/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrContext.h" #include "effects/GrConvolutionEffect.h" #include "effects/GrSingleTextureEffect.h" #include "effects/GrConfigConversionEffect.h" #include "GrBufferAllocPool.h" #include "GrGpu.h" #include "GrIndexBuffer.h" #include "GrInOrderDrawBuffer.h" #include "GrPathRenderer.h" #include "GrPathUtils.h" #include "GrResourceCache.h" #include "GrSoftwarePathRenderer.h" #include "GrStencilBuffer.h" #include "GrTextStrike.h" #include "SkTLazy.h" #include "SkTLS.h" #include "SkTrace.h" SK_DEFINE_INST_COUNT(GrContext) SK_DEFINE_INST_COUNT(GrDrawState) // It can be useful to set this to kNo_BufferedDraw to test whether a bug is caused by using the // InOrderDrawBuffer, to compare performance of using/not using InOrderDrawBuffer, or to make // debugging easier. #define DEFAULT_BUFFERING (GR_DISABLE_DRAW_BUFFERING ? kNo_BufferedDraw : kYes_BufferedDraw) #define MAX_BLUR_SIGMA 4.0f // When we're using coverage AA but the blend is incompatible (given gpu // limitations) should we disable AA or draw wrong? #define DISABLE_COVERAGE_AA_FOR_BLEND 1 #if GR_DEBUG // change this to a 1 to see notifications when partial coverage fails #define GR_DEBUG_PARTIAL_COVERAGE_CHECK 0 #else #define GR_DEBUG_PARTIAL_COVERAGE_CHECK 0 #endif static const size_t MAX_TEXTURE_CACHE_COUNT = 256; static const size_t MAX_TEXTURE_CACHE_BYTES = 16 * 1024 * 1024; static const size_t DRAW_BUFFER_VBPOOL_BUFFER_SIZE = 1 << 15; static const int DRAW_BUFFER_VBPOOL_PREALLOC_BUFFERS = 4; static const size_t DRAW_BUFFER_IBPOOL_BUFFER_SIZE = 1 << 11; static const int DRAW_BUFFER_IBPOOL_PREALLOC_BUFFERS = 4; #define ASSERT_OWNED_RESOURCE(R) GrAssert(!(R) || (R)->getContext() == this) GrContext* GrContext::Create(GrEngine engine, GrPlatform3DContext context3D) { GrContext* ctx = NULL; GrGpu* fGpu = GrGpu::Create(engine, context3D); if (NULL != fGpu) { ctx = SkNEW_ARGS(GrContext, (fGpu)); fGpu->unref(); } return ctx; } namespace { void* CreateThreadInstanceCount() { return SkNEW_ARGS(int, (0)); } void DeleteThreadInstanceCount(void* v) { delete reinterpret_cast(v); } #define THREAD_INSTANCE_COUNT \ (*reinterpret_cast(SkTLS::Get(CreateThreadInstanceCount, \ DeleteThreadInstanceCount))) } int GrContext::GetThreadInstanceCount() { return THREAD_INSTANCE_COUNT; } GrContext::~GrContext() { for (int i = 0; i < fCleanUpData.count(); ++i) { (*fCleanUpData[i].fFunc)(this, fCleanUpData[i].fInfo); } this->flush(); // Since the gpu can hold scratch textures, give it a chance to let go // of them before freeing the texture cache fGpu->purgeResources(); delete fTextureCache; fTextureCache = NULL; delete fFontCache; delete fDrawBuffer; delete fDrawBufferVBAllocPool; delete fDrawBufferIBAllocPool; fAARectRenderer->unref(); fGpu->unref(); GrSafeUnref(fPathRendererChain); GrSafeUnref(fSoftwarePathRenderer); fDrawState->unref(); --THREAD_INSTANCE_COUNT; } void GrContext::contextLost() { contextDestroyed(); this->setupDrawBuffer(); } void GrContext::contextDestroyed() { // abandon first to so destructors // don't try to free the resources in the API. fGpu->abandonResources(); // a path renderer may be holding onto resources that // are now unusable GrSafeSetNull(fPathRendererChain); GrSafeSetNull(fSoftwarePathRenderer); delete fDrawBuffer; fDrawBuffer = NULL; delete fDrawBufferVBAllocPool; fDrawBufferVBAllocPool = NULL; delete fDrawBufferIBAllocPool; fDrawBufferIBAllocPool = NULL; fAARectRenderer->reset(); fTextureCache->purgeAllUnlocked(); fFontCache->freeAll(); fGpu->markContextDirty(); } void GrContext::resetContext() { fGpu->markContextDirty(); } void GrContext::freeGpuResources() { this->flush(); fGpu->purgeResources(); fAARectRenderer->reset(); fTextureCache->purgeAllUnlocked(); fFontCache->freeAll(); // a path renderer may be holding onto resources GrSafeSetNull(fPathRendererChain); GrSafeSetNull(fSoftwarePathRenderer); } size_t GrContext::getGpuTextureCacheBytes() const { return fTextureCache->getCachedResourceBytes(); } //////////////////////////////////////////////////////////////////////////////// namespace { void scale_rect(SkRect* rect, float xScale, float yScale) { rect->fLeft = SkScalarMul(rect->fLeft, SkFloatToScalar(xScale)); rect->fTop = SkScalarMul(rect->fTop, SkFloatToScalar(yScale)); rect->fRight = SkScalarMul(rect->fRight, SkFloatToScalar(xScale)); rect->fBottom = SkScalarMul(rect->fBottom, SkFloatToScalar(yScale)); } float adjust_sigma(float sigma, int *scaleFactor, int *radius) { *scaleFactor = 1; while (sigma > MAX_BLUR_SIGMA) { *scaleFactor *= 2; sigma *= 0.5f; } *radius = static_cast(ceilf(sigma * 3.0f)); GrAssert(*radius <= GrConvolutionEffect::kMaxKernelRadius); return sigma; } void convolve_gaussian(GrDrawTarget* target, GrTexture* texture, const SkRect& rect, float sigma, int radius, Gr1DKernelEffect::Direction direction) { GrRenderTarget* rt = target->drawState()->getRenderTarget(); GrDrawTarget::AutoStateRestore asr(target, GrDrawTarget::kReset_ASRInit); GrDrawState* drawState = target->drawState(); drawState->setRenderTarget(rt); GrMatrix sampleM; sampleM.setIDiv(texture->width(), texture->height()); drawState->sampler(0)->reset(sampleM); SkAutoTUnref conv(SkNEW_ARGS(GrConvolutionEffect, (texture, direction, radius, sigma))); drawState->sampler(0)->setCustomStage(conv); target->drawSimpleRect(rect, NULL); } } GrTexture* GrContext::findTexture(const GrCacheKey& key) { return static_cast(fTextureCache->find(key.key())); } GrTexture* GrContext::findTexture(const GrTextureDesc& desc, const GrCacheData& cacheData, const GrTextureParams* params) { GrResourceKey resourceKey = GrTexture::ComputeKey(fGpu, params, desc, cacheData, false); GrResource* resource = fTextureCache->find(resourceKey); return static_cast(resource); } bool GrContext::isTextureInCache(const GrTextureDesc& desc, const GrCacheData& cacheData, const GrTextureParams* params) const { GrResourceKey resourceKey = GrTexture::ComputeKey(fGpu, params, desc, cacheData, false); return fTextureCache->hasKey(resourceKey); } void GrContext::addStencilBuffer(GrStencilBuffer* sb) { ASSERT_OWNED_RESOURCE(sb); GrResourceKey resourceKey = GrStencilBuffer::ComputeKey(sb->width(), sb->height(), sb->numSamples()); fTextureCache->create(resourceKey, sb); } GrStencilBuffer* GrContext::findStencilBuffer(int width, int height, int sampleCnt) { GrResourceKey resourceKey = GrStencilBuffer::ComputeKey(width, height, sampleCnt); GrResource* resource = fTextureCache->find(resourceKey); return static_cast(resource); } static void stretchImage(void* dst, int dstW, int dstH, void* src, int srcW, int srcH, int bpp) { GrFixed dx = (srcW << 16) / dstW; GrFixed dy = (srcH << 16) / dstH; GrFixed y = dy >> 1; int dstXLimit = dstW*bpp; for (int j = 0; j < dstH; ++j) { GrFixed x = dx >> 1; void* srcRow = (uint8_t*)src + (y>>16)*srcW*bpp; void* dstRow = (uint8_t*)dst + j*dstW*bpp; for (int i = 0; i < dstXLimit; i += bpp) { memcpy((uint8_t*) dstRow + i, (uint8_t*) srcRow + (x>>16)*bpp, bpp); x += dx; } y += dy; } } // The desired texture is NPOT and tiled but that isn't supported by // the current hardware. Resize the texture to be a POT GrTexture* GrContext::createResizedTexture(const GrTextureDesc& desc, const GrCacheData& cacheData, void* srcData, size_t rowBytes, bool needsFiltering) { GrTexture* clampedTexture = this->findTexture(desc, cacheData, NULL); if (NULL == clampedTexture) { clampedTexture = this->createTexture(NULL, desc, cacheData, srcData, rowBytes); GrAssert(NULL != clampedTexture); if (NULL == clampedTexture) { return NULL; } } clampedTexture->ref(); GrTextureDesc rtDesc = desc; rtDesc.fFlags = rtDesc.fFlags | kRenderTarget_GrTextureFlagBit | kNoStencil_GrTextureFlagBit; rtDesc.fWidth = GrNextPow2(GrMax(desc.fWidth, 64)); rtDesc.fHeight = GrNextPow2(GrMax(desc.fHeight, 64)); GrTexture* texture = fGpu->createTexture(rtDesc, NULL, 0); if (NULL != texture) { GrDrawTarget::AutoStateRestore asr(fGpu, GrDrawTarget::kReset_ASRInit); GrDrawState* drawState = fGpu->drawState(); drawState->setRenderTarget(texture->asRenderTarget()); // if filtering is not desired then we want to ensure all // texels in the resampled image are copies of texels from // the original. drawState->sampler(0)->reset(); GrTextureParams params(SkShader::kClamp_TileMode, needsFiltering); drawState->createTextureEffect(0, clampedTexture, params); static const GrVertexLayout layout = GrDrawTarget::StageTexCoordVertexLayoutBit(0,0); GrDrawTarget::AutoReleaseGeometry arg(fGpu, layout, 4, 0); if (arg.succeeded()) { GrPoint* verts = (GrPoint*) arg.vertices(); verts[0].setIRectFan(0, 0, texture->width(), texture->height(), 2*sizeof(GrPoint)); verts[1].setIRectFan(0, 0, 1, 1, 2*sizeof(GrPoint)); fGpu->drawNonIndexed(kTriangleFan_GrPrimitiveType, 0, 4); } texture->releaseRenderTarget(); } else { // TODO: Our CPU stretch doesn't filter. But we create separate // stretched textures when the sampler state is either filtered or // not. Either implement filtered stretch blit on CPU or just create // one when FBO case fails. rtDesc.fFlags = kNone_GrTextureFlags; // no longer need to clamp at min RT size. rtDesc.fWidth = GrNextPow2(desc.fWidth); rtDesc.fHeight = GrNextPow2(desc.fHeight); int bpp = GrBytesPerPixel(desc.fConfig); SkAutoSMalloc<128*128*4> stretchedPixels(bpp * rtDesc.fWidth * rtDesc.fHeight); stretchImage(stretchedPixels.get(), rtDesc.fWidth, rtDesc.fHeight, srcData, desc.fWidth, desc.fHeight, bpp); size_t stretchedRowBytes = rtDesc.fWidth * bpp; GrTexture* texture = fGpu->createTexture(rtDesc, stretchedPixels.get(), stretchedRowBytes); GrAssert(NULL != texture); } clampedTexture->unref(); return texture; } GrTexture* GrContext::createTexture( const GrTextureParams* params, const GrTextureDesc& desc, const GrCacheData& cacheData, void* srcData, size_t rowBytes) { SK_TRACE_EVENT0("GrContext::createAndLockTexture"); #if GR_DUMP_TEXTURE_UPLOAD GrPrintf("GrContext::createAndLockTexture [%d %d]\n", desc.fWidth, desc.fHeight); #endif GrResourceKey resourceKey = GrTexture::ComputeKey(fGpu, params, desc, cacheData, false); SkAutoTUnref texture; if (GrTexture::NeedsResizing(resourceKey)) { texture.reset(this->createResizedTexture(desc, cacheData, srcData, rowBytes, GrTexture::NeedsFiltering(resourceKey))); } else { texture.reset(fGpu->createTexture(desc, srcData, rowBytes)); } if (NULL != texture) { fTextureCache->create(resourceKey, texture); } return texture; } GrTexture* GrContext::lockScratchTexture(const GrTextureDesc& inDesc, ScratchTexMatch match) { GrTextureDesc desc = inDesc; GrCacheData cacheData(GrCacheData::kScratch_CacheID); GrAssert((desc.fFlags & kRenderTarget_GrTextureFlagBit) || !(desc.fFlags & kNoStencil_GrTextureFlagBit)); if (kExact_ScratchTexMatch != match) { // bin by pow2 with a reasonable min static const int MIN_SIZE = 256; desc.fWidth = GrMax(MIN_SIZE, GrNextPow2(desc.fWidth)); desc.fHeight = GrMax(MIN_SIZE, GrNextPow2(desc.fHeight)); } GrResource* resource = NULL; int origWidth = desc.fWidth; int origHeight = desc.fHeight; bool doubledW = false; bool doubledH = false; do { GrResourceKey key = GrTexture::ComputeKey(fGpu, NULL, desc, cacheData, true); resource = fTextureCache->find(key); // if we miss, relax the fit of the flags... // then try doubling width... then height. if (NULL != resource || kExact_ScratchTexMatch == match) { break; } // We no longer try to reuse textures that were previously used as render targets in // situations where no RT is needed; doing otherwise can confuse the video driver and // cause significant performance problems in some cases. if (desc.fFlags & kNoStencil_GrTextureFlagBit) { desc.fFlags = desc.fFlags & ~kNoStencil_GrTextureFlagBit; } else if (!doubledW) { desc.fFlags = inDesc.fFlags; desc.fWidth *= 2; doubledW = true; } else if (!doubledH) { desc.fFlags = inDesc.fFlags; desc.fWidth = origWidth; desc.fHeight *= 2; doubledH = true; } else { break; } } while (true); if (NULL == resource) { desc.fFlags = inDesc.fFlags; desc.fWidth = origWidth; desc.fHeight = origHeight; SkAutoTUnref texture(fGpu->createTexture(desc, NULL, 0)); if (NULL != texture) { GrResourceKey key = GrTexture::ComputeKey(fGpu, NULL, texture->desc(), cacheData, true); fTextureCache->create(key, texture); resource = texture; } } // If the caller gives us the same desc/sampler twice we don't want // to return the same texture the second time (unless it was previously // released). So make it exclusive to hide it from future searches. if (NULL != resource) { fTextureCache->makeExclusive(resource->getCacheEntry()); } return static_cast(resource); } void GrContext::addExistingTextureToCache(GrTexture* texture) { if (NULL == texture) { return; } // This texture should already have a cache entry since it was once // attached GrAssert(NULL != texture->getCacheEntry()); // Conceptually, the cache entry is going to assume responsibility // for the creation ref. GrAssert(1 == texture->getRefCnt()); // Since this texture came from an AutoScratchTexture it should // still be in the exclusive pile fTextureCache->makeNonExclusive(texture->getCacheEntry()); this->purgeCache(); } void GrContext::unlockScratchTexture(GrTexture* texture) { ASSERT_OWNED_RESOURCE(texture); GrAssert(NULL != texture->getCacheEntry()); // If this is a scratch texture we detached it from the cache // while it was locked (to avoid two callers simultaneously getting // the same texture). if (GrTexture::IsScratchTexture(texture->getCacheEntry()->key())) { fTextureCache->makeNonExclusive(texture->getCacheEntry()); } this->purgeCache(); } void GrContext::purgeCache() { if (NULL != fTextureCache) { fTextureCache->purgeAsNeeded(); } } GrTexture* GrContext::createUncachedTexture(const GrTextureDesc& descIn, void* srcData, size_t rowBytes) { GrTextureDesc descCopy = descIn; return fGpu->createTexture(descCopy, srcData, rowBytes); } void GrContext::getTextureCacheLimits(int* maxTextures, size_t* maxTextureBytes) const { fTextureCache->getLimits(maxTextures, maxTextureBytes); } void GrContext::setTextureCacheLimits(int maxTextures, size_t maxTextureBytes) { fTextureCache->setLimits(maxTextures, maxTextureBytes); } int GrContext::getMaxTextureSize() const { return fGpu->getCaps().maxTextureSize(); } int GrContext::getMaxRenderTargetSize() const { return fGpu->getCaps().maxRenderTargetSize(); } /////////////////////////////////////////////////////////////////////////////// GrTexture* GrContext::createPlatformTexture(const GrPlatformTextureDesc& desc) { return fGpu->createPlatformTexture(desc); } GrRenderTarget* GrContext::createPlatformRenderTarget(const GrPlatformRenderTargetDesc& desc) { return fGpu->createPlatformRenderTarget(desc); } /////////////////////////////////////////////////////////////////////////////// bool GrContext::supportsIndex8PixelConfig(const GrTextureParams* params, int width, int height) const { const GrDrawTarget::Caps& caps = fGpu->getCaps(); if (!caps.eightBitPaletteSupport()) { return false; } bool isPow2 = GrIsPow2(width) && GrIsPow2(height); if (!isPow2) { bool tiled = NULL != params && params->isTiled(); if (tiled && !caps.npotTextureTileSupport()) { return false; } } return true; } //////////////////////////////////////////////////////////////////////////////// const GrClipData* GrContext::getClip() const { return fGpu->getClip(); } void GrContext::setClip(const GrClipData* clipData) { fGpu->setClip(clipData); fDrawState->enableState(GrDrawState::kClip_StateBit); } //////////////////////////////////////////////////////////////////////////////// void GrContext::clear(const GrIRect* rect, const GrColor color, GrRenderTarget* target) { this->prepareToDraw(NULL, DEFAULT_BUFFERING)->clear(rect, color, target); } void GrContext::drawPaint(const GrPaint& paint) { // set rect to be big enough to fill the space, but not super-huge, so we // don't overflow fixed-point implementations GrRect r; r.setLTRB(0, 0, GrIntToScalar(getRenderTarget()->width()), GrIntToScalar(getRenderTarget()->height())); GrMatrix inverse; SkTLazy tmpPaint; const GrPaint* p = &paint; AutoMatrix am; // We attempt to map r by the inverse matrix and draw that. mapRect will // map the four corners and bound them with a new rect. This will not // produce a correct result for some perspective matrices. if (!this->getMatrix().hasPerspective()) { if (!fDrawState->getViewInverse(&inverse)) { GrPrintf("Could not invert matrix\n"); return; } inverse.mapRect(&r); } else { if (paint.hasTextureOrMask()) { tmpPaint.set(paint); p = tmpPaint.get(); if (!tmpPaint.get()->preConcatSamplerMatricesWithInverse(fDrawState->getViewMatrix())) { GrPrintf("Could not invert matrix\n"); } } am.set(this, GrMatrix::I()); } // by definition this fills the entire clip, no need for AA if (paint.fAntiAlias) { if (!tmpPaint.isValid()) { tmpPaint.set(paint); p = tmpPaint.get(); } GrAssert(p == tmpPaint.get()); tmpPaint.get()->fAntiAlias = false; } this->drawRect(*p, r); } //////////////////////////////////////////////////////////////////////////////// namespace { inline bool disable_coverage_aa_for_blend(GrDrawTarget* target) { return DISABLE_COVERAGE_AA_FOR_BLEND && !target->canApplyCoverage(); } } //////////////////////////////////////////////////////////////////////////////// /* create a triangle strip that strokes the specified triangle. There are 8 unique vertices, but we repreat the last 2 to close up. Alternatively we could use an indices array, and then only send 8 verts, but not sure that would be faster. */ static void setStrokeRectStrip(GrPoint verts[10], GrRect rect, GrScalar width) { const GrScalar rad = GrScalarHalf(width); rect.sort(); verts[0].set(rect.fLeft + rad, rect.fTop + rad); verts[1].set(rect.fLeft - rad, rect.fTop - rad); verts[2].set(rect.fRight - rad, rect.fTop + rad); verts[3].set(rect.fRight + rad, rect.fTop - rad); verts[4].set(rect.fRight - rad, rect.fBottom - rad); verts[5].set(rect.fRight + rad, rect.fBottom + rad); verts[6].set(rect.fLeft + rad, rect.fBottom - rad); verts[7].set(rect.fLeft - rad, rect.fBottom + rad); verts[8] = verts[0]; verts[9] = verts[1]; } /** * Returns true if the rects edges are integer-aligned. */ static bool isIRect(const GrRect& r) { return GrScalarIsInt(r.fLeft) && GrScalarIsInt(r.fTop) && GrScalarIsInt(r.fRight) && GrScalarIsInt(r.fBottom); } static bool apply_aa_to_rect(GrDrawTarget* target, const GrRect& rect, GrScalar width, const GrMatrix* matrix, GrMatrix* combinedMatrix, GrRect* devRect, bool* useVertexCoverage) { // we use a simple coverage ramp to do aa on axis-aligned rects // we check if the rect will be axis-aligned, and the rect won't land on // integer coords. // we are keeping around the "tweak the alpha" trick because // it is our only hope for the fixed-pipe implementation. // In a shader implementation we can give a separate coverage input // TODO: remove this ugliness when we drop the fixed-pipe impl *useVertexCoverage = false; if (!target->canTweakAlphaForCoverage()) { if (disable_coverage_aa_for_blend(target)) { #if GR_DEBUG //GrPrintf("Turning off AA to correctly apply blend.\n"); #endif return false; } else { *useVertexCoverage = true; } } const GrDrawState& drawState = target->getDrawState(); if (drawState.getRenderTarget()->isMultisampled()) { return false; } if (0 == width && target->willUseHWAALines()) { return false; } if (!drawState.getViewMatrix().preservesAxisAlignment()) { return false; } if (NULL != matrix && !matrix->preservesAxisAlignment()) { return false; } *combinedMatrix = drawState.getViewMatrix(); if (NULL != matrix) { combinedMatrix->preConcat(*matrix); GrAssert(combinedMatrix->preservesAxisAlignment()); } combinedMatrix->mapRect(devRect, rect); devRect->sort(); if (width < 0) { return !isIRect(*devRect); } else { return true; } } void GrContext::drawRect(const GrPaint& paint, const GrRect& rect, GrScalar width, const GrMatrix* matrix) { SK_TRACE_EVENT0("GrContext::drawRect"); GrDrawTarget* target = this->prepareToDraw(&paint, DEFAULT_BUFFERING); GrDrawState::AutoStageDisable atr(fDrawState); GrRect devRect = rect; GrMatrix combinedMatrix; bool useVertexCoverage; bool needAA = paint.fAntiAlias && !this->getRenderTarget()->isMultisampled(); bool doAA = needAA && apply_aa_to_rect(target, rect, width, matrix, &combinedMatrix, &devRect, &useVertexCoverage); if (doAA) { GrDrawTarget::AutoDeviceCoordDraw adcd(target); if (!adcd.succeeded()) { return; } if (width >= 0) { GrVec strokeSize;; if (width > 0) { strokeSize.set(width, width); combinedMatrix.mapVectors(&strokeSize, 1); strokeSize.setAbs(strokeSize); } else { strokeSize.set(GR_Scalar1, GR_Scalar1); } fAARectRenderer->strokeAARect(this->getGpu(), target, devRect, strokeSize, useVertexCoverage); } else { fAARectRenderer->fillAARect(this->getGpu(), target, devRect, useVertexCoverage); } return; } if (width >= 0) { // TODO: consider making static vertex buffers for these cases. // Hairline could be done by just adding closing vertex to // unitSquareVertexBuffer() static const int worstCaseVertCount = 10; GrDrawTarget::AutoReleaseGeometry geo(target, 0, worstCaseVertCount, 0); if (!geo.succeeded()) { GrPrintf("Failed to get space for vertices!\n"); return; } GrPrimitiveType primType; int vertCount; GrPoint* vertex = geo.positions(); if (width > 0) { vertCount = 10; primType = kTriangleStrip_GrPrimitiveType; setStrokeRectStrip(vertex, rect, width); } else { // hairline vertCount = 5; primType = kLineStrip_GrPrimitiveType; vertex[0].set(rect.fLeft, rect.fTop); vertex[1].set(rect.fRight, rect.fTop); vertex[2].set(rect.fRight, rect.fBottom); vertex[3].set(rect.fLeft, rect.fBottom); vertex[4].set(rect.fLeft, rect.fTop); } GrDrawState::AutoViewMatrixRestore avmr; if (NULL != matrix) { GrDrawState* drawState = target->drawState(); avmr.set(drawState); drawState->preConcatViewMatrix(*matrix); drawState->preConcatSamplerMatrices(*matrix); } target->drawNonIndexed(primType, 0, vertCount); } else { #if GR_STATIC_RECT_VB const GrVertexBuffer* sqVB = fGpu->getUnitSquareVertexBuffer(); if (NULL == sqVB) { GrPrintf("Failed to create static rect vb.\n"); return; } target->setVertexSourceToBuffer(0, sqVB); GrDrawState* drawState = target->drawState(); GrDrawState::AutoViewMatrixRestore avmr(drawState); GrMatrix m; m.setAll(rect.width(), 0, rect.fLeft, 0, rect.height(), rect.fTop, 0, 0, GrMatrix::I()[8]); if (NULL != matrix) { m.postConcat(*matrix); } drawState->preConcatViewMatrix(m); drawState->preConcatSamplerMatrices(m); target->drawNonIndexed(kTriangleFan_GrPrimitiveType, 0, 4); #else target->drawSimpleRect(rect, matrix); #endif } } void GrContext::drawRectToRect(const GrPaint& paint, const GrRect& dstRect, const GrRect& srcRect, const GrMatrix* dstMatrix, const GrMatrix* srcMatrix) { SK_TRACE_EVENT0("GrContext::drawRectToRect"); // srcRect refers to paint's first texture if (!paint.isTextureStageEnabled(0)) { drawRect(paint, dstRect, -1, dstMatrix); return; } GrDrawTarget* target = this->prepareToDraw(&paint, DEFAULT_BUFFERING); #if GR_STATIC_RECT_VB GrDrawState::AutoStageDisable atr(fDrawState); GrDrawState* drawState = target->drawState(); GrDrawState::AutoViewMatrixRestore avmr(drawState); GrMatrix m; m.setAll(dstRect.width(), 0, dstRect.fLeft, 0, dstRect.height(), dstRect.fTop, 0, 0, GrMatrix::I()[8]); if (NULL != dstMatrix) { m.postConcat(*dstMatrix); } drawState->preConcatViewMatrix(m); // we explicitly setup the correct coords for the first stage. The others // must know about the view matrix change. for (int s = 1; s < GrPaint::kTotalStages; ++s) { if (drawState->isStageEnabled(s)) { drawState->sampler(s)->preConcatMatrix(m); } } m.setAll(srcRect.width(), 0, srcRect.fLeft, 0, srcRect.height(), srcRect.fTop, 0, 0, GrMatrix::I()[8]); if (NULL != srcMatrix) { m.postConcat(*srcMatrix); } drawState->sampler(GrPaint::kFirstTextureStage)->preConcatMatrix(m); const GrVertexBuffer* sqVB = fGpu->getUnitSquareVertexBuffer(); if (NULL == sqVB) { GrPrintf("Failed to create static rect vb.\n"); return; } target->setVertexSourceToBuffer(0, sqVB); target->drawNonIndexed(kTriangleFan_GrPrimitiveType, 0, 4); #else GrDrawState::AutoStageDisable atr(fDrawState); const GrRect* srcRects[GrDrawState::kNumStages] = {NULL}; const GrMatrix* srcMatrices[GrDrawState::kNumStages] = {NULL}; srcRects[0] = &srcRect; srcMatrices[0] = srcMatrix; target->drawRect(dstRect, dstMatrix, srcRects, srcMatrices); #endif } void GrContext::drawVertices(const GrPaint& paint, GrPrimitiveType primitiveType, int vertexCount, const GrPoint positions[], const GrPoint texCoords[], const GrColor colors[], const uint16_t indices[], int indexCount) { SK_TRACE_EVENT0("GrContext::drawVertices"); GrDrawTarget::AutoReleaseGeometry geo; GrDrawTarget* target = this->prepareToDraw(&paint, DEFAULT_BUFFERING); GrDrawState::AutoStageDisable atr(fDrawState); GrVertexLayout layout = 0; if (NULL != texCoords) { layout |= GrDrawTarget::StageTexCoordVertexLayoutBit(0, 0); } if (NULL != colors) { layout |= GrDrawTarget::kColor_VertexLayoutBit; } int vertexSize = GrDrawTarget::VertexSize(layout); if (sizeof(GrPoint) != vertexSize) { if (!geo.set(target, layout, vertexCount, 0)) { GrPrintf("Failed to get space for vertices!\n"); return; } int texOffsets[GrDrawState::kMaxTexCoords]; int colorOffset; GrDrawTarget::VertexSizeAndOffsetsByIdx(layout, texOffsets, &colorOffset, NULL, NULL); void* curVertex = geo.vertices(); for (int i = 0; i < vertexCount; ++i) { *((GrPoint*)curVertex) = positions[i]; if (texOffsets[0] > 0) { *(GrPoint*)((intptr_t)curVertex + texOffsets[0]) = texCoords[i]; } if (colorOffset > 0) { *(GrColor*)((intptr_t)curVertex + colorOffset) = colors[i]; } curVertex = (void*)((intptr_t)curVertex + vertexSize); } } else { target->setVertexSourceToArray(layout, positions, vertexCount); } // we don't currently apply offscreen AA to this path. Need improved // management of GrDrawTarget's geometry to avoid copying points per-tile. if (NULL != indices) { target->setIndexSourceToArray(indices, indexCount); target->drawIndexed(primitiveType, 0, 0, vertexCount, indexCount); } else { target->drawNonIndexed(primitiveType, 0, vertexCount); } } /////////////////////////////////////////////////////////////////////////////// namespace { struct CircleVertex { GrPoint fPos; GrPoint fCenter; GrScalar fOuterRadius; GrScalar fInnerRadius; }; /* Returns true if will map a circle to another circle. This can be true * if the matrix only includes square-scale, rotation, translation. */ inline bool isSimilarityTransformation(const SkMatrix& matrix, SkScalar tol = SK_ScalarNearlyZero) { if (matrix.isIdentity() || matrix.getType() == SkMatrix::kTranslate_Mask) { return true; } if (matrix.hasPerspective()) { return false; } SkScalar mx = matrix.get(SkMatrix::kMScaleX); SkScalar sx = matrix.get(SkMatrix::kMSkewX); SkScalar my = matrix.get(SkMatrix::kMScaleY); SkScalar sy = matrix.get(SkMatrix::kMSkewY); if (mx == 0 && sx == 0 && my == 0 && sy == 0) { return false; } // it has scales or skews, but it could also be rotation, check it out. SkVector vec[2]; vec[0].set(mx, sx); vec[1].set(sy, my); return SkScalarNearlyZero(vec[0].dot(vec[1]), SkScalarSquare(tol)) && SkScalarNearlyEqual(vec[0].lengthSqd(), vec[1].lengthSqd(), SkScalarSquare(tol)); } } // TODO: strokeWidth can't be larger than zero right now. // It will be fixed when drawPath() can handle strokes. void GrContext::drawOval(const GrPaint& paint, const GrRect& rect, SkScalar strokeWidth) { GrAssert(strokeWidth <= 0); if (!isSimilarityTransformation(this->getMatrix()) || !paint.fAntiAlias || rect.height() != rect.width()) { SkPath path; path.addOval(rect); GrPathFill fill = (strokeWidth == 0) ? kHairLine_GrPathFill : kWinding_GrPathFill; this->internalDrawPath(paint, path, fill, NULL); return; } GrDrawTarget* target = this->prepareToDraw(&paint, DEFAULT_BUFFERING); GrDrawState* drawState = target->drawState(); GrDrawState::AutoStageDisable atr(fDrawState); const GrMatrix vm = drawState->getViewMatrix(); const GrRenderTarget* rt = drawState->getRenderTarget(); if (NULL == rt) { return; } GrDrawTarget::AutoDeviceCoordDraw adcd(target); if (!adcd.succeeded()) { return; } GrVertexLayout layout = GrDrawTarget::kEdge_VertexLayoutBit; GrAssert(sizeof(CircleVertex) == GrDrawTarget::VertexSize(layout)); GrPoint center = GrPoint::Make(rect.centerX(), rect.centerY()); GrScalar radius = SkScalarHalf(rect.width()); vm.mapPoints(¢er, 1); radius = vm.mapRadius(radius); GrScalar outerRadius = radius; GrScalar innerRadius = 0; SkScalar halfWidth = 0; if (strokeWidth == 0) { halfWidth = SkScalarHalf(SK_Scalar1); outerRadius += halfWidth; innerRadius = SkMaxScalar(0, radius - halfWidth); } GrDrawTarget::AutoReleaseGeometry geo(target, layout, 4, 0); if (!geo.succeeded()) { GrPrintf("Failed to get space for vertices!\n"); return; } CircleVertex* verts = reinterpret_cast(geo.vertices()); // The fragment shader will extend the radius out half a pixel // to antialias. Expand the drawn rect here so all the pixels // will be captured. SkScalar L = center.fX - outerRadius - SkFloatToScalar(0.5f); SkScalar R = center.fX + outerRadius + SkFloatToScalar(0.5f); SkScalar T = center.fY - outerRadius - SkFloatToScalar(0.5f); SkScalar B = center.fY + outerRadius + SkFloatToScalar(0.5f); verts[0].fPos = SkPoint::Make(L, T); verts[1].fPos = SkPoint::Make(R, T); verts[2].fPos = SkPoint::Make(L, B); verts[3].fPos = SkPoint::Make(R, B); for (int i = 0; i < 4; ++i) { // this goes to fragment shader, it should be in y-points-up space. verts[i].fCenter = SkPoint::Make(center.fX, rt->height() - center.fY); verts[i].fOuterRadius = outerRadius; verts[i].fInnerRadius = innerRadius; } drawState->setVertexEdgeType(GrDrawState::kCircle_EdgeType); target->drawNonIndexed(kTriangleStrip_GrPrimitiveType, 0, 4); } void GrContext::drawPath(const GrPaint& paint, const SkPath& path, GrPathFill fill, const GrPoint* translate) { if (path.isEmpty()) { if (GrIsFillInverted(fill)) { this->drawPaint(paint); } return; } SkRect ovalRect; if (!GrIsFillInverted(fill) && path.isOval(&ovalRect)) { if (translate) { ovalRect.offset(*translate); } SkScalar width = (fill == kHairLine_GrPathFill) ? 0 : -SK_Scalar1; this->drawOval(paint, ovalRect, width); return; } internalDrawPath(paint, path, fill, translate); } void GrContext::internalDrawPath(const GrPaint& paint, const SkPath& path, GrPathFill fill, const GrPoint* translate) { // Note that below we may sw-rasterize the path into a scratch texture. // Scratch textures can be recycled after they are returned to the texture // cache. This presents a potential hazard for buffered drawing. However, // the writePixels that uploads to the scratch will perform a flush so we're // OK. GrDrawTarget* target = this->prepareToDraw(&paint, DEFAULT_BUFFERING); GrDrawState::AutoStageDisable atr(fDrawState); bool prAA = paint.fAntiAlias && !this->getRenderTarget()->isMultisampled(); // An Assumption here is that path renderer would use some form of tweaking // the src color (either the input alpha or in the frag shader) to implement // aa. If we have some future driver-mojo path AA that can do the right // thing WRT to the blend then we'll need some query on the PR. if (disable_coverage_aa_for_blend(target)) { #if GR_DEBUG //GrPrintf("Turning off AA to correctly apply blend.\n"); #endif prAA = false; } GrPathRenderer* pr = this->getPathRenderer(path, fill, target, prAA, true); if (NULL == pr) { #if GR_DEBUG GrPrintf("Unable to find path renderer compatible with path.\n"); #endif return; } pr->drawPath(path, fill, translate, target, prAA); } //////////////////////////////////////////////////////////////////////////////// void GrContext::flush(int flagsBitfield) { if (kDiscard_FlushBit & flagsBitfield) { fDrawBuffer->reset(); } else { this->flushDrawBuffer(); } if (kForceCurrentRenderTarget_FlushBit & flagsBitfield) { fGpu->forceRenderTargetFlush(); } } void GrContext::flushDrawBuffer() { if (fDrawBuffer) { // With addition of the AA clip path, flushing the draw buffer can // result in the generation of an AA clip mask. During this // process the SW path renderer may be invoked which recusively // calls this method (via internalWriteTexturePixels) creating // infinite recursion GrInOrderDrawBuffer* temp = fDrawBuffer; fDrawBuffer = NULL; temp->flushTo(fGpu); fDrawBuffer = temp; } } void GrContext::writeTexturePixels(GrTexture* texture, int left, int top, int width, int height, GrPixelConfig config, const void* buffer, size_t rowBytes, uint32_t flags) { SK_TRACE_EVENT0("GrContext::writeTexturePixels"); ASSERT_OWNED_RESOURCE(texture); // TODO: use scratch texture to perform conversion if (kUnpremul_PixelOpsFlag & flags) { return; } if (!(kDontFlush_PixelOpsFlag & flags)) { this->flush(); } fGpu->writeTexturePixels(texture, left, top, width, height, config, buffer, rowBytes); } bool GrContext::readTexturePixels(GrTexture* texture, int left, int top, int width, int height, GrPixelConfig config, void* buffer, size_t rowBytes, uint32_t flags) { SK_TRACE_EVENT0("GrContext::readTexturePixels"); ASSERT_OWNED_RESOURCE(texture); // TODO: code read pixels for textures that aren't also rendertargets GrRenderTarget* target = texture->asRenderTarget(); if (NULL != target) { return this->readRenderTargetPixels(target, left, top, width, height, config, buffer, rowBytes, flags); } else { return false; } } #include "SkConfig8888.h" namespace { /** * Converts a GrPixelConfig to a SkCanvas::Config8888. Only byte-per-channel * formats are representable as Config8888 and so the function returns false * if the GrPixelConfig has no equivalent Config8888. */ bool grconfig_to_config8888(GrPixelConfig config, bool unpremul, SkCanvas::Config8888* config8888) { switch (config) { case kRGBA_8888_GrPixelConfig: if (unpremul) { *config8888 = SkCanvas::kRGBA_Unpremul_Config8888; } else { *config8888 = SkCanvas::kRGBA_Premul_Config8888; } return true; case kBGRA_8888_GrPixelConfig: if (unpremul) { *config8888 = SkCanvas::kBGRA_Unpremul_Config8888; } else { *config8888 = SkCanvas::kBGRA_Premul_Config8888; } return true; default: return false; } } // It returns a configuration with where the byte position of the R & B components are swapped in // relation to the input config. This should only be called with the result of // grconfig_to_config8888 as it will fail for other configs. SkCanvas::Config8888 swap_config8888_red_and_blue(SkCanvas::Config8888 config8888) { switch (config8888) { case SkCanvas::kBGRA_Premul_Config8888: return SkCanvas::kRGBA_Premul_Config8888; case SkCanvas::kBGRA_Unpremul_Config8888: return SkCanvas::kRGBA_Unpremul_Config8888; case SkCanvas::kRGBA_Premul_Config8888: return SkCanvas::kBGRA_Premul_Config8888; case SkCanvas::kRGBA_Unpremul_Config8888: return SkCanvas::kBGRA_Unpremul_Config8888; default: GrCrash("Unexpected input"); return SkCanvas::kBGRA_Unpremul_Config8888;; } } } bool GrContext::readRenderTargetPixels(GrRenderTarget* target, int left, int top, int width, int height, GrPixelConfig config, void* buffer, size_t rowBytes, uint32_t flags) { SK_TRACE_EVENT0("GrContext::readRenderTargetPixels"); ASSERT_OWNED_RESOURCE(target); if (NULL == target) { target = fDrawState->getRenderTarget(); if (NULL == target) { return false; } } if (!(kDontFlush_PixelOpsFlag & flags)) { this->flush(); } // Determine which conversions have to be applied: flipY, swapRAnd, and/or unpremul. // If fGpu->readPixels would incur a y-flip cost then we will read the pixels upside down. We'll // either do the flipY by drawing into a scratch with a matrix or on the cpu after the read. bool flipY = fGpu->readPixelsWillPayForYFlip(target, left, top, width, height, config, rowBytes); bool swapRAndB = fGpu->preferredReadPixelsConfig(config) == GrPixelConfigSwapRAndB(config); bool unpremul = SkToBool(kUnpremul_PixelOpsFlag & flags); // flipY will get set to false when it is handled below using a scratch. However, in that case // we still want to do the read upside down. bool readUpsideDown = flipY; if (unpremul && kRGBA_8888_GrPixelConfig != config && kBGRA_8888_GrPixelConfig != config) { // The unpremul flag is only allowed for these two configs. return false; } GrPixelConfig readConfig; if (swapRAndB) { readConfig = GrPixelConfigSwapRAndB(config); GrAssert(kUnknown_GrPixelConfig != config); } else { readConfig = config; } // If the src is a texture and we would have to do conversions after read pixels, we instead // do the conversions by drawing the src to a scratch texture. If we handle any of the // conversions in the draw we set the corresponding bool to false so that we don't reapply it // on the read back pixels. GrTexture* src = target->asTexture(); GrAutoScratchTexture ast; if (NULL != src && (swapRAndB || unpremul || flipY)) { // Make the scratch a render target because we don't have a robust readTexturePixels as of // yet. It calls this function. GrTextureDesc desc; desc.fFlags = kRenderTarget_GrTextureFlagBit; desc.fWidth = width; desc.fHeight = height; desc.fConfig = readConfig; // When a full readback is faster than a partial we could always make the scratch exactly // match the passed rect. However, if we see many different size rectangles we will trash // our texture cache and pay the cost of creating and destroying many textures. So, we only // request an exact match when the caller is reading an entire RT. ScratchTexMatch match = kApprox_ScratchTexMatch; if (0 == left && 0 == top && target->width() == width && target->height() == height && fGpu->fullReadPixelsIsFasterThanPartial()) { match = kExact_ScratchTexMatch; } ast.set(this, desc, match); GrTexture* texture = ast.texture(); if (texture) { SkAutoTUnref stage; if (unpremul) { stage.reset(this->createPMToUPMEffect(src, swapRAndB)); } // If we failed to create a PM->UPM effect and have no other conversions to perform then // there is no longer any point to using the scratch. if (NULL != stage || flipY || swapRAndB) { if (NULL == stage) { stage.reset(GrConfigConversionEffect::Create(src, swapRAndB)); GrAssert(NULL != stage); } else { unpremul = false; // we will handle the UPM conversion in the draw } swapRAndB = false; // we will handle the swap in the draw. GrDrawTarget::AutoStateRestore asr(fGpu, GrDrawTarget::kReset_ASRInit); GrDrawState* drawState = fGpu->drawState(); drawState->setRenderTarget(texture->asRenderTarget()); GrMatrix matrix; if (flipY) { matrix.setTranslate(SK_Scalar1 * left, SK_Scalar1 * (top + height)); matrix.set(GrMatrix::kMScaleY, -GR_Scalar1); flipY = false; // the y flip will be handled in the draw } else { matrix.setTranslate(SK_Scalar1 *left, SK_Scalar1 *top); } matrix.postIDiv(src->width(), src->height()); drawState->sampler(0)->reset(matrix); drawState->sampler(0)->setCustomStage(stage); GrRect rect = GrRect::MakeWH(GrIntToScalar(width), GrIntToScalar(height)); fGpu->drawSimpleRect(rect, NULL); // we want to read back from the scratch's origin left = 0; top = 0; target = texture->asRenderTarget(); } } } if (!fGpu->readPixels(target, left, top, width, height, readConfig, buffer, rowBytes, readUpsideDown)) { return false; } // Perform any conversions we weren't able to perfom using a scratch texture. if (unpremul || swapRAndB || flipY) { SkCanvas::Config8888 srcC8888; SkCanvas::Config8888 dstC8888; bool c8888IsValid = grconfig_to_config8888(config, false, &srcC8888); grconfig_to_config8888(config, unpremul, &dstC8888); if (swapRAndB) { GrAssert(c8888IsValid); // we should only do r/b swap on 8888 configs srcC8888 = swap_config8888_red_and_blue(srcC8888); } if (flipY) { size_t tightRB = width * GrBytesPerPixel(config); if (0 == rowBytes) { rowBytes = tightRB; } SkAutoSTMalloc<256, uint8_t> tempRow(tightRB); intptr_t top = reinterpret_cast(buffer); intptr_t bot = top + (height - 1) * rowBytes; while (top < bot) { uint32_t* t = reinterpret_cast(top); uint32_t* b = reinterpret_cast(bot); uint32_t* temp = reinterpret_cast(tempRow.get()); memcpy(temp, t, tightRB); if (c8888IsValid) { SkConvertConfig8888Pixels(t, tightRB, dstC8888, b, tightRB, srcC8888, width, 1); SkConvertConfig8888Pixels(b, tightRB, dstC8888, temp, tightRB, srcC8888, width, 1); } else { memcpy(t, b, tightRB); memcpy(b, temp, tightRB); } top += rowBytes; bot -= rowBytes; } // The above loop does nothing on the middle row when height is odd. if (top == bot && c8888IsValid && dstC8888 != srcC8888) { uint32_t* mid = reinterpret_cast(top); SkConvertConfig8888Pixels(mid, tightRB, dstC8888, mid, tightRB, srcC8888, width, 1); } } else { // if we aren't flipping Y then we have no reason to be here other than doing // conversions for 8888 (r/b swap or upm). GrAssert(c8888IsValid); uint32_t* b32 = reinterpret_cast(buffer); SkConvertConfig8888Pixels(b32, rowBytes, dstC8888, b32, rowBytes, srcC8888, width, height); } } return true; } void GrContext::resolveRenderTarget(GrRenderTarget* target) { GrAssert(target); ASSERT_OWNED_RESOURCE(target); // In the future we may track whether there are any pending draws to this // target. We don't today so we always perform a flush. We don't promise // this to our clients, though. this->flush(); fGpu->resolveRenderTarget(target); } void GrContext::copyTexture(GrTexture* src, GrRenderTarget* dst) { if (NULL == src || NULL == dst) { return; } ASSERT_OWNED_RESOURCE(src); // Writes pending to the source texture are not tracked, so a flush // is required to ensure that the copy captures the most recent contents // of the source texture. See similar behaviour in // GrContext::resolveRenderTarget. this->flush(); GrDrawTarget::AutoStateRestore asr(fGpu, GrDrawTarget::kReset_ASRInit); GrDrawState* drawState = fGpu->drawState(); drawState->setRenderTarget(dst); GrMatrix sampleM; sampleM.setIDiv(src->width(), src->height()); drawState->sampler(0)->reset(sampleM); drawState->createTextureEffect(0, src); SkRect rect = SkRect::MakeXYWH(0, 0, SK_Scalar1 * src->width(), SK_Scalar1 * src->height()); fGpu->drawSimpleRect(rect, NULL); } void GrContext::writeRenderTargetPixels(GrRenderTarget* target, int left, int top, int width, int height, GrPixelConfig config, const void* buffer, size_t rowBytes, uint32_t flags) { SK_TRACE_EVENT0("GrContext::writeRenderTargetPixels"); ASSERT_OWNED_RESOURCE(target); if (NULL == target) { target = fDrawState->getRenderTarget(); if (NULL == target) { return; } } // TODO: when underlying api has a direct way to do this we should use it (e.g. glDrawPixels on // desktop GL). // We will always call some form of writeTexturePixels and we will pass our flags on to it. // Thus, we don't perform a flush here since that call will do it (if the kNoFlush flag isn't // set.) // If the RT is also a texture and we don't have to premultiply then take the texture path. // We expect to be at least as fast or faster since it doesn't use an intermediate texture as // we do below. #if !GR_MAC_BUILD // At least some drivers on the Mac get confused when glTexImage2D is called on a texture // attached to an FBO. The FBO still sees the old image. TODO: determine what OS versions and/or // HW is affected. if (NULL != target->asTexture() && !(kUnpremul_PixelOpsFlag & flags)) { this->writeTexturePixels(target->asTexture(), left, top, width, height, config, buffer, rowBytes, flags); return; } #endif SkAutoTUnref stage; bool swapRAndB = (fGpu->preferredReadPixelsConfig(config) == GrPixelConfigSwapRAndB(config)); GrPixelConfig textureConfig; if (swapRAndB) { textureConfig = GrPixelConfigSwapRAndB(config); } else { textureConfig = config; } GrTextureDesc desc; desc.fWidth = width; desc.fHeight = height; desc.fConfig = textureConfig; GrAutoScratchTexture ast(this, desc); GrTexture* texture = ast.texture(); if (NULL == texture) { return; } // allocate a tmp buffer and sw convert the pixels to premul SkAutoSTMalloc<128 * 128, uint32_t> tmpPixels(0); if (kUnpremul_PixelOpsFlag & flags) { if (kRGBA_8888_GrPixelConfig != config && kBGRA_8888_GrPixelConfig != config) { return; } stage.reset(this->createUPMToPMEffect(texture, swapRAndB)); if (NULL == stage) { SkCanvas::Config8888 srcConfig8888, dstConfig8888; GR_DEBUGCODE(bool success = ) grconfig_to_config8888(config, true, &srcConfig8888); GrAssert(success); GR_DEBUGCODE(success = ) grconfig_to_config8888(config, false, &dstConfig8888); GrAssert(success); const uint32_t* src = reinterpret_cast(buffer); tmpPixels.reset(width * height); SkConvertConfig8888Pixels(tmpPixels.get(), 4 * width, dstConfig8888, src, rowBytes, srcConfig8888, width, height); buffer = tmpPixels.get(); rowBytes = 4 * width; } } if (NULL == stage) { stage.reset(GrConfigConversionEffect::Create(texture, swapRAndB)); GrAssert(NULL != stage); } this->writeTexturePixels(texture, 0, 0, width, height, textureConfig, buffer, rowBytes, flags & ~kUnpremul_PixelOpsFlag); GrDrawTarget::AutoStateRestore asr(fGpu, GrDrawTarget::kReset_ASRInit); GrDrawState* drawState = fGpu->drawState(); GrMatrix matrix; matrix.setTranslate(GrIntToScalar(left), GrIntToScalar(top)); drawState->setViewMatrix(matrix); drawState->setRenderTarget(target); matrix.setIDiv(texture->width(), texture->height()); drawState->sampler(0)->reset(matrix); drawState->sampler(0)->setCustomStage(stage); fGpu->drawSimpleRect(GrRect::MakeWH(SkIntToScalar(width), SkIntToScalar(height)), NULL); } //////////////////////////////////////////////////////////////////////////////// void GrContext::setPaint(const GrPaint& paint) { GrAssert(fDrawState->stagesDisabled()); for (int i = 0; i < GrPaint::kMaxTextures; ++i) { int s = i + GrPaint::kFirstTextureStage; if (paint.isTextureStageEnabled(i)) { *fDrawState->sampler(s) = paint.getTextureSampler(i); } } fDrawState->setFirstCoverageStage(GrPaint::kFirstMaskStage); for (int i = 0; i < GrPaint::kMaxMasks; ++i) { int s = i + GrPaint::kFirstMaskStage; if (paint.isMaskStageEnabled(i)) { *fDrawState->sampler(s) = paint.getMaskSampler(i); } } // disable all stages not accessible via the paint for (int s = GrPaint::kTotalStages; s < GrDrawState::kNumStages; ++s) { fDrawState->disableStage(s); } fDrawState->setColor(paint.fColor); if (paint.fDither) { fDrawState->enableState(GrDrawState::kDither_StateBit); } else { fDrawState->disableState(GrDrawState::kDither_StateBit); } if (paint.fAntiAlias) { fDrawState->enableState(GrDrawState::kHWAntialias_StateBit); } else { fDrawState->disableState(GrDrawState::kHWAntialias_StateBit); } if (paint.fColorMatrixEnabled) { fDrawState->enableState(GrDrawState::kColorMatrix_StateBit); fDrawState->setColorMatrix(paint.fColorMatrix); } else { fDrawState->disableState(GrDrawState::kColorMatrix_StateBit); } fDrawState->setBlendFunc(paint.fSrcBlendCoeff, paint.fDstBlendCoeff); fDrawState->setColorFilter(paint.fColorFilterColor, paint.fColorFilterXfermode); fDrawState->setCoverage(paint.fCoverage); #if GR_DEBUG_PARTIAL_COVERAGE_CHECK if ((paint.hasMask() || 0xff != paint.fCoverage) && !fGpu->canApplyCoverage()) { GrPrintf("Partial pixel coverage will be incorrectly blended.\n"); } #endif } GrDrawTarget* GrContext::prepareToDraw(const GrPaint* paint, BufferedDraw buffered) { if (kNo_BufferedDraw == buffered && kYes_BufferedDraw == fLastDrawWasBuffered) { this->flushDrawBuffer(); fLastDrawWasBuffered = kNo_BufferedDraw; } if (NULL != paint) { this->setPaint(*paint); } if (kYes_BufferedDraw == buffered) { fDrawBuffer->setClip(fGpu->getClip()); fLastDrawWasBuffered = kYes_BufferedDraw; return fDrawBuffer; } else { GrAssert(kNo_BufferedDraw == buffered); return fGpu; } } /* * This method finds a path renderer that can draw the specified path on * the provided target. * Due to its expense, the software path renderer has split out so it can * can be individually allowed/disallowed via the "allowSW" boolean. */ GrPathRenderer* GrContext::getPathRenderer(const SkPath& path, GrPathFill fill, const GrDrawTarget* target, bool antiAlias, bool allowSW) { if (NULL == fPathRendererChain) { fPathRendererChain = SkNEW_ARGS(GrPathRendererChain, (this, GrPathRendererChain::kNone_UsageFlag)); } GrPathRenderer* pr = fPathRendererChain->getPathRenderer(path, fill, target, antiAlias); if (NULL == pr && allowSW) { if (NULL == fSoftwarePathRenderer) { fSoftwarePathRenderer = SkNEW_ARGS(GrSoftwarePathRenderer, (this)); } pr = fSoftwarePathRenderer; } return pr; } //////////////////////////////////////////////////////////////////////////////// void GrContext::setRenderTarget(GrRenderTarget* target) { ASSERT_OWNED_RESOURCE(target); fDrawState->setRenderTarget(target); } GrRenderTarget* GrContext::getRenderTarget() { return fDrawState->getRenderTarget(); } const GrRenderTarget* GrContext::getRenderTarget() const { return fDrawState->getRenderTarget(); } bool GrContext::isConfigRenderable(GrPixelConfig config) const { return fGpu->isConfigRenderable(config); } const GrMatrix& GrContext::getMatrix() const { return fDrawState->getViewMatrix(); } void GrContext::setMatrix(const GrMatrix& m) { fDrawState->setViewMatrix(m); } void GrContext::concatMatrix(const GrMatrix& m) const { fDrawState->preConcatViewMatrix(m); } static inline intptr_t setOrClear(intptr_t bits, int shift, intptr_t pred) { intptr_t mask = 1 << shift; if (pred) { bits |= mask; } else { bits &= ~mask; } return bits; } GrContext::GrContext(GrGpu* gpu) { ++THREAD_INSTANCE_COUNT; fGpu = gpu; fGpu->ref(); fGpu->setContext(this); fDrawState = SkNEW(GrDrawState); fGpu->setDrawState(fDrawState); fPathRendererChain = NULL; fSoftwarePathRenderer = NULL; fTextureCache = SkNEW_ARGS(GrResourceCache, (MAX_TEXTURE_CACHE_COUNT, MAX_TEXTURE_CACHE_BYTES)); fFontCache = SkNEW_ARGS(GrFontCache, (fGpu)); fLastDrawWasBuffered = kNo_BufferedDraw; fDrawBuffer = NULL; fDrawBufferVBAllocPool = NULL; fDrawBufferIBAllocPool = NULL; fAARectRenderer = SkNEW(GrAARectRenderer); fDidTestPMConversions = false; this->setupDrawBuffer(); } void GrContext::setupDrawBuffer() { GrAssert(NULL == fDrawBuffer); GrAssert(NULL == fDrawBufferVBAllocPool); GrAssert(NULL == fDrawBufferIBAllocPool); fDrawBufferVBAllocPool = SkNEW_ARGS(GrVertexBufferAllocPool, (fGpu, false, DRAW_BUFFER_VBPOOL_BUFFER_SIZE, DRAW_BUFFER_VBPOOL_PREALLOC_BUFFERS)); fDrawBufferIBAllocPool = SkNEW_ARGS(GrIndexBufferAllocPool, (fGpu, false, DRAW_BUFFER_IBPOOL_BUFFER_SIZE, DRAW_BUFFER_IBPOOL_PREALLOC_BUFFERS)); fDrawBuffer = SkNEW_ARGS(GrInOrderDrawBuffer, (fGpu, fDrawBufferVBAllocPool, fDrawBufferIBAllocPool)); fDrawBuffer->setQuadIndexBuffer(this->getQuadIndexBuffer()); if (fDrawBuffer) { fDrawBuffer->setAutoFlushTarget(fGpu); fDrawBuffer->setDrawState(fDrawState); } } GrDrawTarget* GrContext::getTextTarget(const GrPaint& paint) { return prepareToDraw(&paint, DEFAULT_BUFFERING); } const GrIndexBuffer* GrContext::getQuadIndexBuffer() const { return fGpu->getQuadIndexBuffer(); } namespace { void test_pm_conversions(GrContext* ctx, int* pmToUPMValue, int* upmToPMValue) { GrConfigConversionEffect::PMConversion pmToUPM; GrConfigConversionEffect::PMConversion upmToPM; GrConfigConversionEffect::TestForPreservingPMConversions(ctx, &pmToUPM, &upmToPM); *pmToUPMValue = pmToUPM; *upmToPMValue = upmToPM; } } GrCustomStage* GrContext::createPMToUPMEffect(GrTexture* texture, bool swapRAndB) { if (!fDidTestPMConversions) { test_pm_conversions(this, &fPMToUPMConversion, &fUPMToPMConversion); fDidTestPMConversions = true; } GrConfigConversionEffect::PMConversion pmToUPM = static_cast(fPMToUPMConversion); if (GrConfigConversionEffect::kNone_PMConversion != pmToUPM) { return GrConfigConversionEffect::Create(texture, swapRAndB, pmToUPM); } else { return NULL; } } GrCustomStage* GrContext::createUPMToPMEffect(GrTexture* texture, bool swapRAndB) { if (!fDidTestPMConversions) { test_pm_conversions(this, &fPMToUPMConversion, &fUPMToPMConversion); fDidTestPMConversions = true; } GrConfigConversionEffect::PMConversion upmToPM = static_cast(fUPMToPMConversion); if (GrConfigConversionEffect::kNone_PMConversion != upmToPM) { return GrConfigConversionEffect::Create(texture, swapRAndB, upmToPM); } else { return NULL; } } GrTexture* GrContext::gaussianBlur(GrTexture* srcTexture, bool canClobberSrc, const SkRect& rect, float sigmaX, float sigmaY) { ASSERT_OWNED_RESOURCE(srcTexture); GrRenderTarget* oldRenderTarget = this->getRenderTarget(); AutoMatrix avm(this, GrMatrix::I()); SkIRect clearRect; int scaleFactorX, radiusX; int scaleFactorY, radiusY; sigmaX = adjust_sigma(sigmaX, &scaleFactorX, &radiusX); sigmaY = adjust_sigma(sigmaY, &scaleFactorY, &radiusY); SkRect srcRect(rect); scale_rect(&srcRect, 1.0f / scaleFactorX, 1.0f / scaleFactorY); srcRect.roundOut(); scale_rect(&srcRect, static_cast(scaleFactorX), static_cast(scaleFactorY)); AutoClip acs(this, srcRect); GrAssert(kBGRA_8888_GrPixelConfig == srcTexture->config() || kRGBA_8888_GrPixelConfig == srcTexture->config() || kAlpha_8_GrPixelConfig == srcTexture->config()); GrTextureDesc desc; desc.fFlags = kRenderTarget_GrTextureFlagBit | kNoStencil_GrTextureFlagBit; desc.fWidth = SkScalarFloorToInt(srcRect.width()); desc.fHeight = SkScalarFloorToInt(srcRect.height()); desc.fConfig = srcTexture->config(); GrAutoScratchTexture temp1, temp2; GrTexture* dstTexture = temp1.set(this, desc); GrTexture* tempTexture = canClobberSrc ? srcTexture : temp2.set(this, desc); GrPaint paint; paint.reset(); for (int i = 1; i < scaleFactorX || i < scaleFactorY; i *= 2) { paint.textureSampler(0)->matrix()->setIDiv(srcTexture->width(), srcTexture->height()); this->setRenderTarget(dstTexture->asRenderTarget()); SkRect dstRect(srcRect); scale_rect(&dstRect, i < scaleFactorX ? 0.5f : 1.0f, i < scaleFactorY ? 0.5f : 1.0f); paint.textureSampler(0)->setCustomStage(SkNEW_ARGS(GrSingleTextureEffect, (srcTexture, true)))->unref(); this->drawRectToRect(paint, dstRect, srcRect); srcRect = dstRect; srcTexture = dstTexture; SkTSwap(dstTexture, tempTexture); } SkIRect srcIRect; srcRect.roundOut(&srcIRect); if (sigmaX > 0.0f) { if (scaleFactorX > 1) { // Clear out a radius to the right of the srcRect to prevent the // X convolution from reading garbage. clearRect = SkIRect::MakeXYWH(srcIRect.fRight, srcIRect.fTop, radiusX, srcIRect.height()); this->clear(&clearRect, 0x0); } this->setRenderTarget(dstTexture->asRenderTarget()); GrDrawTarget* target = this->prepareToDraw(NULL, DEFAULT_BUFFERING); convolve_gaussian(target, srcTexture, srcRect, sigmaX, radiusX, Gr1DKernelEffect::kX_Direction); srcTexture = dstTexture; SkTSwap(dstTexture, tempTexture); } if (sigmaY > 0.0f) { if (scaleFactorY > 1 || sigmaX > 0.0f) { // Clear out a radius below the srcRect to prevent the Y // convolution from reading garbage. clearRect = SkIRect::MakeXYWH(srcIRect.fLeft, srcIRect.fBottom, srcIRect.width(), radiusY); this->clear(&clearRect, 0x0); } this->setRenderTarget(dstTexture->asRenderTarget()); GrDrawTarget* target = this->prepareToDraw(NULL, DEFAULT_BUFFERING); convolve_gaussian(target, srcTexture, srcRect, sigmaY, radiusY, Gr1DKernelEffect::kY_Direction); srcTexture = dstTexture; SkTSwap(dstTexture, tempTexture); } if (scaleFactorX > 1 || scaleFactorY > 1) { // Clear one pixel to the right and below, to accommodate bilinear // upsampling. clearRect = SkIRect::MakeXYWH(srcIRect.fLeft, srcIRect.fBottom, srcIRect.width() + 1, 1); this->clear(&clearRect, 0x0); clearRect = SkIRect::MakeXYWH(srcIRect.fRight, srcIRect.fTop, 1, srcIRect.height()); this->clear(&clearRect, 0x0); // FIXME: This should be mitchell, not bilinear. paint.textureSampler(0)->matrix()->setIDiv(srcTexture->width(), srcTexture->height()); this->setRenderTarget(dstTexture->asRenderTarget()); paint.textureSampler(0)->setCustomStage(SkNEW_ARGS(GrSingleTextureEffect, (srcTexture, true)))->unref(); SkRect dstRect(srcRect); scale_rect(&dstRect, (float) scaleFactorX, (float) scaleFactorY); this->drawRectToRect(paint, dstRect, srcRect); srcRect = dstRect; srcTexture = dstTexture; SkTSwap(dstTexture, tempTexture); } this->setRenderTarget(oldRenderTarget); if (srcTexture == temp1.texture()) { return temp1.detach(); } else if (srcTexture == temp2.texture()) { return temp2.detach(); } else { srcTexture->ref(); return srcTexture; } } /////////////////////////////////////////////////////////////////////////////// #if GR_CACHE_STATS void GrContext::printCacheStats() const { fTextureCache->printStats(); } #endif