/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrAARectRenderer.h" #include "GrBatch.h" #include "GrBatchTarget.h" #include "GrBatchTest.h" #include "GrContext.h" #include "GrDefaultGeoProcFactory.h" #include "GrDrawTarget.h" #include "GrGeometryProcessor.h" #include "GrInvariantOutput.h" #include "GrResourceKey.h" #include "GrResourceProvider.h" #include "GrTestUtils.h" #include "GrVertexBuffer.h" #include "SkColorPriv.h" #include "gl/GrGLProcessor.h" #include "gl/GrGLGeometryProcessor.h" #include "gl/builders/GrGLProgramBuilder.h" /////////////////////////////////////////////////////////////////////////////// static void set_inset_fan(SkPoint* pts, size_t stride, const SkRect& r, SkScalar dx, SkScalar dy) { pts->setRectFan(r.fLeft + dx, r.fTop + dy, r.fRight - dx, r.fBottom - dy, stride); } static const GrGeometryProcessor* create_fill_rect_gp(bool tweakAlphaForCoverage, const SkMatrix& localMatrix, bool usesLocalCoords, bool coverageIgnored) { uint32_t flags = GrDefaultGeoProcFactory::kColor_GPType; const GrGeometryProcessor* gp; if (tweakAlphaForCoverage) { gp = GrDefaultGeoProcFactory::Create(flags, GrColor_WHITE, usesLocalCoords, coverageIgnored, SkMatrix::I(), localMatrix); } else { flags |= GrDefaultGeoProcFactory::kCoverage_GPType; gp = GrDefaultGeoProcFactory::Create(flags, GrColor_WHITE, usesLocalCoords, coverageIgnored, SkMatrix::I(), localMatrix); } return gp; } GR_DECLARE_STATIC_UNIQUE_KEY(gAAFillRectIndexBufferKey); class AAFillRectBatch : public GrBatch { public: struct Geometry { GrColor fColor; SkMatrix fViewMatrix; SkRect fRect; SkRect fDevRect; }; static GrBatch* Create(const Geometry& geometry) { return SkNEW_ARGS(AAFillRectBatch, (geometry)); } const char* name() const override { return "AAFillRectBatch"; } void getInvariantOutputColor(GrInitInvariantOutput* out) const override { // When this is called on a batch, there is only one geometry bundle out->setKnownFourComponents(fGeoData[0].fColor); } void getInvariantOutputCoverage(GrInitInvariantOutput* out) const override { out->setUnknownSingleComponent(); } void initBatchTracker(const GrPipelineInfo& init) override { // Handle any color overrides if (init.fColorIgnored) { fGeoData[0].fColor = GrColor_ILLEGAL; } else if (GrColor_ILLEGAL != init.fOverrideColor) { fGeoData[0].fColor = init.fOverrideColor; } // setup batch properties fBatch.fColorIgnored = init.fColorIgnored; fBatch.fColor = fGeoData[0].fColor; fBatch.fUsesLocalCoords = init.fUsesLocalCoords; fBatch.fCoverageIgnored = init.fCoverageIgnored; fBatch.fCanTweakAlphaForCoverage = init.fCanTweakAlphaForCoverage; } void generateGeometry(GrBatchTarget* batchTarget, const GrPipeline* pipeline) override { bool canTweakAlphaForCoverage = this->canTweakAlphaForCoverage(); SkMatrix localMatrix; if (this->usesLocalCoords() && !this->viewMatrix().invert(&localMatrix)) { SkDebugf("Cannot invert\n"); return; } SkAutoTUnref gp(create_fill_rect_gp(canTweakAlphaForCoverage, localMatrix, this->usesLocalCoords(), this->coverageIgnored())); batchTarget->initDraw(gp, pipeline); size_t vertexStride = gp->getVertexStride(); SkASSERT(canTweakAlphaForCoverage ? vertexStride == sizeof(GrDefaultGeoProcFactory::PositionColorAttr) : vertexStride == sizeof(GrDefaultGeoProcFactory::PositionColorCoverageAttr)); int instanceCount = fGeoData.count(); SkAutoTUnref indexBuffer(this->getIndexBuffer( batchTarget->resourceProvider())); InstancedHelper helper; void* vertices = helper.init(batchTarget, kTriangles_GrPrimitiveType, vertexStride, indexBuffer, kVertsPerAAFillRect, kIndicesPerAAFillRect, instanceCount); if (!vertices || !indexBuffer) { SkDebugf("Could not allocate vertices\n"); return; } for (int i = 0; i < instanceCount; i++) { const Geometry& args = fGeoData[i]; this->generateAAFillRectGeometry(vertices, i * kVertsPerAAFillRect * vertexStride, vertexStride, args.fColor, args.fViewMatrix, args.fRect, args.fDevRect, canTweakAlphaForCoverage); } helper.issueDraw(batchTarget); } SkSTArray<1, Geometry, true>* geoData() { return &fGeoData; } private: AAFillRectBatch(const Geometry& geometry) { this->initClassID(); fGeoData.push_back(geometry); this->setBounds(geometry.fDevRect); } static const int kNumAAFillRectsInIndexBuffer = 256; static const int kVertsPerAAFillRect = 8; static const int kIndicesPerAAFillRect = 30; const GrIndexBuffer* getIndexBuffer(GrResourceProvider* resourceProvider) { GR_DEFINE_STATIC_UNIQUE_KEY(gAAFillRectIndexBufferKey); static const uint16_t gFillAARectIdx[] = { 0, 1, 5, 5, 4, 0, 1, 2, 6, 6, 5, 1, 2, 3, 7, 7, 6, 2, 3, 0, 4, 4, 7, 3, 4, 5, 6, 6, 7, 4, }; GR_STATIC_ASSERT(SK_ARRAY_COUNT(gFillAARectIdx) == kIndicesPerAAFillRect); return resourceProvider->refOrCreateInstancedIndexBuffer(gFillAARectIdx, kIndicesPerAAFillRect, kNumAAFillRectsInIndexBuffer, kVertsPerAAFillRect, gAAFillRectIndexBufferKey); } GrColor color() const { return fBatch.fColor; } bool usesLocalCoords() const { return fBatch.fUsesLocalCoords; } bool canTweakAlphaForCoverage() const { return fBatch.fCanTweakAlphaForCoverage; } bool colorIgnored() const { return fBatch.fColorIgnored; } const SkMatrix& viewMatrix() const { return fGeoData[0].fViewMatrix; } bool coverageIgnored() const { return fBatch.fCoverageIgnored; } bool onCombineIfPossible(GrBatch* t) override { AAFillRectBatch* that = t->cast(); SkASSERT(this->usesLocalCoords() == that->usesLocalCoords()); // We apply the viewmatrix to the rect points on the cpu. However, if the pipeline uses // local coords then we won't be able to batch. We could actually upload the viewmatrix // using vertex attributes in these cases, but haven't investigated that if (this->usesLocalCoords() && !this->viewMatrix().cheapEqualTo(that->viewMatrix())) { return false; } if (this->color() != that->color()) { fBatch.fColor = GrColor_ILLEGAL; } // In the event of two batches, one who can tweak, one who cannot, we just fall back to // not tweaking if (this->canTweakAlphaForCoverage() != that->canTweakAlphaForCoverage()) { fBatch.fCanTweakAlphaForCoverage = false; } fGeoData.push_back_n(that->geoData()->count(), that->geoData()->begin()); this->joinBounds(that->bounds()); return true; } void generateAAFillRectGeometry(void* vertices, size_t offset, size_t vertexStride, GrColor color, const SkMatrix& viewMatrix, const SkRect& rect, const SkRect& devRect, bool tweakAlphaForCoverage) const { intptr_t verts = reinterpret_cast(vertices) + offset; SkPoint* fan0Pos = reinterpret_cast(verts); SkPoint* fan1Pos = reinterpret_cast(verts + 4 * vertexStride); SkScalar inset = SkMinScalar(devRect.width(), SK_Scalar1); inset = SK_ScalarHalf * SkMinScalar(inset, devRect.height()); if (viewMatrix.rectStaysRect()) { set_inset_fan(fan0Pos, vertexStride, devRect, -SK_ScalarHalf, -SK_ScalarHalf); set_inset_fan(fan1Pos, vertexStride, devRect, inset, inset); } else { // compute transformed (1, 0) and (0, 1) vectors SkVector vec[2] = { { viewMatrix[SkMatrix::kMScaleX], viewMatrix[SkMatrix::kMSkewY] }, { viewMatrix[SkMatrix::kMSkewX], viewMatrix[SkMatrix::kMScaleY] } }; vec[0].normalize(); vec[0].scale(SK_ScalarHalf); vec[1].normalize(); vec[1].scale(SK_ScalarHalf); // create the rotated rect fan0Pos->setRectFan(rect.fLeft, rect.fTop, rect.fRight, rect.fBottom, vertexStride); viewMatrix.mapPointsWithStride(fan0Pos, vertexStride, 4); // Now create the inset points and then outset the original // rotated points // TL *((SkPoint*)((intptr_t)fan1Pos + 0 * vertexStride)) = *((SkPoint*)((intptr_t)fan0Pos + 0 * vertexStride)) + vec[0] + vec[1]; *((SkPoint*)((intptr_t)fan0Pos + 0 * vertexStride)) -= vec[0] + vec[1]; // BL *((SkPoint*)((intptr_t)fan1Pos + 1 * vertexStride)) = *((SkPoint*)((intptr_t)fan0Pos + 1 * vertexStride)) + vec[0] - vec[1]; *((SkPoint*)((intptr_t)fan0Pos + 1 * vertexStride)) -= vec[0] - vec[1]; // BR *((SkPoint*)((intptr_t)fan1Pos + 2 * vertexStride)) = *((SkPoint*)((intptr_t)fan0Pos + 2 * vertexStride)) - vec[0] - vec[1]; *((SkPoint*)((intptr_t)fan0Pos + 2 * vertexStride)) += vec[0] + vec[1]; // TR *((SkPoint*)((intptr_t)fan1Pos + 3 * vertexStride)) = *((SkPoint*)((intptr_t)fan0Pos + 3 * vertexStride)) - vec[0] + vec[1]; *((SkPoint*)((intptr_t)fan0Pos + 3 * vertexStride)) += vec[0] - vec[1]; } // Make verts point to vertex color and then set all the color and coverage vertex attrs // values. verts += sizeof(SkPoint); for (int i = 0; i < 4; ++i) { if (tweakAlphaForCoverage) { *reinterpret_cast(verts + i * vertexStride) = 0; } else { *reinterpret_cast(verts + i * vertexStride) = color; *reinterpret_cast(verts + i * vertexStride + sizeof(GrColor)) = 0; } } int scale; if (inset < SK_ScalarHalf) { scale = SkScalarFloorToInt(512.0f * inset / (inset + SK_ScalarHalf)); SkASSERT(scale >= 0 && scale <= 255); } else { scale = 0xff; } verts += 4 * vertexStride; float innerCoverage = GrNormalizeByteToFloat(scale); GrColor scaledColor = (0xff == scale) ? color : SkAlphaMulQ(color, scale); for (int i = 0; i < 4; ++i) { if (tweakAlphaForCoverage) { *reinterpret_cast(verts + i * vertexStride) = scaledColor; } else { *reinterpret_cast(verts + i * vertexStride) = color; *reinterpret_cast(verts + i * vertexStride + sizeof(GrColor)) = innerCoverage; } } } struct BatchTracker { GrColor fColor; bool fUsesLocalCoords; bool fColorIgnored; bool fCoverageIgnored; bool fCanTweakAlphaForCoverage; }; BatchTracker fBatch; SkSTArray<1, Geometry, true> fGeoData; }; namespace { // Should the coverage be multiplied into the color attrib or use a separate attrib. enum CoverageAttribType { kUseColor_CoverageAttribType, kUseCoverage_CoverageAttribType, }; } void GrAARectRenderer::GeometryFillAARect(GrDrawTarget* target, GrPipelineBuilder* pipelineBuilder, GrColor color, const SkMatrix& viewMatrix, const SkRect& rect, const SkRect& devRect) { AAFillRectBatch::Geometry geometry; geometry.fRect = rect; geometry.fViewMatrix = viewMatrix; geometry.fDevRect = devRect; geometry.fColor = color; SkAutoTUnref batch(AAFillRectBatch::Create(geometry)); target->drawBatch(pipelineBuilder, batch); } void GrAARectRenderer::StrokeAARect(GrDrawTarget* target, GrPipelineBuilder* pipelineBuilder, GrColor color, const SkMatrix& viewMatrix, const SkRect& rect, const SkRect& devRect, const SkStrokeRec& stroke) { SkVector devStrokeSize; SkScalar width = stroke.getWidth(); if (width > 0) { devStrokeSize.set(width, width); viewMatrix.mapVectors(&devStrokeSize, 1); devStrokeSize.setAbs(devStrokeSize); } else { devStrokeSize.set(SK_Scalar1, SK_Scalar1); } const SkScalar dx = devStrokeSize.fX; const SkScalar dy = devStrokeSize.fY; const SkScalar rx = SkScalarMul(dx, SK_ScalarHalf); const SkScalar ry = SkScalarMul(dy, SK_ScalarHalf); SkScalar spare; { SkScalar w = devRect.width() - dx; SkScalar h = devRect.height() - dy; spare = SkTMin(w, h); } SkRect devOutside(devRect); devOutside.outset(rx, ry); bool miterStroke = true; // For hairlines, make bevel and round joins appear the same as mitered ones. // small miter limit means right angles show bevel... if ((width > 0) && (stroke.getJoin() != SkPaint::kMiter_Join || stroke.getMiter() < SK_ScalarSqrt2)) { miterStroke = false; } if (spare <= 0 && miterStroke) { FillAARect(target, pipelineBuilder, color, viewMatrix, devOutside, devOutside); return; } SkRect devInside(devRect); devInside.inset(rx, ry); SkRect devOutsideAssist(devRect); // For bevel-stroke, use 2 SkRect instances(devOutside and devOutsideAssist) // to draw the outer of the rect. Because there are 8 vertices on the outer // edge, while vertex number of inner edge is 4, the same as miter-stroke. if (!miterStroke) { devOutside.inset(0, ry); devOutsideAssist.outset(0, ry); } GeometryStrokeAARect(target, pipelineBuilder, color, viewMatrix, devOutside, devOutsideAssist, devInside, miterStroke); } GR_DECLARE_STATIC_UNIQUE_KEY(gMiterIndexBufferKey); GR_DECLARE_STATIC_UNIQUE_KEY(gBevelIndexBufferKey); class AAStrokeRectBatch : public GrBatch { public: // TODO support AA rotated stroke rects by copying around view matrices struct Geometry { GrColor fColor; SkRect fDevOutside; SkRect fDevOutsideAssist; SkRect fDevInside; bool fMiterStroke; }; static GrBatch* Create(const Geometry& geometry, const SkMatrix& viewMatrix) { return SkNEW_ARGS(AAStrokeRectBatch, (geometry, viewMatrix)); } const char* name() const override { return "AAStrokeRect"; } void getInvariantOutputColor(GrInitInvariantOutput* out) const override { // When this is called on a batch, there is only one geometry bundle out->setKnownFourComponents(fGeoData[0].fColor); } void getInvariantOutputCoverage(GrInitInvariantOutput* out) const override { out->setUnknownSingleComponent(); } void initBatchTracker(const GrPipelineInfo& init) override { // Handle any color overrides if (init.fColorIgnored) { fGeoData[0].fColor = GrColor_ILLEGAL; } else if (GrColor_ILLEGAL != init.fOverrideColor) { fGeoData[0].fColor = init.fOverrideColor; } // setup batch properties fBatch.fColorIgnored = init.fColorIgnored; fBatch.fColor = fGeoData[0].fColor; fBatch.fUsesLocalCoords = init.fUsesLocalCoords; fBatch.fCoverageIgnored = init.fCoverageIgnored; fBatch.fMiterStroke = fGeoData[0].fMiterStroke; fBatch.fCanTweakAlphaForCoverage = init.fCanTweakAlphaForCoverage; } void generateGeometry(GrBatchTarget* batchTarget, const GrPipeline* pipeline) override { bool canTweakAlphaForCoverage = this->canTweakAlphaForCoverage(); // Local matrix is ignored if we don't have local coords. If we have localcoords we only // batch with identical view matrices SkMatrix localMatrix; if (this->usesLocalCoords() && !this->viewMatrix().invert(&localMatrix)) { SkDebugf("Cannot invert\n"); return; } SkAutoTUnref gp(create_fill_rect_gp(canTweakAlphaForCoverage, localMatrix, this->usesLocalCoords(), this->coverageIgnored())); batchTarget->initDraw(gp, pipeline); size_t vertexStride = gp->getVertexStride(); SkASSERT(canTweakAlphaForCoverage ? vertexStride == sizeof(GrDefaultGeoProcFactory::PositionColorAttr) : vertexStride == sizeof(GrDefaultGeoProcFactory::PositionColorCoverageAttr)); int innerVertexNum = 4; int outerVertexNum = this->miterStroke() ? 4 : 8; int verticesPerInstance = (outerVertexNum + innerVertexNum) * 2; int indicesPerInstance = this->miterStroke() ? kMiterIndexCnt : kBevelIndexCnt; int instanceCount = fGeoData.count(); const SkAutoTUnref indexBuffer( GetIndexBuffer(batchTarget->resourceProvider(), this->miterStroke())); InstancedHelper helper; void* vertices = helper.init(batchTarget, kTriangles_GrPrimitiveType, vertexStride, indexBuffer, verticesPerInstance, indicesPerInstance, instanceCount); if (!vertices || !indexBuffer) { SkDebugf("Could not allocate vertices\n"); return; } for (int i = 0; i < instanceCount; i++) { const Geometry& args = fGeoData[i]; this->generateAAStrokeRectGeometry(vertices, i * verticesPerInstance * vertexStride, vertexStride, outerVertexNum, innerVertexNum, args.fColor, args.fDevOutside, args.fDevOutsideAssist, args.fDevInside, args.fMiterStroke, canTweakAlphaForCoverage); } helper.issueDraw(batchTarget); } SkSTArray<1, Geometry, true>* geoData() { return &fGeoData; } private: AAStrokeRectBatch(const Geometry& geometry, const SkMatrix& viewMatrix) { this->initClassID(); fBatch.fViewMatrix = viewMatrix; fGeoData.push_back(geometry); // If we have miterstroke then we inset devOutside and outset devOutsideAssist, so we need // the join for proper bounds fBounds = geometry.fDevOutside; fBounds.join(geometry.fDevOutsideAssist); } static const int kMiterIndexCnt = 3 * 24; static const int kMiterVertexCnt = 16; static const int kNumMiterRectsInIndexBuffer = 256; static const int kBevelIndexCnt = 48 + 36 + 24; static const int kBevelVertexCnt = 24; static const int kNumBevelRectsInIndexBuffer = 256; static const GrIndexBuffer* GetIndexBuffer(GrResourceProvider* resourceProvider, bool miterStroke) { if (miterStroke) { static const uint16_t gMiterIndices[] = { 0 + 0, 1 + 0, 5 + 0, 5 + 0, 4 + 0, 0 + 0, 1 + 0, 2 + 0, 6 + 0, 6 + 0, 5 + 0, 1 + 0, 2 + 0, 3 + 0, 7 + 0, 7 + 0, 6 + 0, 2 + 0, 3 + 0, 0 + 0, 4 + 0, 4 + 0, 7 + 0, 3 + 0, 0 + 4, 1 + 4, 5 + 4, 5 + 4, 4 + 4, 0 + 4, 1 + 4, 2 + 4, 6 + 4, 6 + 4, 5 + 4, 1 + 4, 2 + 4, 3 + 4, 7 + 4, 7 + 4, 6 + 4, 2 + 4, 3 + 4, 0 + 4, 4 + 4, 4 + 4, 7 + 4, 3 + 4, 0 + 8, 1 + 8, 5 + 8, 5 + 8, 4 + 8, 0 + 8, 1 + 8, 2 + 8, 6 + 8, 6 + 8, 5 + 8, 1 + 8, 2 + 8, 3 + 8, 7 + 8, 7 + 8, 6 + 8, 2 + 8, 3 + 8, 0 + 8, 4 + 8, 4 + 8, 7 + 8, 3 + 8, }; GR_STATIC_ASSERT(SK_ARRAY_COUNT(gMiterIndices) == kMiterIndexCnt); GR_DEFINE_STATIC_UNIQUE_KEY(gMiterIndexBufferKey); return resourceProvider->refOrCreateInstancedIndexBuffer(gMiterIndices, kMiterIndexCnt, kNumMiterRectsInIndexBuffer, kMiterVertexCnt, gMiterIndexBufferKey); } else { /** * As in miter-stroke, index = a + b, and a is the current index, b is the shift * from the first index. The index layout: * outer AA line: 0~3, 4~7 * outer edge: 8~11, 12~15 * inner edge: 16~19 * inner AA line: 20~23 * Following comes a bevel-stroke rect and its indices: * * 4 7 * ********************************* * * ______________________________ * * * / 12 15 \ * * * / \ * * 0 * |8 16_____________________19 11 | * 3 * * | | | | * * * | | **************** | | * * * | | * 20 23 * | | * * * | | * * | | * * * | | * 21 22 * | | * * * | | **************** | | * * * | |____________________| | * * 1 * |9 17 18 10| * 2 * * \ / * * * \13 __________________________14/ * * * * * ********************************** * 5 6 */ static const uint16_t gBevelIndices[] = { // Draw outer AA, from outer AA line to outer edge, shift is 0. 0 + 0, 1 + 0, 9 + 0, 9 + 0, 8 + 0, 0 + 0, 1 + 0, 5 + 0, 13 + 0, 13 + 0, 9 + 0, 1 + 0, 5 + 0, 6 + 0, 14 + 0, 14 + 0, 13 + 0, 5 + 0, 6 + 0, 2 + 0, 10 + 0, 10 + 0, 14 + 0, 6 + 0, 2 + 0, 3 + 0, 11 + 0, 11 + 0, 10 + 0, 2 + 0, 3 + 0, 7 + 0, 15 + 0, 15 + 0, 11 + 0, 3 + 0, 7 + 0, 4 + 0, 12 + 0, 12 + 0, 15 + 0, 7 + 0, 4 + 0, 0 + 0, 8 + 0, 8 + 0, 12 + 0, 4 + 0, // Draw the stroke, from outer edge to inner edge, shift is 8. 0 + 8, 1 + 8, 9 + 8, 9 + 8, 8 + 8, 0 + 8, 1 + 8, 5 + 8, 9 + 8, 5 + 8, 6 + 8, 10 + 8, 10 + 8, 9 + 8, 5 + 8, 6 + 8, 2 + 8, 10 + 8, 2 + 8, 3 + 8, 11 + 8, 11 + 8, 10 + 8, 2 + 8, 3 + 8, 7 + 8, 11 + 8, 7 + 8, 4 + 8, 8 + 8, 8 + 8, 11 + 8, 7 + 8, 4 + 8, 0 + 8, 8 + 8, // Draw the inner AA, from inner edge to inner AA line, shift is 16. 0 + 16, 1 + 16, 5 + 16, 5 + 16, 4 + 16, 0 + 16, 1 + 16, 2 + 16, 6 + 16, 6 + 16, 5 + 16, 1 + 16, 2 + 16, 3 + 16, 7 + 16, 7 + 16, 6 + 16, 2 + 16, 3 + 16, 0 + 16, 4 + 16, 4 + 16, 7 + 16, 3 + 16, }; GR_STATIC_ASSERT(SK_ARRAY_COUNT(gBevelIndices) == kBevelIndexCnt); GR_DEFINE_STATIC_UNIQUE_KEY(gBevelIndexBufferKey); return resourceProvider->refOrCreateInstancedIndexBuffer(gBevelIndices, kBevelIndexCnt, kNumBevelRectsInIndexBuffer, kBevelVertexCnt, gBevelIndexBufferKey); } } GrColor color() const { return fBatch.fColor; } bool usesLocalCoords() const { return fBatch.fUsesLocalCoords; } bool canTweakAlphaForCoverage() const { return fBatch.fCanTweakAlphaForCoverage; } bool colorIgnored() const { return fBatch.fColorIgnored; } const SkMatrix& viewMatrix() const { return fBatch.fViewMatrix; } bool miterStroke() const { return fBatch.fMiterStroke; } bool coverageIgnored() const { return fBatch.fCoverageIgnored; } bool onCombineIfPossible(GrBatch* t) override { AAStrokeRectBatch* that = t->cast(); // TODO batch across miterstroke changes if (this->miterStroke() != that->miterStroke()) { return false; } // We apply the viewmatrix to the rect points on the cpu. However, if the pipeline uses // local coords then we won't be able to batch. We could actually upload the viewmatrix // using vertex attributes in these cases, but haven't investigated that if (this->usesLocalCoords() && !this->viewMatrix().cheapEqualTo(that->viewMatrix())) { return false; } // In the event of two batches, one who can tweak, one who cannot, we just fall back to // not tweaking if (this->canTweakAlphaForCoverage() != that->canTweakAlphaForCoverage()) { fBatch.fCanTweakAlphaForCoverage = false; } if (this->color() != that->color()) { fBatch.fColor = GrColor_ILLEGAL; } fGeoData.push_back_n(that->geoData()->count(), that->geoData()->begin()); this->joinBounds(that->bounds()); return true; } void generateAAStrokeRectGeometry(void* vertices, size_t offset, size_t vertexStride, int outerVertexNum, int innerVertexNum, GrColor color, const SkRect& devOutside, const SkRect& devOutsideAssist, const SkRect& devInside, bool miterStroke, bool tweakAlphaForCoverage) const { intptr_t verts = reinterpret_cast(vertices) + offset; // We create vertices for four nested rectangles. There are two ramps from 0 to full // coverage, one on the exterior of the stroke and the other on the interior. // The following pointers refer to the four rects, from outermost to innermost. SkPoint* fan0Pos = reinterpret_cast(verts); SkPoint* fan1Pos = reinterpret_cast(verts + outerVertexNum * vertexStride); SkPoint* fan2Pos = reinterpret_cast(verts + 2 * outerVertexNum * vertexStride); SkPoint* fan3Pos = reinterpret_cast(verts + (2 * outerVertexNum + innerVertexNum) * vertexStride); #ifndef SK_IGNORE_THIN_STROKED_RECT_FIX // TODO: this only really works if the X & Y margins are the same all around // the rect (or if they are all >= 1.0). SkScalar inset = SkMinScalar(SK_Scalar1, devOutside.fRight - devInside.fRight); inset = SkMinScalar(inset, devInside.fLeft - devOutside.fLeft); inset = SkMinScalar(inset, devInside.fTop - devOutside.fTop); if (miterStroke) { inset = SK_ScalarHalf * SkMinScalar(inset, devOutside.fBottom - devInside.fBottom); } else { inset = SK_ScalarHalf * SkMinScalar(inset, devOutsideAssist.fBottom - devInside.fBottom); } SkASSERT(inset >= 0); #else SkScalar inset = SK_ScalarHalf; #endif if (miterStroke) { // outermost set_inset_fan(fan0Pos, vertexStride, devOutside, -SK_ScalarHalf, -SK_ScalarHalf); // inner two set_inset_fan(fan1Pos, vertexStride, devOutside, inset, inset); set_inset_fan(fan2Pos, vertexStride, devInside, -inset, -inset); // innermost set_inset_fan(fan3Pos, vertexStride, devInside, SK_ScalarHalf, SK_ScalarHalf); } else { SkPoint* fan0AssistPos = reinterpret_cast(verts + 4 * vertexStride); SkPoint* fan1AssistPos = reinterpret_cast(verts + (outerVertexNum + 4) * vertexStride); // outermost set_inset_fan(fan0Pos, vertexStride, devOutside, -SK_ScalarHalf, -SK_ScalarHalf); set_inset_fan(fan0AssistPos, vertexStride, devOutsideAssist, -SK_ScalarHalf, -SK_ScalarHalf); // outer one of the inner two set_inset_fan(fan1Pos, vertexStride, devOutside, inset, inset); set_inset_fan(fan1AssistPos, vertexStride, devOutsideAssist, inset, inset); // inner one of the inner two set_inset_fan(fan2Pos, vertexStride, devInside, -inset, -inset); // innermost set_inset_fan(fan3Pos, vertexStride, devInside, SK_ScalarHalf, SK_ScalarHalf); } // Make verts point to vertex color and then set all the color and coverage vertex attrs // values. The outermost rect has 0 coverage verts += sizeof(SkPoint); for (int i = 0; i < outerVertexNum; ++i) { if (tweakAlphaForCoverage) { *reinterpret_cast(verts + i * vertexStride) = 0; } else { *reinterpret_cast(verts + i * vertexStride) = color; *reinterpret_cast(verts + i * vertexStride + sizeof(GrColor)) = 0; } } // scale is the coverage for the the inner two rects. int scale; if (inset < SK_ScalarHalf) { scale = SkScalarFloorToInt(512.0f * inset / (inset + SK_ScalarHalf)); SkASSERT(scale >= 0 && scale <= 255); } else { scale = 0xff; } float innerCoverage = GrNormalizeByteToFloat(scale); GrColor scaledColor = (0xff == scale) ? color : SkAlphaMulQ(color, scale); verts += outerVertexNum * vertexStride; for (int i = 0; i < outerVertexNum + innerVertexNum; ++i) { if (tweakAlphaForCoverage) { *reinterpret_cast(verts + i * vertexStride) = scaledColor; } else { *reinterpret_cast(verts + i * vertexStride) = color; *reinterpret_cast(verts + i * vertexStride + sizeof(GrColor)) = innerCoverage; } } // The innermost rect has 0 coverage verts += (outerVertexNum + innerVertexNum) * vertexStride; for (int i = 0; i < innerVertexNum; ++i) { if (tweakAlphaForCoverage) { *reinterpret_cast(verts + i * vertexStride) = 0; } else { *reinterpret_cast(verts + i * vertexStride) = color; *reinterpret_cast(verts + i * vertexStride + sizeof(GrColor)) = 0; } } } struct BatchTracker { SkMatrix fViewMatrix; GrColor fColor; bool fUsesLocalCoords; bool fColorIgnored; bool fCoverageIgnored; bool fMiterStroke; bool fCanTweakAlphaForCoverage; }; BatchTracker fBatch; SkSTArray<1, Geometry, true> fGeoData; }; void GrAARectRenderer::GeometryStrokeAARect(GrDrawTarget* target, GrPipelineBuilder* pipelineBuilder, GrColor color, const SkMatrix& viewMatrix, const SkRect& devOutside, const SkRect& devOutsideAssist, const SkRect& devInside, bool miterStroke) { AAStrokeRectBatch::Geometry geometry; geometry.fColor = color; geometry.fDevOutside = devOutside; geometry.fDevOutsideAssist = devOutsideAssist; geometry.fDevInside = devInside; geometry.fMiterStroke = miterStroke; SkAutoTUnref batch(AAStrokeRectBatch::Create(geometry, viewMatrix)); target->drawBatch(pipelineBuilder, batch); } void GrAARectRenderer::FillAANestedRects(GrDrawTarget* target, GrPipelineBuilder* pipelineBuilder, GrColor color, const SkMatrix& viewMatrix, const SkRect rects[2]) { SkASSERT(viewMatrix.rectStaysRect()); SkASSERT(!rects[0].isEmpty() && !rects[1].isEmpty()); SkRect devOutside, devInside; viewMatrix.mapRect(&devOutside, rects[0]); viewMatrix.mapRect(&devInside, rects[1]); if (devInside.isEmpty()) { FillAARect(target, pipelineBuilder, color, viewMatrix, devOutside, devOutside); return; } GeometryStrokeAARect(target, pipelineBuilder, color, viewMatrix, devOutside, devOutside, devInside, true); } /////////////////////////////////////////////////////////////////////////////////////////////////// #ifdef GR_TEST_UTILS BATCH_TEST_DEFINE(AAFillRectBatch) { AAFillRectBatch::Geometry geo; geo.fColor = GrRandomColor(random); geo.fViewMatrix = GrTest::TestMatrix(random); geo.fRect = GrTest::TestRect(random); geo.fDevRect = GrTest::TestRect(random); return AAFillRectBatch::Create(geo); } BATCH_TEST_DEFINE(AAStrokeRectBatch) { bool miterStroke = random->nextBool(); // Create mock stroke rect SkRect outside = GrTest::TestRect(random); SkScalar minDim = SkMinScalar(outside.width(), outside.height()); SkScalar strokeWidth = minDim * 0.1f; SkRect outsideAssist = outside; outsideAssist.outset(strokeWidth, strokeWidth); SkRect inside = outside; inside.inset(strokeWidth, strokeWidth); AAStrokeRectBatch::Geometry geo; geo.fColor = GrRandomColor(random); geo.fDevOutside = outside; geo.fDevOutsideAssist = outsideAssist; geo.fDevInside = inside; geo.fMiterStroke = miterStroke; return AAStrokeRectBatch::Create(geo, GrTest::TestMatrix(random)); } #endif