/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrClipMaskManager.h" #include "GrCaps.h" #include "GrDrawContext.h" #include "GrDrawTarget.h" #include "GrGpuResourcePriv.h" #include "GrPaint.h" #include "GrPathRenderer.h" #include "GrRenderTarget.h" #include "GrRenderTargetPriv.h" #include "GrResourceProvider.h" #include "GrStencilAttachment.h" #include "GrSWMaskHelper.h" #include "SkRasterClip.h" #include "SkTLazy.h" #include "effects/GrConvexPolyEffect.h" #include "effects/GrPorterDuffXferProcessor.h" #include "effects/GrRRectEffect.h" #include "effects/GrTextureDomain.h" typedef SkClipStack::Element Element; //////////////////////////////////////////////////////////////////////////////// // set up the draw state to enable the aa clipping mask. Besides setting up the // stage matrix this also alters the vertex layout static const GrFragmentProcessor* create_fp_for_mask(GrTexture* result, const SkIRect &devBound) { SkMatrix mat; // We use device coords to compute the texture coordinates. We set our matrix to be a // translation to the devBound, and then a scaling matrix to normalized coords. mat.setIDiv(result->width(), result->height()); mat.preTranslate(SkIntToScalar(-devBound.fLeft), SkIntToScalar(-devBound.fTop)); SkIRect domainTexels = SkIRect::MakeWH(devBound.width(), devBound.height()); return GrTextureDomainEffect::Create(result, mat, GrTextureDomain::MakeTexelDomain(result, domainTexels), GrTextureDomain::kDecal_Mode, GrTextureParams::kNone_FilterMode, kDevice_GrCoordSet); } static bool path_needs_SW_renderer(GrContext* context, const GrDrawTarget* gpu, const GrPipelineBuilder& pipelineBuilder, const SkMatrix& viewMatrix, const SkPath& origPath, const GrStrokeInfo& stroke, bool doAA) { // the gpu alpha mask will draw the inverse paths as non-inverse to a temp buffer SkTCopyOnFirstWrite path(origPath); if (path->isInverseFillType()) { path.writable()->toggleInverseFillType(); } // last (false) parameter disallows use of the SW path renderer GrPathRendererChain::DrawType type = doAA ? GrPathRendererChain::kColorAntiAlias_DrawType : GrPathRendererChain::kColor_DrawType; return nullptr == context->getPathRenderer(gpu, &pipelineBuilder, viewMatrix, *path, stroke, false, type); } GrClipMaskManager::GrClipMaskManager(GrDrawTarget* drawTarget) : fDrawTarget(drawTarget) , fClipMode(kIgnoreClip_StencilClipMode) { } GrContext* GrClipMaskManager::getContext() { return fDrawTarget->cmmAccess().context(); } /* * This method traverses the clip stack to see if the GrSoftwarePathRenderer * will be used on any element. If so, it returns true to indicate that the * entire clip should be rendered in SW and then uploaded en masse to the gpu. */ bool GrClipMaskManager::useSWOnlyPath(const GrPipelineBuilder& pipelineBuilder, const SkVector& clipToMaskOffset, const GrReducedClip::ElementList& elements) { // TODO: generalize this function so that when // a clip gets complex enough it can just be done in SW regardless // of whether it would invoke the GrSoftwarePathRenderer. GrStrokeInfo stroke(SkStrokeRec::kFill_InitStyle); // Set the matrix so that rendered clip elements are transformed to mask space from clip // space. SkMatrix translate; translate.setTranslate(clipToMaskOffset); for (GrReducedClip::ElementList::Iter iter(elements.headIter()); iter.get(); iter.next()) { const Element* element = iter.get(); // rects can always be drawn directly w/o using the software path // Skip rrects once we're drawing them directly. if (Element::kRect_Type != element->getType()) { SkPath path; element->asPath(&path); if (path_needs_SW_renderer(this->getContext(), fDrawTarget, pipelineBuilder, translate, path, stroke, element->isAA())) { return true; } } } return false; } const GrFragmentProcessor* GrClipMaskManager::getAnalyticClipProcessor( const GrReducedClip::ElementList& elements, const SkVector& clipToRTOffset, const SkRect* drawBounds) { SkRect boundsInClipSpace; if (drawBounds) { boundsInClipSpace = *drawBounds; boundsInClipSpace.offset(-clipToRTOffset.fX, -clipToRTOffset.fY); } SkASSERT(elements.count() <= kMaxAnalyticElements); const GrFragmentProcessor* fps[kMaxAnalyticElements]; for (int i = 0; i < kMaxAnalyticElements; ++i) { fps[i] = nullptr; } int fpCnt = 0; GrReducedClip::ElementList::Iter iter(elements); bool failed = false; while (iter.get()) { SkRegion::Op op = iter.get()->getOp(); bool invert; bool skip = false; switch (op) { case SkRegion::kReplace_Op: SkASSERT(iter.get() == elements.head()); // Fallthrough, handled same as intersect. case SkRegion::kIntersect_Op: invert = false; if (drawBounds && iter.get()->contains(boundsInClipSpace)) { skip = true; } break; case SkRegion::kDifference_Op: invert = true; // We don't currently have a cheap test for whether a rect is fully outside an // element's primitive, so don't attempt to set skip. break; default: failed = true; break; } if (failed) { break; } if (!skip) { GrPrimitiveEdgeType edgeType; if (iter.get()->isAA()) { edgeType = invert ? kInverseFillAA_GrProcessorEdgeType : kFillAA_GrProcessorEdgeType; } else { edgeType = invert ? kInverseFillBW_GrProcessorEdgeType : kFillBW_GrProcessorEdgeType; } switch (iter.get()->getType()) { case SkClipStack::Element::kPath_Type: fps[fpCnt] = GrConvexPolyEffect::Create(edgeType, iter.get()->getPath(), &clipToRTOffset); break; case SkClipStack::Element::kRRect_Type: { SkRRect rrect = iter.get()->getRRect(); rrect.offset(clipToRTOffset.fX, clipToRTOffset.fY); fps[fpCnt] = GrRRectEffect::Create(edgeType, rrect); break; } case SkClipStack::Element::kRect_Type: { SkRect rect = iter.get()->getRect(); rect.offset(clipToRTOffset.fX, clipToRTOffset.fY); fps[fpCnt] = GrConvexPolyEffect::Create(edgeType, rect); break; } default: break; } if (!fps[fpCnt]) { failed = true; break; } fpCnt++; } iter.next(); } const GrFragmentProcessor* resultFP = nullptr; if (!failed) { resultFP = GrFragmentProcessor::RunInSeries(fps, fpCnt); } for (int i = 0; i < fpCnt; ++i) { fps[i]->unref(); } return resultFP; } //////////////////////////////////////////////////////////////////////////////// // sort out what kind of clip mask needs to be created: alpha, stencil, // scissor, or entirely software bool GrClipMaskManager::setupClipping(const GrPipelineBuilder& pipelineBuilder, GrPipelineBuilder::AutoRestoreStencil* ars, GrScissorState* scissorState, const SkRect* devBounds, GrAppliedClip* out) { if (kRespectClip_StencilClipMode == fClipMode) { fClipMode = kIgnoreClip_StencilClipMode; } GrReducedClip::ElementList elements(16); int32_t genID = 0; GrReducedClip::InitialState initialState = GrReducedClip::kAllIn_InitialState; SkIRect clipSpaceIBounds; bool requiresAA = false; GrRenderTarget* rt = pipelineBuilder.getRenderTarget(); // GrDrawTarget should have filtered this for us SkASSERT(rt); SkIRect clipSpaceRTIBounds = SkIRect::MakeWH(rt->width(), rt->height()); const GrClip& clip = pipelineBuilder.clip(); if (clip.isWideOpen(clipSpaceRTIBounds)) { this->setPipelineBuilderStencil(pipelineBuilder, ars); return true; } // The clip mask manager always draws with a single IRect so we special case that logic here // Image filters just use a rect, so we also special case that logic switch (clip.clipType()) { case GrClip::kWideOpen_ClipType: SkFAIL("Should have caught this with clip.isWideOpen()"); return true; case GrClip::kIRect_ClipType: { SkIRect scissor = clip.irect(); if (scissor.intersect(clipSpaceRTIBounds)) { scissorState->set(scissor); this->setPipelineBuilderStencil(pipelineBuilder, ars); return true; } return false; } case GrClip::kClipStack_ClipType: { clipSpaceRTIBounds.offset(clip.origin()); GrReducedClip::ReduceClipStack(*clip.clipStack(), clipSpaceRTIBounds, &elements, &genID, &initialState, &clipSpaceIBounds, &requiresAA); if (elements.isEmpty()) { if (GrReducedClip::kAllIn_InitialState == initialState) { if (clipSpaceIBounds == clipSpaceRTIBounds) { this->setPipelineBuilderStencil(pipelineBuilder, ars); return true; } } else { return false; } } } break; } // An element count of 4 was chosen because of the common pattern in Blink of: // isect RR // diff RR // isect convex_poly // isect convex_poly // when drawing rounded div borders. This could probably be tuned based on a // configuration's relative costs of switching RTs to generate a mask vs // longer shaders. if (elements.count() <= kMaxAnalyticElements) { SkVector clipToRTOffset = { SkIntToScalar(-clip.origin().fX), SkIntToScalar(-clip.origin().fY) }; // When there are multiple color samples we want to do per-sample clipping, not compute // a fractional pixel coverage. bool disallowAnalyticAA = pipelineBuilder.getRenderTarget()->isUnifiedMultisampled(); const GrFragmentProcessor* clipFP = nullptr; if (elements.isEmpty() || (requiresAA && !disallowAnalyticAA && SkToBool(clipFP = this->getAnalyticClipProcessor(elements, clipToRTOffset, devBounds)))) { SkIRect scissorSpaceIBounds(clipSpaceIBounds); scissorSpaceIBounds.offset(-clip.origin()); if (nullptr == devBounds || !SkRect::Make(scissorSpaceIBounds).contains(*devBounds)) { scissorState->set(scissorSpaceIBounds); } this->setPipelineBuilderStencil(pipelineBuilder, ars); out->fClipCoverageFP.reset(clipFP); return true; } } // If MSAA is enabled we can do everything in the stencil buffer. if (0 == rt->numStencilSamples() && requiresAA) { SkAutoTUnref result; // The top-left of the mask corresponds to the top-left corner of the bounds. SkVector clipToMaskOffset = { SkIntToScalar(-clipSpaceIBounds.fLeft), SkIntToScalar(-clipSpaceIBounds.fTop) }; if (this->useSWOnlyPath(pipelineBuilder, clipToMaskOffset, elements)) { // The clip geometry is complex enough that it will be more efficient to create it // entirely in software result.reset(this->createSoftwareClipMask(genID, initialState, elements, clipToMaskOffset, clipSpaceIBounds)); } else { result.reset(this->createAlphaClipMask(genID, initialState, elements, clipToMaskOffset, clipSpaceIBounds)); } if (result) { // The mask's top left coord should be pinned to the rounded-out top left corner of // clipSpace bounds. We determine the mask's position WRT to the render target here. SkIRect rtSpaceMaskBounds = clipSpaceIBounds; rtSpaceMaskBounds.offset(-clip.origin()); out->fClipCoverageFP.reset(create_fp_for_mask(result, rtSpaceMaskBounds)); this->setPipelineBuilderStencil(pipelineBuilder, ars); return true; } // if alpha clip mask creation fails fall through to the non-AA code paths } // use the stencil clip if we can't represent the clip as a rectangle. SkIPoint clipSpaceToStencilSpaceOffset = -clip.origin(); this->createStencilClipMask(rt, genID, initialState, elements, clipSpaceIBounds, clipSpaceToStencilSpaceOffset); // This must occur after createStencilClipMask. That function may change the scissor. Also, it // only guarantees that the stencil mask is correct within the bounds it was passed, so we must // use both stencil and scissor test to the bounds for the final draw. SkIRect scissorSpaceIBounds(clipSpaceIBounds); scissorSpaceIBounds.offset(clipSpaceToStencilSpaceOffset); scissorState->set(scissorSpaceIBounds); this->setPipelineBuilderStencil(pipelineBuilder, ars); return true; } namespace { //////////////////////////////////////////////////////////////////////////////// // Set a coverage drawing XPF on the pipelineBuilder for the given op and invertCoverage mode void set_coverage_drawing_xpf(SkRegion::Op op, bool invertCoverage, GrPipelineBuilder* pipelineBuilder) { SkASSERT(op <= SkRegion::kLastOp); pipelineBuilder->setCoverageSetOpXPFactory(op, invertCoverage); } } //////////////////////////////////////////////////////////////////////////////// bool GrClipMaskManager::drawElement(GrPipelineBuilder* pipelineBuilder, const SkMatrix& viewMatrix, GrTexture* target, const SkClipStack::Element* element, GrPathRenderer* pr) { pipelineBuilder->setRenderTarget(target->asRenderTarget()); // The color we use to draw does not matter since we will always be using a GrCoverageSetOpXP // which ignores color. GrColor color = GrColor_WHITE; // TODO: Draw rrects directly here. switch (element->getType()) { case Element::kEmpty_Type: SkDEBUGFAIL("Should never get here with an empty element."); break; case Element::kRect_Type: // TODO: Do rects directly to the accumulator using a aa-rect GrProcessor that covers // the entire mask bounds and writes 0 outside the rect. if (element->isAA()) { SkRect devRect = element->getRect(); viewMatrix.mapRect(&devRect); fDrawTarget->drawAARect(*pipelineBuilder, color, viewMatrix, element->getRect(), devRect); } else { fDrawTarget->drawNonAARect(*pipelineBuilder, color, viewMatrix, element->getRect()); } return true; default: { SkPath path; element->asPath(&path); path.setIsVolatile(true); if (path.isInverseFillType()) { path.toggleInverseFillType(); } GrStrokeInfo stroke(SkStrokeRec::kFill_InitStyle); if (nullptr == pr) { GrPathRendererChain::DrawType type; type = element->isAA() ? GrPathRendererChain::kColorAntiAlias_DrawType : GrPathRendererChain::kColor_DrawType; pr = this->getContext()->getPathRenderer(fDrawTarget, pipelineBuilder, viewMatrix, path, stroke, false, type); } if (nullptr == pr) { return false; } GrPathRenderer::DrawPathArgs args; args.fTarget = fDrawTarget; args.fResourceProvider = this->getContext()->resourceProvider(); args.fPipelineBuilder = pipelineBuilder; args.fColor = color; args.fViewMatrix = &viewMatrix; args.fPath = &path; args.fStroke = &stroke; args.fAntiAlias = element->isAA(); pr->drawPath(args); break; } } return true; } bool GrClipMaskManager::canStencilAndDrawElement(GrPipelineBuilder* pipelineBuilder, GrTexture* target, GrPathRenderer** pr, const SkClipStack::Element* element) { pipelineBuilder->setRenderTarget(target->asRenderTarget()); if (Element::kRect_Type == element->getType()) { return true; } else { // We shouldn't get here with an empty clip element. SkASSERT(Element::kEmpty_Type != element->getType()); SkPath path; element->asPath(&path); if (path.isInverseFillType()) { path.toggleInverseFillType(); } GrStrokeInfo stroke(SkStrokeRec::kFill_InitStyle); GrPathRendererChain::DrawType type = element->isAA() ? GrPathRendererChain::kStencilAndColorAntiAlias_DrawType : GrPathRendererChain::kStencilAndColor_DrawType; *pr = this->getContext()->getPathRenderer(fDrawTarget, pipelineBuilder, SkMatrix::I(), path, stroke, false, type); return SkToBool(*pr); } } void GrClipMaskManager::mergeMask(GrPipelineBuilder* pipelineBuilder, GrTexture* dstMask, GrTexture* srcMask, SkRegion::Op op, const SkIRect& dstBound, const SkIRect& srcBound) { pipelineBuilder->setRenderTarget(dstMask->asRenderTarget()); // We want to invert the coverage here set_coverage_drawing_xpf(op, false, pipelineBuilder); SkMatrix sampleM; sampleM.setIDiv(srcMask->width(), srcMask->height()); pipelineBuilder->addCoverageFragmentProcessor( GrTextureDomainEffect::Create(srcMask, sampleM, GrTextureDomain::MakeTexelDomain(srcMask, srcBound), GrTextureDomain::kDecal_Mode, GrTextureParams::kNone_FilterMode))->unref(); // The color passed in here does not matter since the coverageSetOpXP won't read it. fDrawTarget->drawNonAARect(*pipelineBuilder, GrColor_WHITE, SkMatrix::I(), SkRect::Make(dstBound)); } GrTexture* GrClipMaskManager::createTempMask(int width, int height) { GrSurfaceDesc desc; desc.fFlags = kRenderTarget_GrSurfaceFlag; desc.fWidth = width; desc.fHeight = height; if (this->getContext()->caps()->isConfigRenderable(kAlpha_8_GrPixelConfig, false)) { desc.fConfig = kAlpha_8_GrPixelConfig; } else { desc.fConfig = kRGBA_8888_GrPixelConfig; } return this->getContext()->textureProvider()->createApproxTexture(desc); } //////////////////////////////////////////////////////////////////////////////// // Create a 8-bit clip mask in alpha static void GetClipMaskKey(int32_t clipGenID, const SkIRect& bounds, GrUniqueKey* key) { static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain(); GrUniqueKey::Builder builder(key, kDomain, 3); builder[0] = clipGenID; builder[1] = SkToU16(bounds.fLeft) | (SkToU16(bounds.fRight) << 16); builder[2] = SkToU16(bounds.fTop) | (SkToU16(bounds.fBottom) << 16); } GrTexture* GrClipMaskManager::createCachedMask(int width, int height, const GrUniqueKey& key, bool renderTarget) { GrSurfaceDesc desc; desc.fWidth = width; desc.fHeight = height; desc.fFlags = renderTarget ? kRenderTarget_GrSurfaceFlag : kNone_GrSurfaceFlags; if (!renderTarget || fDrawTarget->caps()->isConfigRenderable(kAlpha_8_GrPixelConfig, false)) { desc.fConfig = kAlpha_8_GrPixelConfig; } else { desc.fConfig = kRGBA_8888_GrPixelConfig; } GrTexture* texture = fDrawTarget->cmmAccess().resourceProvider()->createApproxTexture(desc, 0); if (!texture) { return nullptr; } texture->resourcePriv().setUniqueKey(key); return texture; } GrTexture* GrClipMaskManager::createAlphaClipMask(int32_t elementsGenID, GrReducedClip::InitialState initialState, const GrReducedClip::ElementList& elements, const SkVector& clipToMaskOffset, const SkIRect& clipSpaceIBounds) { GrResourceProvider* resourceProvider = fDrawTarget->cmmAccess().resourceProvider(); GrUniqueKey key; GetClipMaskKey(elementsGenID, clipSpaceIBounds, &key); if (GrTexture* texture = resourceProvider->findAndRefTextureByUniqueKey(key)) { return texture; } SkAutoTUnref texture(this->createCachedMask( clipSpaceIBounds.width(), clipSpaceIBounds.height(), key, true)); // There's no texture in the cache. Let's try to allocate it then. if (!texture) { return nullptr; } // Set the matrix so that rendered clip elements are transformed to mask space from clip // space. SkMatrix translate; translate.setTranslate(clipToMaskOffset); // The texture may be larger than necessary, this rect represents the part of the texture // we populate with a rasterization of the clip. SkIRect maskSpaceIBounds = SkIRect::MakeWH(clipSpaceIBounds.width(), clipSpaceIBounds.height()); // The scratch texture that we are drawing into can be substantially larger than the mask. Only // clear the part that we care about. fDrawTarget->clear(&maskSpaceIBounds, GrReducedClip::kAllIn_InitialState == initialState ? 0xffffffff : 0x00000000, true, texture->asRenderTarget()); // When we use the stencil in the below loop it is important to have this clip installed. // The second pass that zeros the stencil buffer renders the rect maskSpaceIBounds so the first // pass must not set values outside of this bounds or stencil values outside the rect won't be // cleared. GrClip clip(maskSpaceIBounds); SkAutoTUnref temp; // walk through each clip element and perform its set op for (GrReducedClip::ElementList::Iter iter = elements.headIter(); iter.get(); iter.next()) { const Element* element = iter.get(); SkRegion::Op op = element->getOp(); bool invert = element->isInverseFilled(); if (invert || SkRegion::kIntersect_Op == op || SkRegion::kReverseDifference_Op == op) { GrPipelineBuilder pipelineBuilder; pipelineBuilder.setClip(clip); GrPathRenderer* pr = nullptr; bool useTemp = !this->canStencilAndDrawElement(&pipelineBuilder, texture, &pr, element); GrTexture* dst; // This is the bounds of the clip element in the space of the alpha-mask. The temporary // mask buffer can be substantially larger than the actually clip stack element. We // touch the minimum number of pixels necessary and use decal mode to combine it with // the accumulator. SkIRect maskSpaceElementIBounds; if (useTemp) { if (invert) { maskSpaceElementIBounds = maskSpaceIBounds; } else { SkRect elementBounds = element->getBounds(); elementBounds.offset(clipToMaskOffset); elementBounds.roundOut(&maskSpaceElementIBounds); } if (!temp) { temp.reset(this->createTempMask(maskSpaceIBounds.fRight, maskSpaceIBounds.fBottom)); if (!temp) { texture->resourcePriv().removeUniqueKey(); return nullptr; } } dst = temp; // clear the temp target and set blend to replace fDrawTarget->clear(&maskSpaceElementIBounds, invert ? 0xffffffff : 0x00000000, true, dst->asRenderTarget()); set_coverage_drawing_xpf(SkRegion::kReplace_Op, invert, &pipelineBuilder); } else { // draw directly into the result with the stencil set to make the pixels affected // by the clip shape be non-zero. dst = texture; GR_STATIC_CONST_SAME_STENCIL(kStencilInElement, kReplace_StencilOp, kReplace_StencilOp, kAlways_StencilFunc, 0xffff, 0xffff, 0xffff); pipelineBuilder.setStencil(kStencilInElement); set_coverage_drawing_xpf(op, invert, &pipelineBuilder); } if (!this->drawElement(&pipelineBuilder, translate, dst, element, pr)) { texture->resourcePriv().removeUniqueKey(); return nullptr; } if (useTemp) { GrPipelineBuilder backgroundPipelineBuilder; backgroundPipelineBuilder.setRenderTarget(texture->asRenderTarget()); // Now draw into the accumulator using the real operation and the temp buffer as a // texture this->mergeMask(&backgroundPipelineBuilder, texture, temp, op, maskSpaceIBounds, maskSpaceElementIBounds); } else { GrPipelineBuilder backgroundPipelineBuilder; backgroundPipelineBuilder.setRenderTarget(texture->asRenderTarget()); set_coverage_drawing_xpf(op, !invert, &backgroundPipelineBuilder); // Draw to the exterior pixels (those with a zero stencil value). GR_STATIC_CONST_SAME_STENCIL(kDrawOutsideElement, kZero_StencilOp, kZero_StencilOp, kEqual_StencilFunc, 0xffff, 0x0000, 0xffff); backgroundPipelineBuilder.setStencil(kDrawOutsideElement); // The color passed in here does not matter since the coverageSetOpXP won't read it. fDrawTarget->drawNonAARect(backgroundPipelineBuilder, GrColor_WHITE, translate, clipSpaceIBounds); } } else { GrPipelineBuilder pipelineBuilder; // all the remaining ops can just be directly draw into the accumulation buffer set_coverage_drawing_xpf(op, false, &pipelineBuilder); // The color passed in here does not matter since the coverageSetOpXP won't read it. this->drawElement(&pipelineBuilder, translate, texture, element); } } return texture.detach(); } //////////////////////////////////////////////////////////////////////////////// // Create a 1-bit clip mask in the stencil buffer. 'devClipBounds' are in device // (as opposed to canvas) coordinates bool GrClipMaskManager::createStencilClipMask(GrRenderTarget* rt, int32_t elementsGenID, GrReducedClip::InitialState initialState, const GrReducedClip::ElementList& elements, const SkIRect& clipSpaceIBounds, const SkIPoint& clipSpaceToStencilOffset) { SkASSERT(rt); GrStencilAttachment* stencilAttachment = fDrawTarget->cmmAccess().resourceProvider()->attachStencilAttachment(rt); if (nullptr == stencilAttachment) { return false; } if (stencilAttachment->mustRenderClip(elementsGenID, clipSpaceIBounds, clipSpaceToStencilOffset)) { stencilAttachment->setLastClip(elementsGenID, clipSpaceIBounds, clipSpaceToStencilOffset); // Set the matrix so that rendered clip elements are transformed from clip to stencil space. SkVector translate = { SkIntToScalar(clipSpaceToStencilOffset.fX), SkIntToScalar(clipSpaceToStencilOffset.fY) }; SkMatrix viewMatrix; viewMatrix.setTranslate(translate); // We set the current clip to the bounds so that our recursive draws are scissored to them. SkIRect stencilSpaceIBounds(clipSpaceIBounds); stencilSpaceIBounds.offset(clipSpaceToStencilOffset); GrClip clip(stencilSpaceIBounds); int clipBit = stencilAttachment->bits(); SkASSERT((clipBit <= 16) && "Ganesh only handles 16b or smaller stencil buffers"); clipBit = (1 << (clipBit-1)); fDrawTarget->cmmAccess().clearStencilClip(stencilSpaceIBounds, GrReducedClip::kAllIn_InitialState == initialState, rt); // walk through each clip element and perform its set op // with the existing clip. for (GrReducedClip::ElementList::Iter iter(elements.headIter()); iter.get(); iter.next()) { const Element* element = iter.get(); GrPipelineBuilder pipelineBuilder; pipelineBuilder.setClip(clip); pipelineBuilder.setRenderTarget(rt); pipelineBuilder.setDisableColorXPFactory(); // if the target is MSAA then we want MSAA enabled when the clip is soft if (rt->isStencilBufferMultisampled()) { pipelineBuilder.setState(GrPipelineBuilder::kHWAntialias_Flag, element->isAA()); } bool fillInverted = false; // enabled at bottom of loop fClipMode = kIgnoreClip_StencilClipMode; // This will be used to determine whether the clip shape can be rendered into the // stencil with arbitrary stencil settings. GrPathRenderer::StencilSupport stencilSupport; GrStrokeInfo stroke(SkStrokeRec::kFill_InitStyle); SkRegion::Op op = element->getOp(); GrPathRenderer* pr = nullptr; SkPath clipPath; if (Element::kRect_Type == element->getType()) { stencilSupport = GrPathRenderer::kNoRestriction_StencilSupport; fillInverted = false; } else { element->asPath(&clipPath); fillInverted = clipPath.isInverseFillType(); if (fillInverted) { clipPath.toggleInverseFillType(); } pr = this->getContext()->getPathRenderer(fDrawTarget, &pipelineBuilder, viewMatrix, clipPath, stroke, false, GrPathRendererChain::kStencilOnly_DrawType, &stencilSupport); if (nullptr == pr) { return false; } } int passes; GrStencilSettings stencilSettings[GrStencilSettings::kMaxStencilClipPasses]; bool canRenderDirectToStencil = GrPathRenderer::kNoRestriction_StencilSupport == stencilSupport; bool canDrawDirectToClip; // Given the renderer, the element, // fill rule, and set operation can // we render the element directly to // stencil bit used for clipping. canDrawDirectToClip = GrStencilSettings::GetClipPasses(op, canRenderDirectToStencil, clipBit, fillInverted, &passes, stencilSettings); // draw the element to the client stencil bits if necessary if (!canDrawDirectToClip) { GR_STATIC_CONST_SAME_STENCIL(gDrawToStencil, kIncClamp_StencilOp, kIncClamp_StencilOp, kAlways_StencilFunc, 0xffff, 0x0000, 0xffff); if (Element::kRect_Type == element->getType()) { *pipelineBuilder.stencil() = gDrawToStencil; // We need this AGP until everything is in GrBatch fDrawTarget->drawNonAARect(pipelineBuilder, GrColor_WHITE, viewMatrix, element->getRect()); } else { if (!clipPath.isEmpty()) { if (canRenderDirectToStencil) { *pipelineBuilder.stencil() = gDrawToStencil; GrPathRenderer::DrawPathArgs args; args.fTarget = fDrawTarget; args.fResourceProvider = this->getContext()->resourceProvider(); args.fPipelineBuilder = &pipelineBuilder; args.fColor = GrColor_WHITE; args.fViewMatrix = &viewMatrix; args.fPath = &clipPath; args.fStroke = &stroke; args.fAntiAlias = false; pr->drawPath(args); } else { GrPathRenderer::StencilPathArgs args; args.fTarget = fDrawTarget; args.fResourceProvider = this->getContext()->resourceProvider(); args.fPipelineBuilder = &pipelineBuilder; args.fViewMatrix = &viewMatrix; args.fPath = &clipPath; args.fStroke = &stroke; pr->stencilPath(args); } } } } // now we modify the clip bit by rendering either the clip // element directly or a bounding rect of the entire clip. fClipMode = kModifyClip_StencilClipMode; for (int p = 0; p < passes; ++p) { *pipelineBuilder.stencil() = stencilSettings[p]; if (canDrawDirectToClip) { if (Element::kRect_Type == element->getType()) { // We need this AGP until everything is in GrBatch fDrawTarget->drawNonAARect(pipelineBuilder, GrColor_WHITE, viewMatrix, element->getRect()); } else { GrPathRenderer::DrawPathArgs args; args.fTarget = fDrawTarget; args.fResourceProvider = this->getContext()->resourceProvider(); args.fPipelineBuilder = &pipelineBuilder; args.fColor = GrColor_WHITE; args.fViewMatrix = &viewMatrix; args.fPath = &clipPath; args.fStroke = &stroke; args.fAntiAlias = false; pr->drawPath(args); } } else { // The view matrix is setup to do clip space -> stencil space translation, so // draw rect in clip space. fDrawTarget->drawNonAARect(pipelineBuilder, GrColor_WHITE, viewMatrix, SkRect::Make(clipSpaceIBounds)); } } } } fClipMode = kRespectClip_StencilClipMode; return true; } // mapping of clip-respecting stencil funcs to normal stencil funcs // mapping depends on whether stencil-clipping is in effect. static const GrStencilFunc gSpecialToBasicStencilFunc[2][kClipStencilFuncCount] = { {// Stencil-Clipping is DISABLED, we are effectively always inside the clip // In the Clip Funcs kAlways_StencilFunc, // kAlwaysIfInClip_StencilFunc kEqual_StencilFunc, // kEqualIfInClip_StencilFunc kLess_StencilFunc, // kLessIfInClip_StencilFunc kLEqual_StencilFunc, // kLEqualIfInClip_StencilFunc // Special in the clip func that forces user's ref to be 0. kNotEqual_StencilFunc, // kNonZeroIfInClip_StencilFunc // make ref 0 and do normal nequal. }, {// Stencil-Clipping is ENABLED // In the Clip Funcs kEqual_StencilFunc, // kAlwaysIfInClip_StencilFunc // eq stencil clip bit, mask // out user bits. kEqual_StencilFunc, // kEqualIfInClip_StencilFunc // add stencil bit to mask and ref kLess_StencilFunc, // kLessIfInClip_StencilFunc kLEqual_StencilFunc, // kLEqualIfInClip_StencilFunc // for both of these we can add // the clip bit to the mask and // ref and compare as normal // Special in the clip func that forces user's ref to be 0. kLess_StencilFunc, // kNonZeroIfInClip_StencilFunc // make ref have only the clip bit set // and make comparison be less // 10..0 < 1..user_bits.. } }; namespace { // Sets the settings to clip against the stencil buffer clip while ignoring the // client bits. const GrStencilSettings& basic_apply_stencil_clip_settings() { // stencil settings to use when clip is in stencil GR_STATIC_CONST_SAME_STENCIL_STRUCT(gSettings, kKeep_StencilOp, kKeep_StencilOp, kAlwaysIfInClip_StencilFunc, 0x0000, 0x0000, 0x0000); return *GR_CONST_STENCIL_SETTINGS_PTR_FROM_STRUCT_PTR(&gSettings); } } void GrClipMaskManager::setPipelineBuilderStencil(const GrPipelineBuilder& pipelineBuilder, GrPipelineBuilder::AutoRestoreStencil* ars) { // We make two copies of the StencilSettings here (except in the early // exit scenario. One copy from draw state to the stack var. Then another // from the stack var to the gpu. We could make this class hold a ptr to // GrGpu's fStencilSettings and eliminate the stack copy here. // use stencil for clipping if clipping is enabled and the clip // has been written into the stencil. GrStencilSettings settings; // The GrGpu client may not be using the stencil buffer but we may need to // enable it in order to respect a stencil clip. if (pipelineBuilder.getStencil().isDisabled()) { if (GrClipMaskManager::kRespectClip_StencilClipMode == fClipMode) { settings = basic_apply_stencil_clip_settings(); } else { return; } } else { settings = pipelineBuilder.getStencil(); } int stencilBits = 0; GrRenderTarget* rt = pipelineBuilder.getRenderTarget(); GrStencilAttachment* stencilAttachment = fDrawTarget->cmmAccess().resourceProvider()->attachStencilAttachment(rt); if (stencilAttachment) { stencilBits = stencilAttachment->bits(); } SkASSERT(fDrawTarget->caps()->stencilWrapOpsSupport() || !settings.usesWrapOp()); SkASSERT(fDrawTarget->caps()->twoSidedStencilSupport() || !settings.isTwoSided()); this->adjustStencilParams(&settings, fClipMode, stencilBits); ars->set(&pipelineBuilder); ars->setStencil(settings); } void GrClipMaskManager::adjustStencilParams(GrStencilSettings* settings, StencilClipMode mode, int stencilBitCnt) { SkASSERT(stencilBitCnt > 0); if (kModifyClip_StencilClipMode == mode) { // We assume that this clip manager itself is drawing to the GrGpu and // has already setup the correct values. return; } unsigned int clipBit = (1 << (stencilBitCnt - 1)); unsigned int userBits = clipBit - 1; GrStencilSettings::Face face = GrStencilSettings::kFront_Face; bool twoSided = fDrawTarget->caps()->twoSidedStencilSupport(); bool finished = false; while (!finished) { GrStencilFunc func = settings->func(face); uint16_t writeMask = settings->writeMask(face); uint16_t funcMask = settings->funcMask(face); uint16_t funcRef = settings->funcRef(face); SkASSERT((unsigned) func < kStencilFuncCount); writeMask &= userBits; if (func >= kBasicStencilFuncCount) { int respectClip = kRespectClip_StencilClipMode == mode; if (respectClip) { switch (func) { case kAlwaysIfInClip_StencilFunc: funcMask = clipBit; funcRef = clipBit; break; case kEqualIfInClip_StencilFunc: case kLessIfInClip_StencilFunc: case kLEqualIfInClip_StencilFunc: funcMask = (funcMask & userBits) | clipBit; funcRef = (funcRef & userBits) | clipBit; break; case kNonZeroIfInClip_StencilFunc: funcMask = (funcMask & userBits) | clipBit; funcRef = clipBit; break; default: SkFAIL("Unknown stencil func"); } } else { funcMask &= userBits; funcRef &= userBits; } const GrStencilFunc* table = gSpecialToBasicStencilFunc[respectClip]; func = table[func - kBasicStencilFuncCount]; SkASSERT(func >= 0 && func < kBasicStencilFuncCount); } else { funcMask &= userBits; funcRef &= userBits; } settings->setFunc(face, func); settings->setWriteMask(face, writeMask); settings->setFuncMask(face, funcMask); settings->setFuncRef(face, funcRef); if (GrStencilSettings::kFront_Face == face) { face = GrStencilSettings::kBack_Face; finished = !twoSided; } else { finished = true; } } if (!twoSided) { settings->copyFrontSettingsToBack(); } } //////////////////////////////////////////////////////////////////////////////// GrTexture* GrClipMaskManager::createSoftwareClipMask(int32_t elementsGenID, GrReducedClip::InitialState initialState, const GrReducedClip::ElementList& elements, const SkVector& clipToMaskOffset, const SkIRect& clipSpaceIBounds) { GrUniqueKey key; GetClipMaskKey(elementsGenID, clipSpaceIBounds, &key); GrResourceProvider* resourceProvider = fDrawTarget->cmmAccess().resourceProvider(); if (GrTexture* texture = resourceProvider->findAndRefTextureByUniqueKey(key)) { return texture; } // The mask texture may be larger than necessary. We round out the clip space bounds and pin // the top left corner of the resulting rect to the top left of the texture. SkIRect maskSpaceIBounds = SkIRect::MakeWH(clipSpaceIBounds.width(), clipSpaceIBounds.height()); GrSWMaskHelper helper(this->getContext()); // Set the matrix so that rendered clip elements are transformed to mask space from clip // space. SkMatrix translate; translate.setTranslate(clipToMaskOffset); helper.init(maskSpaceIBounds, &translate, false); helper.clear(GrReducedClip::kAllIn_InitialState == initialState ? 0xFF : 0x00); SkStrokeRec stroke(SkStrokeRec::kFill_InitStyle); for (GrReducedClip::ElementList::Iter iter(elements.headIter()) ; iter.get(); iter.next()) { const Element* element = iter.get(); SkRegion::Op op = element->getOp(); if (SkRegion::kIntersect_Op == op || SkRegion::kReverseDifference_Op == op) { // Intersect and reverse difference require modifying pixels outside of the geometry // that is being "drawn". In both cases we erase all the pixels outside of the geometry // but leave the pixels inside the geometry alone. For reverse difference we invert all // the pixels before clearing the ones outside the geometry. if (SkRegion::kReverseDifference_Op == op) { SkRect temp = SkRect::Make(clipSpaceIBounds); // invert the entire scene helper.draw(temp, SkRegion::kXOR_Op, false, 0xFF); } SkPath clipPath; element->asPath(&clipPath); clipPath.toggleInverseFillType(); helper.draw(clipPath, stroke, SkRegion::kReplace_Op, element->isAA(), 0x00); continue; } // The other ops (union, xor, diff) only affect pixels inside // the geometry so they can just be drawn normally if (Element::kRect_Type == element->getType()) { helper.draw(element->getRect(), op, element->isAA(), 0xFF); } else { SkPath path; element->asPath(&path); helper.draw(path, stroke, op, element->isAA(), 0xFF); } } // Allocate clip mask texture GrTexture* result = this->createCachedMask(clipSpaceIBounds.width(), clipSpaceIBounds.height(), key, false); if (nullptr == result) { return nullptr; } helper.toTexture(result); return result; } //////////////////////////////////////////////////////////////////////////////// void GrClipMaskManager::adjustPathStencilParams(const GrStencilAttachment* stencilAttachment, GrStencilSettings* settings) { if (stencilAttachment) { int stencilBits = stencilAttachment->bits(); this->adjustStencilParams(settings, fClipMode, stencilBits); } }