/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrClipStackClip.h" #include "GrAppliedClip.h" #include "GrContextPriv.h" #include "GrDrawingManager.h" #include "GrRenderTargetContextPriv.h" #include "GrFixedClip.h" #include "GrGpuResourcePriv.h" #include "GrRenderTargetPriv.h" #include "GrStencilAttachment.h" #include "GrSWMaskHelper.h" #include "GrTextureProxy.h" #include "effects/GrConvexPolyEffect.h" #include "effects/GrRRectEffect.h" #include "effects/GrTextureDomain.h" #include "SkClipOpPriv.h" typedef SkClipStack::Element Element; typedef GrReducedClip::InitialState InitialState; typedef GrReducedClip::ElementList ElementList; static const int kMaxAnalyticElements = 4; const char GrClipStackClip::kMaskTestTag[] = "clip_mask"; bool GrClipStackClip::quickContains(const SkRect& rect) const { if (!fStack || fStack->isWideOpen()) { return true; } return fStack->quickContains(rect); } bool GrClipStackClip::quickContains(const SkRRect& rrect) const { if (!fStack || fStack->isWideOpen()) { return true; } return fStack->quickContains(rrect); } bool GrClipStackClip::isRRect(const SkRect& origRTBounds, SkRRect* rr, GrAA* aa) const { if (!fStack) { return false; } const SkRect* rtBounds = &origRTBounds; bool isAA; if (fStack->isRRect(*rtBounds, rr, &isAA)) { *aa = GrBoolToAA(isAA); return true; } return false; } void GrClipStackClip::getConservativeBounds(int width, int height, SkIRect* devResult, bool* isIntersectionOfRects) const { if (!fStack) { devResult->setXYWH(0, 0, width, height); if (isIntersectionOfRects) { *isIntersectionOfRects = true; } return; } SkRect devBounds; fStack->getConservativeBounds(0, 0, width, height, &devBounds, isIntersectionOfRects); devBounds.roundOut(devResult); } //////////////////////////////////////////////////////////////////////////////// // set up the draw state to enable the aa clipping mask. static sk_sp create_fp_for_mask(GrResourceProvider* resourceProvider, sk_sp mask, const SkIRect &devBound) { SkIRect domainTexels = SkIRect::MakeWH(devBound.width(), devBound.height()); return GrDeviceSpaceTextureDecalFragmentProcessor::Make(resourceProvider, std::move(mask), domainTexels, {devBound.fLeft, devBound.fTop}); } // Does the path in 'element' require SW rendering? If so, return true (and, // optionally, set 'prOut' to NULL. If not, return false (and, optionally, set // 'prOut' to the non-SW path renderer that will do the job). bool GrClipStackClip::PathNeedsSWRenderer(GrContext* context, bool hasUserStencilSettings, const GrRenderTargetContext* renderTargetContext, const SkMatrix& viewMatrix, const Element* element, GrPathRenderer** prOut, bool needsStencil) { if (Element::kRect_Type == element->getType()) { // rects can always be drawn directly w/o using the software path // TODO: skip rrects once we're drawing them directly. if (prOut) { *prOut = nullptr; } return false; } else { // We shouldn't get here with an empty clip element. SkASSERT(Element::kEmpty_Type != element->getType()); // the gpu alpha mask will draw the inverse paths as non-inverse to a temp buffer SkPath path; element->asPath(&path); if (path.isInverseFillType()) { path.toggleInverseFillType(); } GrPathRendererChain::DrawType type = needsStencil ? GrPathRendererChain::DrawType::kStencilAndColor : GrPathRendererChain::DrawType::kColor; GrShape shape(path, GrStyle::SimpleFill()); GrPathRenderer::CanDrawPathArgs canDrawArgs; canDrawArgs.fShaderCaps = context->caps()->shaderCaps(); canDrawArgs.fViewMatrix = &viewMatrix; canDrawArgs.fShape = &shape; if (!element->isAA()) { canDrawArgs.fAAType = GrAAType::kNone; } else if (renderTargetContext->isUnifiedMultisampled()) { canDrawArgs.fAAType = GrAAType::kMSAA; } else if (renderTargetContext->isStencilBufferMultisampled()){ canDrawArgs.fAAType = GrAAType::kMixedSamples; } else { canDrawArgs.fAAType = GrAAType::kCoverage; } canDrawArgs.fHasUserStencilSettings = hasUserStencilSettings; // the 'false' parameter disallows use of the SW path renderer GrPathRenderer* pr = context->contextPriv().drawingManager()->getPathRenderer(canDrawArgs, false, type); if (prOut) { *prOut = pr; } return SkToBool(!pr); } } /* * This method traverses the clip stack to see if the GrSoftwarePathRenderer * will be used on any element. If so, it returns true to indicate that the * entire clip should be rendered in SW and then uploaded en masse to the gpu. */ bool GrClipStackClip::UseSWOnlyPath(GrContext* context, bool hasUserStencilSettings, const GrRenderTargetContext* renderTargetContext, const GrReducedClip& reducedClip) { // TODO: generalize this function so that when // a clip gets complex enough it can just be done in SW regardless // of whether it would invoke the GrSoftwarePathRenderer. // Set the matrix so that rendered clip elements are transformed to mask space from clip // space. SkMatrix translate; translate.setTranslate(SkIntToScalar(-reducedClip.left()), SkIntToScalar(-reducedClip.top())); for (ElementList::Iter iter(reducedClip.elements()); iter.get(); iter.next()) { const Element* element = iter.get(); SkClipOp op = element->getOp(); bool invert = element->isInverseFilled(); bool needsStencil = invert || kIntersect_SkClipOp == op || kReverseDifference_SkClipOp == op; if (PathNeedsSWRenderer(context, hasUserStencilSettings, renderTargetContext, translate, element, nullptr, needsStencil)) { return true; } } return false; } static bool get_analytic_clip_processor(const ElementList& elements, bool abortIfAA, const SkRect& drawDevBounds, sk_sp* resultFP) { SkASSERT(elements.count() <= kMaxAnalyticElements); SkSTArray> fps; ElementList::Iter iter(elements); while (iter.get()) { SkClipOp op = iter.get()->getOp(); bool invert; bool skip = false; switch (op) { case kReplace_SkClipOp: SkASSERT(iter.get() == elements.head()); // Fallthrough, handled same as intersect. case kIntersect_SkClipOp: invert = false; if (iter.get()->contains(drawDevBounds)) { skip = true; } break; case kDifference_SkClipOp: invert = true; // We don't currently have a cheap test for whether a rect is fully outside an // element's primitive, so don't attempt to set skip. break; default: return false; } if (!skip) { GrPrimitiveEdgeType edgeType; if (iter.get()->isAA()) { if (abortIfAA) { return false; } edgeType = invert ? kInverseFillAA_GrProcessorEdgeType : kFillAA_GrProcessorEdgeType; } else { edgeType = invert ? kInverseFillBW_GrProcessorEdgeType : kFillBW_GrProcessorEdgeType; } switch (iter.get()->getType()) { case SkClipStack::Element::kPath_Type: fps.emplace_back(GrConvexPolyEffect::Make(edgeType, iter.get()->getPath())); break; case SkClipStack::Element::kRRect_Type: { fps.emplace_back(GrRRectEffect::Make(edgeType, iter.get()->getRRect())); break; } case SkClipStack::Element::kRect_Type: { fps.emplace_back(GrConvexPolyEffect::Make(edgeType, iter.get()->getRect())); break; } default: break; } if (!fps.back()) { return false; } } iter.next(); } *resultFP = nullptr; if (fps.count()) { *resultFP = GrFragmentProcessor::RunInSeries(fps.begin(), fps.count()); } return true; } //////////////////////////////////////////////////////////////////////////////// // sort out what kind of clip mask needs to be created: alpha, stencil, // scissor, or entirely software bool GrClipStackClip::apply(GrContext* context, GrRenderTargetContext* renderTargetContext, bool useHWAA, bool hasUserStencilSettings, GrAppliedClip* out, SkRect* bounds) const { SkRect devBounds = SkRect::MakeIWH(renderTargetContext->width(), renderTargetContext->height()); if (!devBounds.intersect(*bounds)) { return false; } if (!fStack || fStack->isWideOpen()) { return true; } const GrReducedClip reducedClip(*fStack, devBounds, renderTargetContext->priv().maxWindowRectangles()); if (reducedClip.hasIBounds() && !GrClip::IsInsideClip(reducedClip.ibounds(), devBounds)) { out->addScissor(reducedClip.ibounds(), bounds); } if (!reducedClip.windowRectangles().empty()) { out->addWindowRectangles(reducedClip.windowRectangles(), GrWindowRectsState::Mode::kExclusive); } if (reducedClip.elements().isEmpty()) { return InitialState::kAllIn == reducedClip.initialState(); } #ifdef SK_DEBUG SkASSERT(reducedClip.hasIBounds()); SkIRect rtIBounds = SkIRect::MakeWH(renderTargetContext->width(), renderTargetContext->height()); const SkIRect& clipIBounds = reducedClip.ibounds(); SkASSERT(rtIBounds.contains(clipIBounds)); // Mask shouldn't be larger than the RT. #endif // An element count of 4 was chosen because of the common pattern in Blink of: // isect RR // diff RR // isect convex_poly // isect convex_poly // when drawing rounded div borders. This could probably be tuned based on a // configuration's relative costs of switching RTs to generate a mask vs // longer shaders. if (reducedClip.elements().count() <= kMaxAnalyticElements) { // When there are multiple samples we want to do per-sample clipping, not compute a // fractional pixel coverage. bool disallowAnalyticAA = renderTargetContext->isStencilBufferMultisampled(); if (disallowAnalyticAA && !renderTargetContext->numColorSamples()) { // With a single color sample, any coverage info is lost from color once it hits the // color buffer anyway, so we may as well use coverage AA if nothing else in the pipe // is multisampled. disallowAnalyticAA = useHWAA || hasUserStencilSettings; } sk_sp clipFP; if (reducedClip.requiresAA() && get_analytic_clip_processor(reducedClip.elements(), disallowAnalyticAA, devBounds, &clipFP)) { out->addCoverageFP(std::move(clipFP)); return true; } } // If the stencil buffer is multisampled we can use it to do everything. if (!renderTargetContext->isStencilBufferMultisampled() && reducedClip.requiresAA()) { sk_sp result; if (UseSWOnlyPath(context, hasUserStencilSettings, renderTargetContext, reducedClip)) { // The clip geometry is complex enough that it will be more efficient to create it // entirely in software result = this->createSoftwareClipMask(context, reducedClip); } else { result = this->createAlphaClipMask(context, reducedClip); } if (result) { // The mask's top left coord should be pinned to the rounded-out top left corner of // the clip's device space bounds. out->addCoverageFP(create_fp_for_mask(context->resourceProvider(), std::move(result), reducedClip.ibounds())); return true; } // if alpha clip mask creation fails fall through to the non-AA code paths } GrRenderTarget* rt = renderTargetContext->accessRenderTarget(); if (!rt) { return true; } // use the stencil clip if we can't represent the clip as a rectangle. if (!context->resourceProvider()->attachStencilAttachment(rt)) { SkDebugf("WARNING: failed to attach stencil buffer for clip mask. Clip will be ignored.\n"); return true; } // This relies on the property that a reduced sub-rect of the last clip will contain all the // relevant window rectangles that were in the last clip. This subtle requirement will go away // after clipping is overhauled. if (renderTargetContext->priv().mustRenderClip(reducedClip.elementsGenID(), reducedClip.ibounds())) { reducedClip.drawStencilClipMask(context, renderTargetContext); renderTargetContext->priv().setLastClip(reducedClip.elementsGenID(), reducedClip.ibounds()); } out->addStencilClip(); return true; } //////////////////////////////////////////////////////////////////////////////// // Create a 8-bit clip mask in alpha static void create_clip_mask_key(int32_t clipGenID, const SkIRect& bounds, GrUniqueKey* key) { static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain(); GrUniqueKey::Builder builder(key, kDomain, 3, GrClipStackClip::kMaskTestTag); builder[0] = clipGenID; // SkToS16 because image filters outset layers to a size indicated by the filter, which can // sometimes result in negative coordinates from device space. builder[1] = SkToS16(bounds.fLeft) | (SkToS16(bounds.fRight) << 16); builder[2] = SkToS16(bounds.fTop) | (SkToS16(bounds.fBottom) << 16); } static void add_invalidate_on_pop_message(const SkClipStack& stack, int32_t clipGenID, const GrUniqueKey& clipMaskKey) { SkClipStack::Iter iter(stack, SkClipStack::Iter::kTop_IterStart); while (const Element* element = iter.prev()) { if (element->getGenID() == clipGenID) { std::unique_ptr msg( new GrUniqueKeyInvalidatedMessage(clipMaskKey)); element->addResourceInvalidationMessage(std::move(msg)); return; } } SkDEBUGFAIL("Gen ID was not found in stack."); } sk_sp GrClipStackClip::createAlphaClipMask(GrContext* context, const GrReducedClip& reducedClip) const { GrResourceProvider* resourceProvider = context->resourceProvider(); GrUniqueKey key; create_clip_mask_key(reducedClip.elementsGenID(), reducedClip.ibounds(), &key); sk_sp proxy(resourceProvider->findProxyByUniqueKey(key)); if (proxy) { return proxy; } sk_sp rtc(context->makeDeferredRenderTargetContextWithFallback( SkBackingFit::kApprox, reducedClip.width(), reducedClip.height(), kAlpha_8_GrPixelConfig, nullptr)); if (!rtc) { return nullptr; } if (!reducedClip.drawAlphaClipMask(rtc.get())) { return nullptr; } sk_sp result(rtc->asTextureProxyRef()); if (!result) { return nullptr; } resourceProvider->assignUniqueKeyToProxy(key, result.get()); // MDB TODO (caching): this has to play nice with the GrSurfaceProxy's caching add_invalidate_on_pop_message(*fStack, reducedClip.elementsGenID(), key); return result; } sk_sp GrClipStackClip::createSoftwareClipMask( GrContext* context, const GrReducedClip& reducedClip) const { GrUniqueKey key; create_clip_mask_key(reducedClip.elementsGenID(), reducedClip.ibounds(), &key); sk_sp proxy(context->resourceProvider()->findProxyByUniqueKey(key)); if (proxy) { return proxy; } // The mask texture may be larger than necessary. We round out the clip bounds and pin the top // left corner of the resulting rect to the top left of the texture. SkIRect maskSpaceIBounds = SkIRect::MakeWH(reducedClip.width(), reducedClip.height()); GrSWMaskHelper helper; // Set the matrix so that rendered clip elements are transformed to mask space from clip // space. SkMatrix translate; translate.setTranslate(SkIntToScalar(-reducedClip.left()), SkIntToScalar(-reducedClip.top())); if (!helper.init(maskSpaceIBounds, &translate)) { return nullptr; } helper.clear(InitialState::kAllIn == reducedClip.initialState() ? 0xFF : 0x00); for (ElementList::Iter iter(reducedClip.elements()); iter.get(); iter.next()) { const Element* element = iter.get(); SkClipOp op = element->getOp(); GrAA aa = GrBoolToAA(element->isAA()); if (kIntersect_SkClipOp == op || kReverseDifference_SkClipOp == op) { // Intersect and reverse difference require modifying pixels outside of the geometry // that is being "drawn". In both cases we erase all the pixels outside of the geometry // but leave the pixels inside the geometry alone. For reverse difference we invert all // the pixels before clearing the ones outside the geometry. if (kReverseDifference_SkClipOp == op) { SkRect temp = SkRect::Make(reducedClip.ibounds()); // invert the entire scene helper.drawRect(temp, SkRegion::kXOR_Op, GrAA::kNo, 0xFF); } SkPath clipPath; element->asPath(&clipPath); clipPath.toggleInverseFillType(); GrShape shape(clipPath, GrStyle::SimpleFill()); helper.drawShape(shape, SkRegion::kReplace_Op, aa, 0x00); continue; } // The other ops (union, xor, diff) only affect pixels inside // the geometry so they can just be drawn normally if (Element::kRect_Type == element->getType()) { helper.drawRect(element->getRect(), (SkRegion::Op)op, aa, 0xFF); } else { SkPath path; element->asPath(&path); GrShape shape(path, GrStyle::SimpleFill()); helper.drawShape(shape, (SkRegion::Op)op, aa, 0xFF); } } sk_sp result(helper.toTextureProxy(context, SkBackingFit::kApprox)); context->resourceProvider()->assignUniqueKeyToProxy(key, result.get()); // MDB TODO (caching): this has to play nice with the GrSurfaceProxy's caching add_invalidate_on_pop_message(*fStack, reducedClip.elementsGenID(), key); return result; }