/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrAARectRenderer.h" #include "GrGpu.h" #include "gl/builders/GrGLProgramBuilder.h" #include "gl/GrGLProcessor.h" #include "gl/GrGLGeometryProcessor.h" #include "GrTBackendProcessorFactory.h" #include "SkColorPriv.h" #include "GrGeometryProcessor.h" /////////////////////////////////////////////////////////////////////////////// class GrGLAlignedRectEffect; // Axis Aligned special case class GrAlignedRectEffect : public GrGeometryProcessor { public: static GrGeometryProcessor* Create() { GR_CREATE_STATIC_PROCESSOR(gAlignedRectEffect, GrAlignedRectEffect, ()); gAlignedRectEffect->ref(); return gAlignedRectEffect; } virtual ~GrAlignedRectEffect() {} static const char* Name() { return "AlignedRectEdge"; } const GrShaderVar& inRect() const { return fInRect; } virtual const GrBackendGeometryProcessorFactory& getFactory() const SK_OVERRIDE { return GrTBackendGeometryProcessorFactory::getInstance(); } class GLProcessor : public GrGLGeometryProcessor { public: GLProcessor(const GrBackendProcessorFactory& factory, const GrProcessor&) : INHERITED (factory) {} virtual void emitCode(GrGLGPBuilder* builder, const GrGeometryProcessor& geometryProcessor, const GrProcessorKey& key, const char* outputColor, const char* inputColor, const TransformedCoordsArray&, const TextureSamplerArray& samplers) SK_OVERRIDE { // setup the varying for the Axis aligned rect effect // xy -> interpolated offset // zw -> w/2+0.5, h/2+0.5 const char *vsRectName, *fsRectName; builder->addVarying(kVec4f_GrSLType, "Rect", &vsRectName, &fsRectName); const GrShaderVar& inRect = geometryProcessor.cast().inRect(); GrGLVertexBuilder* vsBuilder = builder->getVertexShaderBuilder(); vsBuilder->codeAppendf("\t%s = %s;\n", vsRectName, inRect.c_str()); GrGLGPFragmentBuilder* fsBuilder = builder->getFragmentShaderBuilder(); // TODO: compute all these offsets, spans, and scales in the VS fsBuilder->codeAppendf("\tfloat insetW = min(1.0, %s.z) - 0.5;\n", fsRectName); fsBuilder->codeAppendf("\tfloat insetH = min(1.0, %s.w) - 0.5;\n", fsRectName); fsBuilder->codeAppend("\tfloat outset = 0.5;\n"); // For rects > 1 pixel wide and tall the span's are noops (i.e., 1.0). For rects // < 1 pixel wide or tall they serve to normalize the < 1 ramp to a 0 .. 1 range. fsBuilder->codeAppend("\tfloat spanW = insetW + outset;\n"); fsBuilder->codeAppend("\tfloat spanH = insetH + outset;\n"); // For rects < 1 pixel wide or tall, these scale factors are used to cap the maximum // value of coverage that is used. In other words it is the coverage that is // used in the interior of the rect after the ramp. fsBuilder->codeAppend("\tfloat scaleW = min(1.0, 2.0*insetW/spanW);\n"); fsBuilder->codeAppend("\tfloat scaleH = min(1.0, 2.0*insetH/spanH);\n"); // Compute the coverage for the rect's width fsBuilder->codeAppendf( "\tfloat coverage = scaleW*clamp((%s.z-abs(%s.x))/spanW, 0.0, 1.0);\n", fsRectName, fsRectName); // Compute the coverage for the rect's height and merge with the width fsBuilder->codeAppendf( "\tcoverage = coverage*scaleH*clamp((%s.w-abs(%s.y))/spanH, 0.0, 1.0);\n", fsRectName, fsRectName); fsBuilder->codeAppendf("\t%s = %s;\n", outputColor, (GrGLSLExpr4(inputColor) * GrGLSLExpr1("coverage")).c_str()); } static void GenKey(const GrProcessor&, const GrGLCaps&, GrProcessorKeyBuilder*) {} virtual void setData(const GrGLProgramDataManager& pdman, const GrProcessor&) SK_OVERRIDE {} private: typedef GrGLGeometryProcessor INHERITED; }; private: GrAlignedRectEffect() : fInRect(this->addVertexAttrib(GrShaderVar("inRect", kVec4f_GrSLType, GrShaderVar::kAttribute_TypeModifier))) { } const GrShaderVar& fInRect; virtual bool onIsEqual(const GrGeometryProcessor&) const SK_OVERRIDE { return true; } virtual void onComputeInvariantOutput(InvariantOutput* inout) const SK_OVERRIDE { inout->mulByUnknownAlpha(); } GR_DECLARE_GEOMETRY_PROCESSOR_TEST; typedef GrGeometryProcessor INHERITED; }; GR_DEFINE_GEOMETRY_PROCESSOR_TEST(GrAlignedRectEffect); GrGeometryProcessor* GrAlignedRectEffect::TestCreate(SkRandom* random, GrContext* context, const GrDrawTargetCaps&, GrTexture* textures[]) { return GrAlignedRectEffect::Create(); } /////////////////////////////////////////////////////////////////////////////// class GrGLRectEffect; /** * The output of this effect is a modulation of the input color and coverage * for an arbitrarily oriented rect. The rect is specified as: * Center of the rect * Unit vector point down the height of the rect * Half width + 0.5 * Half height + 0.5 * The center and vector are stored in a vec4 varying ("RectEdge") with the * center in the xy components and the vector in the zw components. * The munged width and height are stored in a vec2 varying ("WidthHeight") * with the width in x and the height in y. */ class GrRectEffect : public GrGeometryProcessor { public: static GrGeometryProcessor* Create() { GR_CREATE_STATIC_PROCESSOR(gRectEffect, GrRectEffect, ()); gRectEffect->ref(); return gRectEffect; } virtual ~GrRectEffect() {} static const char* Name() { return "RectEdge"; } const GrShaderVar& inRectEdge() const { return fInRectEdge; } const GrShaderVar& inWidthHeight() const { return fInWidthHeight; } virtual const GrBackendGeometryProcessorFactory& getFactory() const SK_OVERRIDE { return GrTBackendGeometryProcessorFactory::getInstance(); } class GLProcessor : public GrGLGeometryProcessor { public: GLProcessor(const GrBackendProcessorFactory& factory, const GrProcessor&) : INHERITED (factory) {} virtual void emitCode(GrGLGPBuilder* builder, const GrGeometryProcessor& geometryProcessor, const GrProcessorKey& key, const char* outputColor, const char* inputColor, const TransformedCoordsArray&, const TextureSamplerArray& samplers) SK_OVERRIDE { // setup the varying for the center point and the unit vector // that points down the height of the rect const char *vsRectEdgeName, *fsRectEdgeName; builder->addVarying(kVec4f_GrSLType, "RectEdge", &vsRectEdgeName, &fsRectEdgeName); const GrRectEffect& rectEffect = geometryProcessor.cast(); GrGLVertexBuilder* vsBuilder = builder->getVertexShaderBuilder(); vsBuilder->codeAppendf("%s = %s;", vsRectEdgeName, rectEffect.inRectEdge().c_str()); // setup the varying for width/2+.5 and height/2+.5 const char *vsWidthHeightName, *fsWidthHeightName; builder->addVarying(kVec2f_GrSLType, "WidthHeight", &vsWidthHeightName, &fsWidthHeightName); vsBuilder->codeAppendf("%s = %s;", vsWidthHeightName, rectEffect.inWidthHeight().c_str()); GrGLGPFragmentBuilder* fsBuilder = builder->getFragmentShaderBuilder(); // TODO: compute all these offsets, spans, and scales in the VS fsBuilder->codeAppendf("\tfloat insetW = min(1.0, %s.x) - 0.5;\n", fsWidthHeightName); fsBuilder->codeAppendf("\tfloat insetH = min(1.0, %s.y) - 0.5;\n", fsWidthHeightName); fsBuilder->codeAppend("\tfloat outset = 0.5;\n"); // For rects > 1 pixel wide and tall the span's are noops (i.e., 1.0). For rects // < 1 pixel wide or tall they serve to normalize the < 1 ramp to a 0 .. 1 range. fsBuilder->codeAppend("\tfloat spanW = insetW + outset;\n"); fsBuilder->codeAppend("\tfloat spanH = insetH + outset;\n"); // For rects < 1 pixel wide or tall, these scale factors are used to cap the maximum // value of coverage that is used. In other words it is the coverage that is // used in the interior of the rect after the ramp. fsBuilder->codeAppend("\tfloat scaleW = min(1.0, 2.0*insetW/spanW);\n"); fsBuilder->codeAppend("\tfloat scaleH = min(1.0, 2.0*insetH/spanH);\n"); // Compute the coverage for the rect's width fsBuilder->codeAppendf("\tvec2 offset = %s.xy - %s.xy;\n", fsBuilder->fragmentPosition(), fsRectEdgeName); fsBuilder->codeAppendf("\tfloat perpDot = abs(offset.x * %s.w - offset.y * %s.z);\n", fsRectEdgeName, fsRectEdgeName); fsBuilder->codeAppendf( "\tfloat coverage = scaleW*clamp((%s.x-perpDot)/spanW, 0.0, 1.0);\n", fsWidthHeightName); // Compute the coverage for the rect's height and merge with the width fsBuilder->codeAppendf("\tperpDot = abs(dot(offset, %s.zw));\n", fsRectEdgeName); fsBuilder->codeAppendf( "\tcoverage = coverage*scaleH*clamp((%s.y-perpDot)/spanH, 0.0, 1.0);\n", fsWidthHeightName); fsBuilder->codeAppendf("\t%s = %s;\n", outputColor, (GrGLSLExpr4(inputColor) * GrGLSLExpr1("coverage")).c_str()); } static void GenKey(const GrProcessor&, const GrGLCaps&, GrProcessorKeyBuilder*) {} virtual void setData(const GrGLProgramDataManager& pdman, const GrProcessor&) SK_OVERRIDE {} private: typedef GrGLGeometryProcessor INHERITED; }; private: GrRectEffect() : fInRectEdge(this->addVertexAttrib(GrShaderVar("inRectEdge", kVec4f_GrSLType, GrShaderVar::kAttribute_TypeModifier))) , fInWidthHeight(this->addVertexAttrib( GrShaderVar("inWidthHeight", kVec2f_GrSLType, GrShaderVar::kAttribute_TypeModifier))) { this->setWillReadFragmentPosition(); } virtual bool onIsEqual(const GrGeometryProcessor&) const SK_OVERRIDE { return true; } virtual void onComputeInvariantOutput(InvariantOutput* inout) const SK_OVERRIDE { inout->mulByUnknownAlpha(); } const GrShaderVar& fInRectEdge; const GrShaderVar& fInWidthHeight; GR_DECLARE_GEOMETRY_PROCESSOR_TEST; typedef GrGeometryProcessor INHERITED; }; GR_DEFINE_GEOMETRY_PROCESSOR_TEST(GrRectEffect); GrGeometryProcessor* GrRectEffect::TestCreate(SkRandom* random, GrContext* context, const GrDrawTargetCaps&, GrTexture* textures[]) { return GrRectEffect::Create(); } /////////////////////////////////////////////////////////////////////////////// namespace { extern const GrVertexAttrib gAARectAttribs[] = { {kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding}, {kVec4ub_GrVertexAttribType, sizeof(SkPoint), kColor_GrVertexAttribBinding}, {kVec4ub_GrVertexAttribType, sizeof(SkPoint) + sizeof(SkColor), kCoverage_GrVertexAttribBinding}, }; // Should the coverage be multiplied into the color attrib or use a separate attrib. enum CoverageAttribType { kUseColor_CoverageAttribType, kUseCoverage_CoverageAttribType, }; } static CoverageAttribType set_rect_attribs(GrDrawState* drawState) { if (drawState->canTweakAlphaForCoverage()) { drawState->setVertexAttribs(2, sizeof(SkPoint) + sizeof(SkColor)); return kUseColor_CoverageAttribType; } else { drawState->setVertexAttribs(3, sizeof(SkPoint) + 2 * sizeof(SkColor)); return kUseCoverage_CoverageAttribType; } } static void set_inset_fan(SkPoint* pts, size_t stride, const SkRect& r, SkScalar dx, SkScalar dy) { pts->setRectFan(r.fLeft + dx, r.fTop + dy, r.fRight - dx, r.fBottom - dy, stride); } void GrAARectRenderer::reset() { SkSafeSetNull(fAAFillRectIndexBuffer); SkSafeSetNull(fAAMiterStrokeRectIndexBuffer); SkSafeSetNull(fAABevelStrokeRectIndexBuffer); } static const uint16_t gFillAARectIdx[] = { 0, 1, 5, 5, 4, 0, 1, 2, 6, 6, 5, 1, 2, 3, 7, 7, 6, 2, 3, 0, 4, 4, 7, 3, 4, 5, 6, 6, 7, 4, }; static const int kIndicesPerAAFillRect = SK_ARRAY_COUNT(gFillAARectIdx); static const int kVertsPerAAFillRect = 8; static const int kNumAAFillRectsInIndexBuffer = 256; GrIndexBuffer* GrAARectRenderer::aaFillRectIndexBuffer(GrGpu* gpu) { static const size_t kAAFillRectIndexBufferSize = kIndicesPerAAFillRect * sizeof(uint16_t) * kNumAAFillRectsInIndexBuffer; if (NULL == fAAFillRectIndexBuffer) { fAAFillRectIndexBuffer = gpu->createIndexBuffer(kAAFillRectIndexBufferSize, false); if (fAAFillRectIndexBuffer) { uint16_t* data = (uint16_t*) fAAFillRectIndexBuffer->map(); bool useTempData = (NULL == data); if (useTempData) { data = SkNEW_ARRAY(uint16_t, kNumAAFillRectsInIndexBuffer * kIndicesPerAAFillRect); } for (int i = 0; i < kNumAAFillRectsInIndexBuffer; ++i) { // Each AA filled rect is drawn with 8 vertices and 10 triangles (8 around // the inner rect (for AA) and 2 for the inner rect. int baseIdx = i * kIndicesPerAAFillRect; uint16_t baseVert = (uint16_t)(i * kVertsPerAAFillRect); for (int j = 0; j < kIndicesPerAAFillRect; ++j) { data[baseIdx+j] = baseVert + gFillAARectIdx[j]; } } if (useTempData) { if (!fAAFillRectIndexBuffer->updateData(data, kAAFillRectIndexBufferSize)) { SkFAIL("Can't get AA Fill Rect indices into buffer!"); } SkDELETE_ARRAY(data); } else { fAAFillRectIndexBuffer->unmap(); } } } return fAAFillRectIndexBuffer; } static const uint16_t gMiterStrokeAARectIdx[] = { 0 + 0, 1 + 0, 5 + 0, 5 + 0, 4 + 0, 0 + 0, 1 + 0, 2 + 0, 6 + 0, 6 + 0, 5 + 0, 1 + 0, 2 + 0, 3 + 0, 7 + 0, 7 + 0, 6 + 0, 2 + 0, 3 + 0, 0 + 0, 4 + 0, 4 + 0, 7 + 0, 3 + 0, 0 + 4, 1 + 4, 5 + 4, 5 + 4, 4 + 4, 0 + 4, 1 + 4, 2 + 4, 6 + 4, 6 + 4, 5 + 4, 1 + 4, 2 + 4, 3 + 4, 7 + 4, 7 + 4, 6 + 4, 2 + 4, 3 + 4, 0 + 4, 4 + 4, 4 + 4, 7 + 4, 3 + 4, 0 + 8, 1 + 8, 5 + 8, 5 + 8, 4 + 8, 0 + 8, 1 + 8, 2 + 8, 6 + 8, 6 + 8, 5 + 8, 1 + 8, 2 + 8, 3 + 8, 7 + 8, 7 + 8, 6 + 8, 2 + 8, 3 + 8, 0 + 8, 4 + 8, 4 + 8, 7 + 8, 3 + 8, }; /** * As in miter-stroke, index = a + b, and a is the current index, b is the shift * from the first index. The index layout: * outer AA line: 0~3, 4~7 * outer edge: 8~11, 12~15 * inner edge: 16~19 * inner AA line: 20~23 * Following comes a bevel-stroke rect and its indices: * * 4 7 * ********************************* * * ______________________________ * * * / 12 15 \ * * * / \ * * 0 * |8 16_____________________19 11 | * 3 * * | | | | * * * | | **************** | | * * * | | * 20 23 * | | * * * | | * * | | * * * | | * 21 22 * | | * * * | | **************** | | * * * | |____________________| | * * 1 * |9 17 18 10| * 2 * * \ / * * * \13 __________________________14/ * * * * * ********************************** * 5 6 */ static const uint16_t gBevelStrokeAARectIdx[] = { // Draw outer AA, from outer AA line to outer edge, shift is 0. 0 + 0, 1 + 0, 9 + 0, 9 + 0, 8 + 0, 0 + 0, 1 + 0, 5 + 0, 13 + 0, 13 + 0, 9 + 0, 1 + 0, 5 + 0, 6 + 0, 14 + 0, 14 + 0, 13 + 0, 5 + 0, 6 + 0, 2 + 0, 10 + 0, 10 + 0, 14 + 0, 6 + 0, 2 + 0, 3 + 0, 11 + 0, 11 + 0, 10 + 0, 2 + 0, 3 + 0, 7 + 0, 15 + 0, 15 + 0, 11 + 0, 3 + 0, 7 + 0, 4 + 0, 12 + 0, 12 + 0, 15 + 0, 7 + 0, 4 + 0, 0 + 0, 8 + 0, 8 + 0, 12 + 0, 4 + 0, // Draw the stroke, from outer edge to inner edge, shift is 8. 0 + 8, 1 + 8, 9 + 8, 9 + 8, 8 + 8, 0 + 8, 1 + 8, 5 + 8, 9 + 8, 5 + 8, 6 + 8, 10 + 8, 10 + 8, 9 + 8, 5 + 8, 6 + 8, 2 + 8, 10 + 8, 2 + 8, 3 + 8, 11 + 8, 11 + 8, 10 + 8, 2 + 8, 3 + 8, 7 + 8, 11 + 8, 7 + 8, 4 + 8, 8 + 8, 8 + 8, 11 + 8, 7 + 8, 4 + 8, 0 + 8, 8 + 8, // Draw the inner AA, from inner edge to inner AA line, shift is 16. 0 + 16, 1 + 16, 5 + 16, 5 + 16, 4 + 16, 0 + 16, 1 + 16, 2 + 16, 6 + 16, 6 + 16, 5 + 16, 1 + 16, 2 + 16, 3 + 16, 7 + 16, 7 + 16, 6 + 16, 2 + 16, 3 + 16, 0 + 16, 4 + 16, 4 + 16, 7 + 16, 3 + 16, }; int GrAARectRenderer::aaStrokeRectIndexCount(bool miterStroke) { return miterStroke ? SK_ARRAY_COUNT(gMiterStrokeAARectIdx) : SK_ARRAY_COUNT(gBevelStrokeAARectIdx); } GrIndexBuffer* GrAARectRenderer::aaStrokeRectIndexBuffer(GrGpu* gpu, bool miterStroke) { if (miterStroke) { if (NULL == fAAMiterStrokeRectIndexBuffer) { fAAMiterStrokeRectIndexBuffer = gpu->createIndexBuffer(sizeof(gMiterStrokeAARectIdx), false); if (fAAMiterStrokeRectIndexBuffer) { #ifdef SK_DEBUG bool updated = #endif fAAMiterStrokeRectIndexBuffer->updateData(gMiterStrokeAARectIdx, sizeof(gMiterStrokeAARectIdx)); GR_DEBUGASSERT(updated); } } return fAAMiterStrokeRectIndexBuffer; } else { if (NULL == fAABevelStrokeRectIndexBuffer) { fAABevelStrokeRectIndexBuffer = gpu->createIndexBuffer(sizeof(gBevelStrokeAARectIdx), false); if (fAABevelStrokeRectIndexBuffer) { #ifdef SK_DEBUG bool updated = #endif fAABevelStrokeRectIndexBuffer->updateData(gBevelStrokeAARectIdx, sizeof(gBevelStrokeAARectIdx)); GR_DEBUGASSERT(updated); } } return fAABevelStrokeRectIndexBuffer; } } void GrAARectRenderer::geometryFillAARect(GrGpu* gpu, GrDrawTarget* target, const SkRect& rect, const SkMatrix& combinedMatrix, const SkRect& devRect) { GrDrawState* drawState = target->drawState(); GrColor color = drawState->getColor(); CoverageAttribType covAttribType = set_rect_attribs(drawState); if (kUseCoverage_CoverageAttribType == covAttribType && GrColorIsOpaque(color)) { drawState->setHint(GrDrawState::kVertexColorsAreOpaque_Hint, true); } GrDrawTarget::AutoReleaseGeometry geo(target, 8, 0); if (!geo.succeeded()) { GrPrintf("Failed to get space for vertices!\n"); return; } GrIndexBuffer* indexBuffer = this->aaFillRectIndexBuffer(gpu); if (NULL == indexBuffer) { GrPrintf("Failed to create index buffer!\n"); return; } intptr_t verts = reinterpret_cast(geo.vertices()); size_t vstride = drawState->getVertexStride(); SkPoint* fan0Pos = reinterpret_cast(verts); SkPoint* fan1Pos = reinterpret_cast(verts + 4 * vstride); SkScalar inset = SkMinScalar(devRect.width(), SK_Scalar1); inset = SK_ScalarHalf * SkMinScalar(inset, devRect.height()); if (combinedMatrix.rectStaysRect()) { // Temporarily #if'ed out. We don't want to pass in the devRect but // right now it is computed in GrContext::apply_aa_to_rect and we don't // want to throw away the work #if 0 SkRect devRect; combinedMatrix.mapRect(&devRect, rect); #endif set_inset_fan(fan0Pos, vstride, devRect, -SK_ScalarHalf, -SK_ScalarHalf); set_inset_fan(fan1Pos, vstride, devRect, inset, inset); } else { // compute transformed (1, 0) and (0, 1) vectors SkVector vec[2] = { { combinedMatrix[SkMatrix::kMScaleX], combinedMatrix[SkMatrix::kMSkewY] }, { combinedMatrix[SkMatrix::kMSkewX], combinedMatrix[SkMatrix::kMScaleY] } }; vec[0].normalize(); vec[0].scale(SK_ScalarHalf); vec[1].normalize(); vec[1].scale(SK_ScalarHalf); // create the rotated rect fan0Pos->setRectFan(rect.fLeft, rect.fTop, rect.fRight, rect.fBottom, vstride); combinedMatrix.mapPointsWithStride(fan0Pos, vstride, 4); // Now create the inset points and then outset the original // rotated points // TL *((SkPoint*)((intptr_t)fan1Pos + 0 * vstride)) = *((SkPoint*)((intptr_t)fan0Pos + 0 * vstride)) + vec[0] + vec[1]; *((SkPoint*)((intptr_t)fan0Pos + 0 * vstride)) -= vec[0] + vec[1]; // BL *((SkPoint*)((intptr_t)fan1Pos + 1 * vstride)) = *((SkPoint*)((intptr_t)fan0Pos + 1 * vstride)) + vec[0] - vec[1]; *((SkPoint*)((intptr_t)fan0Pos + 1 * vstride)) -= vec[0] - vec[1]; // BR *((SkPoint*)((intptr_t)fan1Pos + 2 * vstride)) = *((SkPoint*)((intptr_t)fan0Pos + 2 * vstride)) - vec[0] - vec[1]; *((SkPoint*)((intptr_t)fan0Pos + 2 * vstride)) += vec[0] + vec[1]; // TR *((SkPoint*)((intptr_t)fan1Pos + 3 * vstride)) = *((SkPoint*)((intptr_t)fan0Pos + 3 * vstride)) - vec[0] + vec[1]; *((SkPoint*)((intptr_t)fan0Pos + 3 * vstride)) += vec[0] - vec[1]; } // Make verts point to vertex color and then set all the color and coverage vertex attrs values. verts += sizeof(SkPoint); for (int i = 0; i < 4; ++i) { if (kUseCoverage_CoverageAttribType == covAttribType) { *reinterpret_cast(verts + i * vstride) = color; *reinterpret_cast(verts + i * vstride + sizeof(GrColor)) = 0; } else { *reinterpret_cast(verts + i * vstride) = 0; } } int scale; if (inset < SK_ScalarHalf) { scale = SkScalarFloorToInt(512.0f * inset / (inset + SK_ScalarHalf)); SkASSERT(scale >= 0 && scale <= 255); } else { scale = 0xff; } GrColor innerCoverage; if (kUseCoverage_CoverageAttribType == covAttribType) { innerCoverage = GrColorPackRGBA(scale, scale, scale, scale); } else { innerCoverage = (0xff == scale) ? color : SkAlphaMulQ(color, scale); } verts += 4 * vstride; for (int i = 0; i < 4; ++i) { if (kUseCoverage_CoverageAttribType == covAttribType) { *reinterpret_cast(verts + i * vstride) = color; *reinterpret_cast(verts + i * vstride + sizeof(GrColor)) = innerCoverage; } else { *reinterpret_cast(verts + i * vstride) = innerCoverage; } } target->setIndexSourceToBuffer(indexBuffer); target->drawIndexedInstances(kTriangles_GrPrimitiveType, 1, kVertsPerAAFillRect, kIndicesPerAAFillRect); target->resetIndexSource(); } namespace { // Rotated struct RectVertex { SkPoint fPos; SkPoint fCenter; SkPoint fDir; SkPoint fWidthHeight; }; // Rotated extern const GrVertexAttrib gAARectVertexAttribs[] = { { kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding }, { kVec4f_GrVertexAttribType, sizeof(SkPoint), kGeometryProcessor_GrVertexAttribBinding }, { kVec2f_GrVertexAttribType, 3*sizeof(SkPoint), kGeometryProcessor_GrVertexAttribBinding } }; // Axis Aligned struct AARectVertex { SkPoint fPos; SkPoint fOffset; SkPoint fWidthHeight; }; // Axis Aligned extern const GrVertexAttrib gAAAARectVertexAttribs[] = { { kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding }, { kVec4f_GrVertexAttribType, sizeof(SkPoint), kGeometryProcessor_GrVertexAttribBinding }, }; }; void GrAARectRenderer::shaderFillAARect(GrGpu* gpu, GrDrawTarget* target, const SkRect& rect, const SkMatrix& combinedMatrix) { GrDrawState* drawState = target->drawState(); SkPoint center = SkPoint::Make(rect.centerX(), rect.centerY()); combinedMatrix.mapPoints(¢er, 1); // compute transformed (0, 1) vector SkVector dir = { combinedMatrix[SkMatrix::kMSkewX], combinedMatrix[SkMatrix::kMScaleY] }; dir.normalize(); // compute transformed (width, 0) and (0, height) vectors SkVector vec[2] = { { combinedMatrix[SkMatrix::kMScaleX], combinedMatrix[SkMatrix::kMSkewY] }, { combinedMatrix[SkMatrix::kMSkewX], combinedMatrix[SkMatrix::kMScaleY] } }; SkScalar newWidth = SkScalarHalf(rect.width() * vec[0].length()) + SK_ScalarHalf; SkScalar newHeight = SkScalarHalf(rect.height() * vec[1].length()) + SK_ScalarHalf; drawState->setVertexAttribs(SK_ARRAY_COUNT(gAARectVertexAttribs), sizeof(RectVertex)); GrDrawTarget::AutoReleaseGeometry geo(target, 4, 0); if (!geo.succeeded()) { GrPrintf("Failed to get space for vertices!\n"); return; } RectVertex* verts = reinterpret_cast(geo.vertices()); GrGeometryProcessor* gp = GrRectEffect::Create(); drawState->setGeometryProcessor(gp)->unref(); for (int i = 0; i < 4; ++i) { verts[i].fCenter = center; verts[i].fDir = dir; verts[i].fWidthHeight.fX = newWidth; verts[i].fWidthHeight.fY = newHeight; } SkRect devRect; combinedMatrix.mapRect(&devRect, rect); SkRect devBounds = { devRect.fLeft - SK_ScalarHalf, devRect.fTop - SK_ScalarHalf, devRect.fRight + SK_ScalarHalf, devRect.fBottom + SK_ScalarHalf }; verts[0].fPos = SkPoint::Make(devBounds.fLeft, devBounds.fTop); verts[1].fPos = SkPoint::Make(devBounds.fLeft, devBounds.fBottom); verts[2].fPos = SkPoint::Make(devBounds.fRight, devBounds.fBottom); verts[3].fPos = SkPoint::Make(devBounds.fRight, devBounds.fTop); target->setIndexSourceToBuffer(gpu->getContext()->getQuadIndexBuffer()); target->drawIndexedInstances(kTriangles_GrPrimitiveType, 1, 4, 6); target->resetIndexSource(); } void GrAARectRenderer::shaderFillAlignedAARect(GrGpu* gpu, GrDrawTarget* target, const SkRect& rect, const SkMatrix& combinedMatrix) { GrDrawState* drawState = target->drawState(); SkASSERT(combinedMatrix.rectStaysRect()); drawState->setVertexAttribs(SK_ARRAY_COUNT(gAAAARectVertexAttribs), sizeof(AARectVertex)); GrDrawTarget::AutoReleaseGeometry geo(target, 4, 0); if (!geo.succeeded()) { GrPrintf("Failed to get space for vertices!\n"); return; } AARectVertex* verts = reinterpret_cast(geo.vertices()); GrGeometryProcessor* gp = GrAlignedRectEffect::Create(); drawState->setGeometryProcessor(gp)->unref(); SkRect devRect; combinedMatrix.mapRect(&devRect, rect); SkRect devBounds = { devRect.fLeft - SK_ScalarHalf, devRect.fTop - SK_ScalarHalf, devRect.fRight + SK_ScalarHalf, devRect.fBottom + SK_ScalarHalf }; SkPoint widthHeight = { SkScalarHalf(devRect.width()) + SK_ScalarHalf, SkScalarHalf(devRect.height()) + SK_ScalarHalf }; verts[0].fPos = SkPoint::Make(devBounds.fLeft, devBounds.fTop); verts[0].fOffset = SkPoint::Make(-widthHeight.fX, -widthHeight.fY); verts[0].fWidthHeight = widthHeight; verts[1].fPos = SkPoint::Make(devBounds.fLeft, devBounds.fBottom); verts[1].fOffset = SkPoint::Make(-widthHeight.fX, widthHeight.fY); verts[1].fWidthHeight = widthHeight; verts[2].fPos = SkPoint::Make(devBounds.fRight, devBounds.fBottom); verts[2].fOffset = widthHeight; verts[2].fWidthHeight = widthHeight; verts[3].fPos = SkPoint::Make(devBounds.fRight, devBounds.fTop); verts[3].fOffset = SkPoint::Make(widthHeight.fX, -widthHeight.fY); verts[3].fWidthHeight = widthHeight; target->setIndexSourceToBuffer(gpu->getContext()->getQuadIndexBuffer()); target->drawIndexedInstances(kTriangles_GrPrimitiveType, 1, 4, 6); target->resetIndexSource(); } void GrAARectRenderer::strokeAARect(GrGpu* gpu, GrDrawTarget* target, const SkRect& rect, const SkMatrix& combinedMatrix, const SkRect& devRect, const SkStrokeRec& stroke) { SkVector devStrokeSize; SkScalar width = stroke.getWidth(); if (width > 0) { devStrokeSize.set(width, width); combinedMatrix.mapVectors(&devStrokeSize, 1); devStrokeSize.setAbs(devStrokeSize); } else { devStrokeSize.set(SK_Scalar1, SK_Scalar1); } const SkScalar dx = devStrokeSize.fX; const SkScalar dy = devStrokeSize.fY; const SkScalar rx = SkScalarMul(dx, SK_ScalarHalf); const SkScalar ry = SkScalarMul(dy, SK_ScalarHalf); // Temporarily #if'ed out. We don't want to pass in the devRect but // right now it is computed in GrContext::apply_aa_to_rect and we don't // want to throw away the work #if 0 SkRect devRect; combinedMatrix.mapRect(&devRect, rect); #endif SkScalar spare; { SkScalar w = devRect.width() - dx; SkScalar h = devRect.height() - dy; spare = SkTMin(w, h); } SkRect devOutside(devRect); devOutside.outset(rx, ry); bool miterStroke = true; // For hairlines, make bevel and round joins appear the same as mitered ones. // small miter limit means right angles show bevel... if ((width > 0) && (stroke.getJoin() != SkPaint::kMiter_Join || stroke.getMiter() < SK_ScalarSqrt2)) { miterStroke = false; } if (spare <= 0 && miterStroke) { this->fillAARect(gpu, target, devOutside, SkMatrix::I(), devOutside); return; } SkRect devInside(devRect); devInside.inset(rx, ry); SkRect devOutsideAssist(devRect); // For bevel-stroke, use 2 SkRect instances(devOutside and devOutsideAssist) // to draw the outer of the rect. Because there are 8 vertices on the outer // edge, while vertex number of inner edge is 4, the same as miter-stroke. if (!miterStroke) { devOutside.inset(0, ry); devOutsideAssist.outset(0, ry); } this->geometryStrokeAARect(gpu, target, devOutside, devOutsideAssist, devInside, miterStroke); } void GrAARectRenderer::geometryStrokeAARect(GrGpu* gpu, GrDrawTarget* target, const SkRect& devOutside, const SkRect& devOutsideAssist, const SkRect& devInside, bool miterStroke) { GrDrawState* drawState = target->drawState(); CoverageAttribType covAttribType = set_rect_attribs(drawState); GrColor color = drawState->getColor(); if (kUseCoverage_CoverageAttribType == covAttribType && GrColorIsOpaque(color)) { drawState->setHint(GrDrawState::kVertexColorsAreOpaque_Hint, true); } int innerVertexNum = 4; int outerVertexNum = miterStroke ? 4 : 8; int totalVertexNum = (outerVertexNum + innerVertexNum) * 2; GrDrawTarget::AutoReleaseGeometry geo(target, totalVertexNum, 0); if (!geo.succeeded()) { GrPrintf("Failed to get space for vertices!\n"); return; } GrIndexBuffer* indexBuffer = this->aaStrokeRectIndexBuffer(gpu, miterStroke); if (NULL == indexBuffer) { GrPrintf("Failed to create index buffer!\n"); return; } intptr_t verts = reinterpret_cast(geo.vertices()); size_t vstride = drawState->getVertexStride(); // We create vertices for four nested rectangles. There are two ramps from 0 to full // coverage, one on the exterior of the stroke and the other on the interior. // The following pointers refer to the four rects, from outermost to innermost. SkPoint* fan0Pos = reinterpret_cast(verts); SkPoint* fan1Pos = reinterpret_cast(verts + outerVertexNum * vstride); SkPoint* fan2Pos = reinterpret_cast(verts + 2 * outerVertexNum * vstride); SkPoint* fan3Pos = reinterpret_cast(verts + (2 * outerVertexNum + innerVertexNum) * vstride); #ifndef SK_IGNORE_THIN_STROKED_RECT_FIX // TODO: this only really works if the X & Y margins are the same all around // the rect SkScalar inset = SkMinScalar(SK_Scalar1, devOutside.fRight - devInside.fRight); inset = SkMinScalar(inset, devInside.fLeft - devOutside.fLeft); inset = SkMinScalar(inset, devInside.fTop - devOutside.fTop); if (miterStroke) { inset = SK_ScalarHalf * SkMinScalar(inset, devOutside.fBottom - devInside.fBottom); } else { inset = SK_ScalarHalf * SkMinScalar(inset, devOutsideAssist.fBottom - devInside.fBottom); } SkASSERT(inset >= 0); #else SkScalar inset = SK_ScalarHalf; #endif if (miterStroke) { // outermost set_inset_fan(fan0Pos, vstride, devOutside, -SK_ScalarHalf, -SK_ScalarHalf); // inner two set_inset_fan(fan1Pos, vstride, devOutside, inset, inset); set_inset_fan(fan2Pos, vstride, devInside, -inset, -inset); // innermost set_inset_fan(fan3Pos, vstride, devInside, SK_ScalarHalf, SK_ScalarHalf); } else { SkPoint* fan0AssistPos = reinterpret_cast(verts + 4 * vstride); SkPoint* fan1AssistPos = reinterpret_cast(verts + (outerVertexNum + 4) * vstride); // outermost set_inset_fan(fan0Pos, vstride, devOutside, -SK_ScalarHalf, -SK_ScalarHalf); set_inset_fan(fan0AssistPos, vstride, devOutsideAssist, -SK_ScalarHalf, -SK_ScalarHalf); // outer one of the inner two set_inset_fan(fan1Pos, vstride, devOutside, inset, inset); set_inset_fan(fan1AssistPos, vstride, devOutsideAssist, inset, inset); // inner one of the inner two set_inset_fan(fan2Pos, vstride, devInside, -inset, -inset); // innermost set_inset_fan(fan3Pos, vstride, devInside, SK_ScalarHalf, SK_ScalarHalf); } // Make verts point to vertex color and then set all the color and coverage vertex attrs values. // The outermost rect has 0 coverage verts += sizeof(SkPoint); for (int i = 0; i < outerVertexNum; ++i) { if (kUseCoverage_CoverageAttribType == covAttribType) { *reinterpret_cast(verts + i * vstride) = color; *reinterpret_cast(verts + i * vstride + sizeof(GrColor)) = 0; } else { *reinterpret_cast(verts + i * vstride) = 0; } } // scale is the coverage for the the inner two rects. int scale; if (inset < SK_ScalarHalf) { scale = SkScalarFloorToInt(512.0f * inset / (inset + SK_ScalarHalf)); SkASSERT(scale >= 0 && scale <= 255); } else { scale = 0xff; } verts += outerVertexNum * vstride; GrColor innerCoverage; if (kUseCoverage_CoverageAttribType == covAttribType) { innerCoverage = GrColorPackRGBA(scale, scale, scale, scale); } else { innerCoverage = (0xff == scale) ? color : SkAlphaMulQ(color, scale); } for (int i = 0; i < outerVertexNum + innerVertexNum; ++i) { if (kUseCoverage_CoverageAttribType == covAttribType) { *reinterpret_cast(verts + i * vstride) = color; *reinterpret_cast(verts + i * vstride + sizeof(GrColor)) = innerCoverage; } else { *reinterpret_cast(verts + i * vstride) = innerCoverage; } } // The innermost rect has 0 coverage verts += (outerVertexNum + innerVertexNum) * vstride; for (int i = 0; i < innerVertexNum; ++i) { if (kUseCoverage_CoverageAttribType == covAttribType) { *reinterpret_cast(verts + i * vstride) = color; *reinterpret_cast(verts + i * vstride + sizeof(GrColor)) = 0; } else { *reinterpret_cast(verts + i * vstride) = 0; } } target->setIndexSourceToBuffer(indexBuffer); target->drawIndexed(kTriangles_GrPrimitiveType, 0, 0, totalVertexNum, aaStrokeRectIndexCount(miterStroke)); } void GrAARectRenderer::fillAANestedRects(GrGpu* gpu, GrDrawTarget* target, const SkRect rects[2], const SkMatrix& combinedMatrix) { SkASSERT(combinedMatrix.rectStaysRect()); SkASSERT(!rects[1].isEmpty()); SkRect devOutside, devOutsideAssist, devInside; combinedMatrix.mapRect(&devOutside, rects[0]); // can't call mapRect for devInside since it calls sort combinedMatrix.mapPoints((SkPoint*)&devInside, (const SkPoint*)&rects[1], 2); if (devInside.isEmpty()) { this->fillAARect(gpu, target, devOutside, SkMatrix::I(), devOutside); return; } this->geometryStrokeAARect(gpu, target, devOutside, devOutsideAssist, devInside, true); }