dstC8888); if (swapRAndB) { GrAssert(c8888IsValid); // we should only do r/b swap on 8888 configs srcC8888 = swap_config8888_red_and_blue(srcC8888); } GrAssert(c8888IsValid); uint32_t* b32 = reinterpret_cast(buffer); SkConvertConfig8888Pixels(b32, rowBytes, dstC8888, b32, rowBytes, srcC8888, width, height); } return true; } void GrContext::resolveRenderTarget(GrRenderTarget* target) { GrAssert(target); ASSERT_OWNED_RESOURCE(target); // In the future we may track whether there are any pending draws to this // target. We don't today so we always perform a flush. We don't promise // this to our clients, though. this->flush(); fGpu->resolveRenderTarget(target); } void GrContext::copyTexture(GrTexture* src, GrRenderTarget* dst, const SkIPoint* topLeft) { if (NULL == src || NULL == dst) { return; } ASSERT_OWNED_RESOURCE(src); // Writes pending to the source texture are not tracked, so a flush // is required to ensure that the copy captures the most recent contents // of the source texture. See similar behavior in // GrContext::resolveRenderTarget. this->flush(); GrDrawTarget::AutoStateRestore asr(fGpu, GrDrawTarget::kReset_ASRInit); GrDrawState* drawState = fGpu->drawState(); drawState->setRenderTarget(dst); SkMatrix sampleM; sampleM.setIDiv(src->width(), src->height()); SkIRect srcRect = SkIRect::MakeWH(dst->width(), dst->height()); if (NULL != topLeft) { srcRect.offset(*topLeft); } SkIRect srcBounds = SkIRect::MakeWH(src->width(), src->height()); if (!srcRect.intersect(srcBounds)) { return; } sampleM.preTranslate(SkIntToScalar(srcRect.fLeft), SkIntToScalar(srcRect.fTop)); drawState->createTextureEffect(0, src, sampleM); SkRect dstR = SkRect::MakeWH(SkIntToScalar(srcRect.width()), SkIntToScalar(srcRect.height())); fGpu->drawSimpleRect(dstR, NULL); } bool GrContext::writeRenderTargetPixels(GrRenderTarget* target, int left, int top, int width, int height, GrPixelConfig srcConfig, const void* buffer, size_t rowBytes, uint32_t flags) { SK_TRACE_EVENT0("GrContext::writeRenderTargetPixels"); ASSERT_OWNED_RESOURCE(target); if (NULL == target) { target = fDrawState->getRenderTarget(); if (NULL == target) { return false; } } // TODO: when underlying api has a direct way to do this we should use it (e.g. glDrawPixels on // desktop GL). // We will always call some form of writeTexturePixels and we will pass our flags on to it. // Thus, we don't perform a flush here since that call will do it (if the kNoFlush flag isn't // set.) // If the RT is also a texture and we don't have to premultiply then take the texture path. // We expect to be at least as fast or faster since it doesn't use an intermediate texture as // we do below. #if !GR_MAC_BUILD // At least some drivers on the Mac get confused when glTexImage2D is called on a texture // attached to an FBO. The FBO still sees the old image. TODO: determine what OS versions and/or // HW is affected. if (NULL != target->asTexture() && !(kUnpremul_PixelOpsFlag & flags) && fGpu->canWriteTexturePixels(target->asTexture(), srcConfig)) { return this->writeTexturePixels(target->asTexture(), left, top, width, height, srcConfig, buffer, rowBytes, flags); } #endif // We ignore the preferred config unless it is a R/B swap of the src config. In that case // we will upload the original src data to a scratch texture but we will spoof it as the swapped // config. This scratch will then have R and B swapped. We correct for this by swapping again // when drawing the scratch to the dst using a conversion effect. bool swapRAndB = false; GrPixelConfig writeConfig = srcConfig; if (fGpu->preferredWritePixelsConfig(srcConfig) == GrPixelConfigSwapRAndB(srcConfig)) { writeConfig = GrPixelConfigSwapRAndB(srcConfig); swapRAndB = true; } GrTextureDesc desc; desc.fWidth = width; desc.fHeight = height; desc.fConfig = writeConfig; GrAutoScratchTexture ast(this, desc); GrTexture* texture = ast.texture(); if (NULL == texture) { return false; } SkAutoTUnref effect; SkMatrix textureMatrix; textureMatrix.setIDiv(texture->width(), texture->height()); // allocate a tmp buffer and sw convert the pixels to premul SkAutoSTMalloc<128 * 128, uint32_t> tmpPixels(0); if (kUnpremul_PixelOpsFlag & flags) { if (!GrPixelConfigIs8888(srcConfig)) { return false; } effect.reset(this->createUPMToPMEffect(texture, swapRAndB, textureMatrix)); // handle the unpremul step on the CPU if we couldn't create an effect to do it. if (NULL == effect) { SkCanvas::Config8888 srcConfig8888, dstConfig8888; GR_DEBUGCODE(bool success = ) grconfig_to_config8888(srcConfig, true, &srcConfig8888); GrAssert(success); GR_DEBUGCODE(success = ) grconfig_to_config8888(srcConfig, false, &dstConfig8888); GrAssert(success); const uint32_t* src = reinterpret_cast(buffer); tmpPixels.reset(width * height); SkConvertConfig8888Pixels(tmpPixels.get(), 4 * width, dstConfig8888, src, rowBytes, srcConfig8888, width, height); buffer = tmpPixels.get(); rowBytes = 4 * width; } } if (NULL == effect) { effect.reset(GrConfigConversionEffect::Create(texture, swapRAndB, GrConfigConversionEffect::kNone_PMConversion, textureMatrix)); } if (!this->writeTexturePixels(texture, 0, 0, width, height, writeConfig, buffer, rowBytes, flags & ~kUnpremul_PixelOpsFlag)) { return false; } // writeRenderTargetPixels can be called in the midst of drawing another // object (e.g., when uploading a SW path rendering to the gpu while // drawing a rect) so preserve the current geometry. GrDrawTarget::AutoGeometryAndStatePush agasp(fGpu, GrDrawTarget::kReset_ASRInit); GrDrawState* drawState = fGpu->drawState(); GrAssert(effect); drawState->setEffect(0, effect); SkMatrix matrix; matrix.setTranslate(SkIntToScalar(left), SkIntToScalar(top)); drawState->setViewMatrix(matrix); drawState->setRenderTarget(target); fGpu->drawSimpleRect(GrRect::MakeWH(SkIntToScalar(width), SkIntToScalar(height)), NULL); return true; } //////////////////////////////////////////////////////////////////////////////// GrDrawTarget* GrContext::prepareToDraw(const GrPaint* paint, BufferedDraw buffered) { if (kNo_BufferedDraw == buffered && kYes_BufferedDraw == fLastDrawWasBuffered) { this->flushDrawBuffer(); fLastDrawWasBuffered = kNo_BufferedDraw; } if (NULL != paint) { GrAssert(fDrawState->stagesDisabled()); fDrawState->setFromPaint(*paint); #if GR_DEBUG_PARTIAL_COVERAGE_CHECK if ((paint->hasMask() || 0xff != paint->fCoverage) && !fGpu->canApplyCoverage()) { GrPrintf("Partial pixel coverage will be incorrectly blended.\n"); } #endif } if (kYes_BufferedDraw == buffered) { fDrawBuffer->setClip(fGpu->getClip()); fLastDrawWasBuffered = kYes_BufferedDraw; return fDrawBuffer; } else { GrAssert(kNo_BufferedDraw == buffered); return fGpu; } } /* * This method finds a path renderer that can draw the specified path on * the provided target. * Due to its expense, the software path renderer has split out so it can * can be individually allowed/disallowed via the "allowSW" boolean. */ GrPathRenderer* GrContext::getPathRenderer(const SkPath& path, const SkStrokeRec& stroke, const GrDrawTarget* target, bool allowSW, GrPathRendererChain::DrawType drawType, GrPathRendererChain::StencilSupport* stencilSupport) { if (NULL == fPathRendererChain) { fPathRendererChain = SkNEW_ARGS(GrPathRendererChain, (this)); } GrPathRenderer* pr = fPathRendererChain->getPathRenderer(path, stroke, target, drawType, stencilSupport); if (NULL == pr && allowSW) { if (NULL == fSoftwarePathRenderer) { fSoftwarePathRenderer = SkNEW_ARGS(GrSoftwarePathRenderer, (this)); } pr = fSoftwarePathRenderer; } return pr; } //////////////////////////////////////////////////////////////////////////////// void GrContext::setRenderTarget(GrRenderTarget* target) { ASSERT_OWNED_RESOURCE(target); fDrawState->setRenderTarget(target); } GrRenderTarget* GrContext::getRenderTarget() { return fDrawState->getRenderTarget(); } const GrRenderTarget* GrContext::getRenderTarget() const { return fDrawState->getRenderTarget(); } bool GrContext::isConfigRenderable(GrPixelConfig config) const { return fGpu->isConfigRenderable(config); } const SkMatrix& GrContext::getMatrix() const { return fDrawState->getViewMatrix(); } void GrContext::setMatrix(const SkMatrix& m) { fDrawState->setViewMatrix(m); } void GrContext::setIdentityMatrix() { fDrawState->viewMatrix()->reset(); } void GrContext::concatMatrix(const SkMatrix& m) const { fDrawState->preConcatViewMatrix(m); } static inline intptr_t setOrClear(intptr_t bits, int shift, intptr_t pred) { intptr_t mask = 1 << shift; if (pred) { bits |= mask; } else { bits &= ~mask; } return bits; } void GrContext::setupDrawBuffer() { GrAssert(NULL == fDrawBuffer); GrAssert(NULL == fDrawBufferVBAllocPool); GrAssert(NULL == fDrawBufferIBAllocPool); fDrawBufferVBAllocPool = SkNEW_ARGS(GrVertexBufferAllocPool, (fGpu, false, DRAW_BUFFER_VBPOOL_BUFFER_SIZE, DRAW_BUFFER_VBPOOL_PREALLOC_BUFFERS)); fDrawBufferIBAllocPool = SkNEW_ARGS(GrIndexBufferAllocPool, (fGpu, false, DRAW_BUFFER_IBPOOL_BUFFER_SIZE, DRAW_BUFFER_IBPOOL_PREALLOC_BUFFERS)); fDrawBuffer = SkNEW_ARGS(GrInOrderDrawBuffer, (fGpu, fDrawBufferVBAllocPool, fDrawBufferIBAllocPool)); fDrawBuffer->setDrawState(fDrawState); } GrDrawTarget* GrContext::getTextTarget(const GrPaint& paint) { return this->prepareToDraw(&paint, BUFFERED_DRAW); } const GrIndexBuffer* GrContext::getQuadIndexBuffer() const { return fGpu->getQuadIndexBuffer(); } namespace { void test_pm_conversions(GrContext* ctx, int* pmToUPMValue, int* upmToPMValue) { GrConfigConversionEffect::PMConversion pmToUPM; GrConfigConversionEffect::PMConversion upmToPM; GrConfigConversionEffect::TestForPreservingPMConversions(ctx, &pmToUPM, &upmToPM); *pmToUPMValue = pmToUPM; *upmToPMValue = upmToPM; } } const GrEffectRef* GrContext::createPMToUPMEffect(GrTexture* texture, bool swapRAndB, const SkMatrix& matrix) { if (!fDidTestPMConversions) { test_pm_conversions(this, &fPMToUPMConversion, &fUPMToPMConversion); fDidTestPMConversions = true; } GrConfigConversionEffect::PMConversion pmToUPM = static_cast(fPMToUPMConversion); if (GrConfigConversionEffect::kNone_PMConversion != pmToUPM) { return GrConfigConversionEffect::Create(texture, swapRAndB, pmToUPM, matrix); } else { return NULL; } } const GrEffectRef* GrContext::createUPMToPMEffect(GrTexture* texture, bool swapRAndB, const SkMatrix& matrix) { if (!fDidTestPMConversions) { test_pm_conversions(this, &fPMToUPMConversion, &fUPMToPMConversion); fDidTestPMConversions = true; } GrConfigConversionEffect::PMConversion upmToPM = static_cast(fUPMToPMConversion); if (GrConfigConversionEffect::kNone_PMConversion != upmToPM) { return GrConfigConversionEffect::Create(texture, swapRAndB, upmToPM, matrix); } else { return NULL; } } GrTexture* GrContext::gaussianBlur(GrTexture* srcTexture, bool canClobberSrc, const SkRect& rect, float sigmaX, float sigmaY) { ASSERT_OWNED_RESOURCE(srcTexture); AutoRenderTarget art(this); AutoMatrix am; am.setIdentity(this); SkIRect clearRect; int scaleFactorX, radiusX; int scaleFactorY, radiusY; sigmaX = adjust_sigma(sigmaX, &scaleFactorX, &radiusX); sigmaY = adjust_sigma(sigmaY, &scaleFactorY, &radiusY); SkRect srcRect(rect); scale_rect(&srcRect, 1.0f / scaleFactorX, 1.0f / scaleFactorY); srcRect.roundOut(); scale_rect(&srcRect, static_cast(scaleFactorX), static_cast(scaleFactorY)); AutoClip acs(this, srcRect); GrAssert(kBGRA_8888_GrPixelConfig == srcTexture->config() || kRGBA_8888_GrPixelConfig == srcTexture->config() || kAlpha_8_GrPixelConfig == srcTexture->config()); GrTextureDesc desc; desc.fFlags = kRenderTarget_GrTextureFlagBit | kNoStencil_GrTextureFlagBit; desc.fWidth = SkScalarFloorToInt(srcRect.width()); desc.fHeight = SkScalarFloorToInt(srcRect.height()); desc.fConfig = srcTexture->config(); GrAutoScratchTexture temp1, temp2; GrTexture* dstTexture = temp1.set(this, desc); GrTexture* tempTexture = canClobberSrc ? srcTexture : temp2.set(this, desc); if (NULL == dstTexture || NULL == tempTexture) { return NULL; } GrPaint paint; paint.reset(); for (int i = 1; i < scaleFactorX || i < scaleFactorY; i *= 2) { SkMatrix matrix; matrix.setIDiv(srcTexture->width(), srcTexture->height()); this->setRenderTarget(dstTexture->asRenderTarget()); SkRect dstRect(srcRect); scale_rect(&dstRect, i < scaleFactorX ? 0.5f : 1.0f, i < scaleFactorY ? 0.5f : 1.0f); paint.colorStage(0)->setEffect(GrSimpleTextureEffect::Create(srcTexture, matrix, true))->unref(); this->drawRectToRect(paint, dstRect, srcRect); srcRect = dstRect; srcTexture = dstTexture; SkTSwap(dstTexture, tempTexture); } SkIRect srcIRect; srcRect.roundOut(&srcIRect); if (sigmaX > 0.0f) { if (scaleFactorX > 1) { // Clear out a radius to the right of the srcRect to prevent the // X convolution from reading garbage. clearRect = SkIRect::MakeXYWH(srcIRect.fRight, srcIRect.fTop, radiusX, srcIRect.height()); this->clear(&clearRect, 0x0); } this->setRenderTarget(dstTexture->asRenderTarget()); GrDrawTarget* target = this->prepareToDraw(NULL, BUFFERED_DRAW); convolve_gaussian(target, srcTexture, srcRect, sigmaX, radiusX, Gr1DKernelEffect::kX_Direction); srcTexture = dstTexture; SkTSwap(dstTexture, tempTexture); } if (sigmaY > 0.0f) { if (scaleFactorY > 1 || sigmaX > 0.0f) { // Clear out a radius below the srcRect to prevent the Y // convolution from reading garbage. clearRect = SkIRect::MakeXYWH(srcIRect.fLeft, srcIRect.fBottom, srcIRect.width(), radiusY); this->clear(&clearRect, 0x0); } this->setRenderTarget(dstTexture->asRenderTarget()); GrDrawTarget* target = this->prepareToDraw(NULL, BUFFERED_DRAW); convolve_gaussian(target, srcTexture, srcRect, sigmaY, radiusY, Gr1DKernelEffect::kY_Direction); srcTexture = dstTexture; SkTSwap(dstTexture, tempTexture); } if (scaleFactorX > 1 || scaleFactorY > 1) { // Clear one pixel to the right and below, to accommodate bilinear // upsampling. clearRect = SkIRect::MakeXYWH(srcIRect.fLeft, srcIRect.fBottom, srcIRect.width() + 1, 1); this->clear(&clearRect, 0x0); clearRect = SkIRect::MakeXYWH(srcIRect.fRight, srcIRect.fTop, 1, srcIRect.height()); this->clear(&clearRect, 0x0); SkMatrix matrix; // FIXME: This should be mitchell, not bilinear. matrix.setIDiv(srcTexture->width(), srcTexture->height()); this->setRenderTarget(dstTexture->asRenderTarget()); paint.colorStage(0)->setEffect(GrSimpleTextureEffect::Create(srcTexture, matrix, true))->unref(); SkRect dstRect(srcRect); scale_rect(&dstRect, (float) scaleFactorX, (float) scaleFactorY); this->drawRectToRect(paint, dstRect, srcRect); srcRect = dstRect; srcTexture = dstTexture; SkTSwap(dstTexture, tempTexture); } if (srcTexture == temp1.texture()) { return temp1.detach(); } else if (srcTexture == temp2.texture()) { return temp2.detach(); } else { srcTexture->ref(); return srcTexture; } } /////////////////////////////////////////////////////////////////////////////// #if GR_CACHE_STATS void GrContext::printCacheStats() const { fTextureCache->printStats(); } #endif