/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrAARectRenderer.h" #include "GrRefCnt.h" #include "GrGpu.h" #include "gl/GrGLEffect.h" #include "GrTBackendEffectFactory.h" SK_DEFINE_INST_COUNT(GrAARectRenderer) /////////////////////////////////////////////////////////////////////////////// class GrGLAlignedRectEffect; // Axis Aligned special case class GrAlignedRectEffect : public GrEffect { public: static GrEffectRef* Create() { GR_CREATE_STATIC_EFFECT(gAlignedRectEffect, GrAlignedRectEffect, ()); gAlignedRectEffect->ref(); return gAlignedRectEffect; } virtual ~GrAlignedRectEffect() {} static const char* Name() { return "AlignedRectEdge"; } virtual void getConstantColorComponents(GrColor* color, uint32_t* validFlags) const SK_OVERRIDE { *validFlags = 0; } virtual const GrBackendEffectFactory& getFactory() const SK_OVERRIDE { return GrTBackendEffectFactory::getInstance(); } class GLEffect : public GrGLEffect { public: GLEffect(const GrBackendEffectFactory& factory, const GrDrawEffect&) : INHERITED (factory) {} virtual void emitCode(GrGLShaderBuilder* builder, const GrDrawEffect& drawEffect, EffectKey key, const char* outputColor, const char* inputColor, const TextureSamplerArray& samplers) SK_OVERRIDE { // setup the varying for the Axis aligned rect effect // xy -> interpolated offset // zw -> w/2+0.5, h/2+0.5 const char *vsRectName, *fsRectName; builder->addVarying(kVec4f_GrSLType, "Rect", &vsRectName, &fsRectName); const SkString* attr0Name = builder->getEffectAttributeName(drawEffect.getVertexAttribIndices()[0]); builder->vsCodeAppendf("\t%s = %s;\n", vsRectName, attr0Name->c_str()); // TODO: compute these scale factors in the VS // These scale factors adjust the coverage for < 1 pixel wide/high rects builder->fsCodeAppendf("\tfloat wScale = max(1.0, 2.0/(0.5+%s.z));\n", fsRectName); builder->fsCodeAppendf("\tfloat hScale = max(1.0, 2.0/(0.5+%s.w));\n", fsRectName); // Compute the coverage for the rect's width builder->fsCodeAppendf("\tfloat coverage = clamp(wScale*(%s.z-abs(%s.x)), 0.0, 1.0);\n", fsRectName, fsRectName); // Compute the coverage for the rect's height and merge with the width builder->fsCodeAppendf( "\tcoverage = min(coverage, clamp(hScale*(%s.w-abs(%s.y)), 0.0, 1.0));\n", fsRectName, fsRectName); SkString modulate; GrGLSLModulatef<4>(&modulate, inputColor, "coverage"); builder->fsCodeAppendf("\t%s = %s;\n", outputColor, modulate.c_str()); } static inline EffectKey GenKey(const GrDrawEffect& drawEffect, const GrGLCaps&) { return 0; } virtual void setData(const GrGLUniformManager& uman, const GrDrawEffect&) SK_OVERRIDE {} private: typedef GrGLEffect INHERITED; }; private: GrAlignedRectEffect() : GrEffect() { this->addVertexAttrib(kVec4f_GrSLType); } virtual bool onIsEqual(const GrEffect&) const SK_OVERRIDE { return true; } GR_DECLARE_EFFECT_TEST; typedef GrEffect INHERITED; }; GR_DEFINE_EFFECT_TEST(GrAlignedRectEffect); GrEffectRef* GrAlignedRectEffect::TestCreate(SkMWCRandom* random, GrContext* context, const GrDrawTargetCaps&, GrTexture* textures[]) { return GrAlignedRectEffect::Create(); } /////////////////////////////////////////////////////////////////////////////// class GrGLRectEffect; /** * The output of this effect is a modulation of the input color and coverage * for an arbitrarily oriented rect. The rect is specified as: * Center of the rect * Unit vector point down the height of the rect * Half width + 0.5 * Half height + 0.5 * The center and vector are stored in a vec4 varying ("RectEdge") with the * center in the xy components and the vector in the zw components. * The munged width and height are stored in a vec2 varying ("WidthHeight") * with the width in x and the height in y. */ class GrRectEffect : public GrEffect { public: static GrEffectRef* Create() { GR_CREATE_STATIC_EFFECT(gRectEffect, GrRectEffect, ()); gRectEffect->ref(); return gRectEffect; } virtual ~GrRectEffect() {} static const char* Name() { return "RectEdge"; } virtual void getConstantColorComponents(GrColor* color, uint32_t* validFlags) const SK_OVERRIDE { *validFlags = 0; } virtual const GrBackendEffectFactory& getFactory() const SK_OVERRIDE { return GrTBackendEffectFactory::getInstance(); } class GLEffect : public GrGLEffect { public: GLEffect(const GrBackendEffectFactory& factory, const GrDrawEffect&) : INHERITED (factory) {} virtual void emitCode(GrGLShaderBuilder* builder, const GrDrawEffect& drawEffect, EffectKey key, const char* outputColor, const char* inputColor, const TextureSamplerArray& samplers) SK_OVERRIDE { // setup the varying for the center point and the unit vector // that points down the height of the rect const char *vsRectEdgeName, *fsRectEdgeName; builder->addVarying(kVec4f_GrSLType, "RectEdge", &vsRectEdgeName, &fsRectEdgeName); const SkString* attr0Name = builder->getEffectAttributeName(drawEffect.getVertexAttribIndices()[0]); builder->vsCodeAppendf("\t%s = %s;\n", vsRectEdgeName, attr0Name->c_str()); // setup the varying for width/2+.5 and height/2+.5 const char *vsWidthHeightName, *fsWidthHeightName; builder->addVarying(kVec2f_GrSLType, "WidthHeight", &vsWidthHeightName, &fsWidthHeightName); const SkString* attr1Name = builder->getEffectAttributeName(drawEffect.getVertexAttribIndices()[1]); builder->vsCodeAppendf("\t%s = %s;\n", vsWidthHeightName, attr1Name->c_str()); // TODO: compute these scale factors in the VS // These scale factors adjust the coverage for < 1 pixel wide/high rects builder->fsCodeAppendf("\tfloat wScale = max(1.0, 2.0/(0.5+%s.x));\n", fsWidthHeightName); builder->fsCodeAppendf("\tfloat hScale = max(1.0, 2.0/(0.5+%s.y));\n", fsWidthHeightName); // Compute the coverage for the rect's width builder->fsCodeAppendf("\tvec2 offset = %s.xy - %s.xy;\n", builder->fragmentPosition(), fsRectEdgeName); builder->fsCodeAppendf("\tfloat perpDot = abs(offset.x * %s.w - offset.y * %s.z);\n", fsRectEdgeName, fsRectEdgeName); builder->fsCodeAppendf("\tfloat coverage = clamp(wScale*(%s.x-perpDot), 0.0, 1.0);\n", fsWidthHeightName); // Compute the coverage for the rect's height and merge with the width builder->fsCodeAppendf("\tperpDot = abs(dot(offset, %s.zw));\n", fsRectEdgeName); builder->fsCodeAppendf( "\tcoverage = min(coverage, clamp(hScale*(%s.y-perpDot), 0.0, 1.0));\n", fsWidthHeightName); SkString modulate; GrGLSLModulatef<4>(&modulate, inputColor, "coverage"); builder->fsCodeAppendf("\t%s = %s;\n", outputColor, modulate.c_str()); } static inline EffectKey GenKey(const GrDrawEffect& drawEffect, const GrGLCaps&) { return 0; } virtual void setData(const GrGLUniformManager& uman, const GrDrawEffect&) SK_OVERRIDE {} private: typedef GrGLEffect INHERITED; }; private: GrRectEffect() : GrEffect() { this->addVertexAttrib(kVec4f_GrSLType); this->addVertexAttrib(kVec2f_GrSLType); this->setWillReadFragmentPosition(); } virtual bool onIsEqual(const GrEffect&) const SK_OVERRIDE { return true; } GR_DECLARE_EFFECT_TEST; typedef GrEffect INHERITED; }; GR_DEFINE_EFFECT_TEST(GrRectEffect); GrEffectRef* GrRectEffect::TestCreate(SkMWCRandom* random, GrContext* context, const GrDrawTargetCaps&, GrTexture* textures[]) { return GrRectEffect::Create(); } /////////////////////////////////////////////////////////////////////////////// namespace { extern const GrVertexAttrib gAARectCoverageAttribs[] = { {kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding}, {kVec4ub_GrVertexAttribType, sizeof(GrPoint), kCoverage_GrVertexAttribBinding}, }; extern const GrVertexAttrib gAARectColorAttribs[] = { {kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding}, {kVec4ub_GrVertexAttribType, sizeof(GrPoint), kColor_GrVertexAttribBinding}, }; static void set_aa_rect_vertex_attributes(GrDrawState* drawState, bool useCoverage) { if (useCoverage) { drawState->setVertexAttribs(SK_ARRAY_COUNT(gAARectCoverageAttribs)); } else { drawState->setVertexAttribs(SK_ARRAY_COUNT(gAARectColorAttribs)); } } static void set_inset_fan(GrPoint* pts, size_t stride, const GrRect& r, SkScalar dx, SkScalar dy) { pts->setRectFan(r.fLeft + dx, r.fTop + dy, r.fRight - dx, r.fBottom - dy, stride); } }; void GrAARectRenderer::reset() { GrSafeSetNull(fAAFillRectIndexBuffer); GrSafeSetNull(fAAStrokeRectIndexBuffer); } static const uint16_t gFillAARectIdx[] = { 0, 1, 5, 5, 4, 0, 1, 2, 6, 6, 5, 1, 2, 3, 7, 7, 6, 2, 3, 0, 4, 4, 7, 3, 4, 5, 6, 6, 7, 4, }; static const int kIndicesPerAAFillRect = GR_ARRAY_COUNT(gFillAARectIdx); static const int kVertsPerAAFillRect = 8; static const int kNumAAFillRectsInIndexBuffer = 256; GrIndexBuffer* GrAARectRenderer::aaFillRectIndexBuffer(GrGpu* gpu) { static const size_t kAAFillRectIndexBufferSize = kIndicesPerAAFillRect * sizeof(uint16_t) * kNumAAFillRectsInIndexBuffer; if (NULL == fAAFillRectIndexBuffer) { fAAFillRectIndexBuffer = gpu->createIndexBuffer(kAAFillRectIndexBufferSize, false); if (NULL != fAAFillRectIndexBuffer) { uint16_t* data = (uint16_t*) fAAFillRectIndexBuffer->lock(); bool useTempData = (NULL == data); if (useTempData) { data = SkNEW_ARRAY(uint16_t, kNumAAFillRectsInIndexBuffer * kIndicesPerAAFillRect); } for (int i = 0; i < kNumAAFillRectsInIndexBuffer; ++i) { // Each AA filled rect is drawn with 8 vertices and 10 triangles (8 around // the inner rect (for AA) and 2 for the inner rect. int baseIdx = i * kIndicesPerAAFillRect; uint16_t baseVert = (uint16_t)(i * kVertsPerAAFillRect); for (int j = 0; j < kIndicesPerAAFillRect; ++j) { data[baseIdx+j] = baseVert + gFillAARectIdx[j]; } } if (useTempData) { if (!fAAFillRectIndexBuffer->updateData(data, kAAFillRectIndexBufferSize)) { GrCrash("Can't get AA Fill Rect indices into buffer!"); } SkDELETE_ARRAY(data); } else { fAAFillRectIndexBuffer->unlock(); } } } return fAAFillRectIndexBuffer; } static const uint16_t gStrokeAARectIdx[] = { 0 + 0, 1 + 0, 5 + 0, 5 + 0, 4 + 0, 0 + 0, 1 + 0, 2 + 0, 6 + 0, 6 + 0, 5 + 0, 1 + 0, 2 + 0, 3 + 0, 7 + 0, 7 + 0, 6 + 0, 2 + 0, 3 + 0, 0 + 0, 4 + 0, 4 + 0, 7 + 0, 3 + 0, 0 + 4, 1 + 4, 5 + 4, 5 + 4, 4 + 4, 0 + 4, 1 + 4, 2 + 4, 6 + 4, 6 + 4, 5 + 4, 1 + 4, 2 + 4, 3 + 4, 7 + 4, 7 + 4, 6 + 4, 2 + 4, 3 + 4, 0 + 4, 4 + 4, 4 + 4, 7 + 4, 3 + 4, 0 + 8, 1 + 8, 5 + 8, 5 + 8, 4 + 8, 0 + 8, 1 + 8, 2 + 8, 6 + 8, 6 + 8, 5 + 8, 1 + 8, 2 + 8, 3 + 8, 7 + 8, 7 + 8, 6 + 8, 2 + 8, 3 + 8, 0 + 8, 4 + 8, 4 + 8, 7 + 8, 3 + 8, }; int GrAARectRenderer::aaStrokeRectIndexCount() { return GR_ARRAY_COUNT(gStrokeAARectIdx); } GrIndexBuffer* GrAARectRenderer::aaStrokeRectIndexBuffer(GrGpu* gpu) { if (NULL == fAAStrokeRectIndexBuffer) { fAAStrokeRectIndexBuffer = gpu->createIndexBuffer(sizeof(gStrokeAARectIdx), false); if (NULL != fAAStrokeRectIndexBuffer) { #if GR_DEBUG bool updated = #endif fAAStrokeRectIndexBuffer->updateData(gStrokeAARectIdx, sizeof(gStrokeAARectIdx)); GR_DEBUGASSERT(updated); } } return fAAStrokeRectIndexBuffer; } void GrAARectRenderer::geometryFillAARect(GrGpu* gpu, GrDrawTarget* target, const GrRect& rect, const SkMatrix& combinedMatrix, bool useVertexCoverage) { GrDrawState* drawState = target->drawState(); set_aa_rect_vertex_attributes(drawState, useVertexCoverage); GrDrawTarget::AutoReleaseGeometry geo(target, 8, 0); if (!geo.succeeded()) { GrPrintf("Failed to get space for vertices!\n"); return; } GrIndexBuffer* indexBuffer = this->aaFillRectIndexBuffer(gpu); if (NULL == indexBuffer) { GrPrintf("Failed to create index buffer!\n"); return; } intptr_t verts = reinterpret_cast(geo.vertices()); size_t vsize = drawState->getVertexSize(); GrAssert(sizeof(GrPoint) + sizeof(GrColor) == vsize); GrPoint* fan0Pos = reinterpret_cast(verts); GrPoint* fan1Pos = reinterpret_cast(verts + 4 * vsize); if (combinedMatrix.rectStaysRect()) { SkRect devRect; combinedMatrix.mapRect(&devRect, rect); set_inset_fan(fan0Pos, vsize, devRect, -SK_ScalarHalf, -SK_ScalarHalf); set_inset_fan(fan1Pos, vsize, devRect, SK_ScalarHalf, SK_ScalarHalf); } else { // compute transformed (1, 0) and (0, 1) vectors SkVector vec[2] = { { combinedMatrix[SkMatrix::kMScaleX], combinedMatrix[SkMatrix::kMSkewY] }, { combinedMatrix[SkMatrix::kMSkewX], combinedMatrix[SkMatrix::kMScaleY] } }; vec[0].normalize(); vec[0].scale(SK_ScalarHalf); vec[1].normalize(); vec[1].scale(SK_ScalarHalf); // create the rotated rect fan0Pos->setRectFan(rect.fLeft, rect.fTop, rect.fRight, rect.fBottom, vsize); combinedMatrix.mapPointsWithStride(fan0Pos, vsize, 4); // Now create the inset points and then outset the original // rotated points // TL *((SkPoint*)((intptr_t)fan1Pos + 0 * vsize)) = *((SkPoint*)((intptr_t)fan0Pos + 0 * vsize)) + vec[0] + vec[1]; *((SkPoint*)((intptr_t)fan0Pos + 0 * vsize)) -= vec[0] + vec[1]; // BL *((SkPoint*)((intptr_t)fan1Pos + 1 * vsize)) = *((SkPoint*)((intptr_t)fan0Pos + 1 * vsize)) + vec[0] - vec[1]; *((SkPoint*)((intptr_t)fan0Pos + 1 * vsize)) -= vec[0] - vec[1]; // BR *((SkPoint*)((intptr_t)fan1Pos + 2 * vsize)) = *((SkPoint*)((intptr_t)fan0Pos + 2 * vsize)) - vec[0] - vec[1]; *((SkPoint*)((intptr_t)fan0Pos + 2 * vsize)) += vec[0] + vec[1]; // TR *((SkPoint*)((intptr_t)fan1Pos + 3 * vsize)) = *((SkPoint*)((intptr_t)fan0Pos + 3 * vsize)) - vec[0] + vec[1]; *((SkPoint*)((intptr_t)fan0Pos + 3 * vsize)) += vec[0] - vec[1]; } verts += sizeof(GrPoint); for (int i = 0; i < 4; ++i) { *reinterpret_cast(verts + i * vsize) = 0; } GrColor innerColor; if (useVertexCoverage) { innerColor = 0xffffffff; } else { innerColor = target->getDrawState().getColor(); } verts += 4 * vsize; for (int i = 0; i < 4; ++i) { *reinterpret_cast(verts + i * vsize) = innerColor; } target->setIndexSourceToBuffer(indexBuffer); target->drawIndexedInstances(kTriangles_GrPrimitiveType, 1, kVertsPerAAFillRect, kIndicesPerAAFillRect); target->resetIndexSource(); } namespace { // Rotated struct RectVertex { GrPoint fPos; GrPoint fCenter; GrPoint fDir; GrPoint fWidthHeight; }; // Rotated extern const GrVertexAttrib gAARectVertexAttribs[] = { { kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding }, { kVec4f_GrVertexAttribType, sizeof(GrPoint), kEffect_GrVertexAttribBinding }, { kVec2f_GrVertexAttribType, 3*sizeof(GrPoint), kEffect_GrVertexAttribBinding } }; // Axis Aligned struct AARectVertex { GrPoint fPos; GrPoint fOffset; GrPoint fWidthHeight; }; // Axis Aligned extern const GrVertexAttrib gAAAARectVertexAttribs[] = { { kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding }, { kVec4f_GrVertexAttribType, sizeof(GrPoint), kEffect_GrVertexAttribBinding }, }; }; void GrAARectRenderer::shaderFillAARect(GrGpu* gpu, GrDrawTarget* target, const GrRect& rect, const SkMatrix& combinedMatrix) { GrDrawState* drawState = target->drawState(); SkPoint center = SkPoint::Make(rect.centerX(), rect.centerY()); combinedMatrix.mapPoints(¢er, 1); // compute transformed (0, 1) vector SkVector dir = { combinedMatrix[SkMatrix::kMSkewX], combinedMatrix[SkMatrix::kMScaleY] }; dir.normalize(); // compute transformed (width, 0) and (0, height) vectors SkVector vec[2] = { { combinedMatrix[SkMatrix::kMScaleX], combinedMatrix[SkMatrix::kMSkewY] }, { combinedMatrix[SkMatrix::kMSkewX], combinedMatrix[SkMatrix::kMScaleY] } }; SkScalar newWidth = SkScalarHalf(rect.width() * vec[0].length()) + SK_ScalarHalf; SkScalar newHeight = SkScalarHalf(rect.height() * vec[1].length()) + SK_ScalarHalf; drawState->setVertexAttribs(SK_ARRAY_COUNT(gAARectVertexAttribs)); GrAssert(sizeof(RectVertex) == drawState->getVertexSize()); GrDrawTarget::AutoReleaseGeometry geo(target, 4, 0); if (!geo.succeeded()) { GrPrintf("Failed to get space for vertices!\n"); return; } RectVertex* verts = reinterpret_cast(geo.vertices()); enum { // the edge effects share this stage with glyph rendering // (kGlyphMaskStage in GrTextContext) && SW path rendering // (kPathMaskStage in GrSWMaskHelper) kEdgeEffectStage = GrPaint::kTotalStages, }; GrEffectRef* effect = GrRectEffect::Create(); static const int kRectAttrIndex = 1; static const int kWidthIndex = 2; drawState->setEffect(kEdgeEffectStage, effect, kRectAttrIndex, kWidthIndex)->unref(); for (int i = 0; i < 4; ++i) { verts[i].fCenter = center; verts[i].fDir = dir; verts[i].fWidthHeight.fX = newWidth; verts[i].fWidthHeight.fY = newHeight; } SkRect devRect; combinedMatrix.mapRect(&devRect, rect); SkRect devBounds = { devRect.fLeft - SK_ScalarHalf, devRect.fTop - SK_ScalarHalf, devRect.fRight + SK_ScalarHalf, devRect.fBottom + SK_ScalarHalf }; verts[0].fPos = SkPoint::Make(devBounds.fLeft, devBounds.fTop); verts[1].fPos = SkPoint::Make(devBounds.fLeft, devBounds.fBottom); verts[2].fPos = SkPoint::Make(devBounds.fRight, devBounds.fBottom); verts[3].fPos = SkPoint::Make(devBounds.fRight, devBounds.fTop); target->setIndexSourceToBuffer(gpu->getContext()->getQuadIndexBuffer()); target->drawIndexedInstances(kTriangles_GrPrimitiveType, 1, 4, 6); target->resetIndexSource(); } void GrAARectRenderer::shaderFillAlignedAARect(GrGpu* gpu, GrDrawTarget* target, const GrRect& rect, const SkMatrix& combinedMatrix) { GrDrawState* drawState = target->drawState(); SkASSERT(combinedMatrix.rectStaysRect()); drawState->setVertexAttribs(SK_ARRAY_COUNT(gAAAARectVertexAttribs)); GrAssert(sizeof(AARectVertex) == drawState->getVertexSize()); GrDrawTarget::AutoReleaseGeometry geo(target, 4, 0); if (!geo.succeeded()) { GrPrintf("Failed to get space for vertices!\n"); return; } AARectVertex* verts = reinterpret_cast(geo.vertices()); enum { // the edge effects share this stage with glyph rendering // (kGlyphMaskStage in GrTextContext) && SW path rendering // (kPathMaskStage in GrSWMaskHelper) kEdgeEffectStage = GrPaint::kTotalStages, }; GrEffectRef* effect = GrAlignedRectEffect::Create(); static const int kOffsetIndex = 1; drawState->setEffect(kEdgeEffectStage, effect, kOffsetIndex)->unref(); SkRect devRect; combinedMatrix.mapRect(&devRect, rect); SkRect devBounds = { devRect.fLeft - SK_ScalarHalf, devRect.fTop - SK_ScalarHalf, devRect.fRight + SK_ScalarHalf, devRect.fBottom + SK_ScalarHalf }; GrPoint widthHeight = { SkScalarHalf(devRect.width()) + SK_ScalarHalf, SkScalarHalf(devRect.height()) + SK_ScalarHalf }; verts[0].fPos = SkPoint::Make(devBounds.fLeft, devBounds.fTop); verts[0].fOffset = SkPoint::Make(-widthHeight.fX, -widthHeight.fY); verts[0].fWidthHeight = widthHeight; verts[1].fPos = SkPoint::Make(devBounds.fLeft, devBounds.fBottom); verts[1].fOffset = SkPoint::Make(-widthHeight.fX, widthHeight.fY); verts[1].fWidthHeight = widthHeight; verts[2].fPos = SkPoint::Make(devBounds.fRight, devBounds.fBottom); verts[2].fOffset = widthHeight; verts[2].fWidthHeight = widthHeight; verts[3].fPos = SkPoint::Make(devBounds.fRight, devBounds.fTop); verts[3].fOffset = SkPoint::Make(widthHeight.fX, -widthHeight.fY); verts[3].fWidthHeight = widthHeight; target->setIndexSourceToBuffer(gpu->getContext()->getQuadIndexBuffer()); target->drawIndexedInstances(kTriangles_GrPrimitiveType, 1, 4, 6); target->resetIndexSource(); } void GrAARectRenderer::strokeAARect(GrGpu* gpu, GrDrawTarget* target, const GrRect& rect, const SkMatrix& combinedMatrix, const GrVec& devStrokeSize, bool useVertexCoverage) { GrDrawState* drawState = target->drawState(); const SkScalar dx = devStrokeSize.fX; const SkScalar dy = devStrokeSize.fY; const SkScalar rx = SkScalarMul(dx, SK_ScalarHalf); const SkScalar ry = SkScalarMul(dy, SK_ScalarHalf); SkRect devRect; combinedMatrix.mapRect(&devRect, rect); SkScalar spare; { SkScalar w = devRect.width() - dx; SkScalar h = devRect.height() - dy; spare = GrMin(w, h); } if (spare <= 0) { devRect.inset(-rx, -ry); this->fillAARect(gpu, target, devRect, SkMatrix::I(), useVertexCoverage); return; } set_aa_rect_vertex_attributes(drawState, useVertexCoverage); GrDrawTarget::AutoReleaseGeometry geo(target, 16, 0); if (!geo.succeeded()) { GrPrintf("Failed to get space for vertices!\n"); return; } GrIndexBuffer* indexBuffer = this->aaStrokeRectIndexBuffer(gpu); if (NULL == indexBuffer) { GrPrintf("Failed to create index buffer!\n"); return; } intptr_t verts = reinterpret_cast(geo.vertices()); size_t vsize = drawState->getVertexSize(); GrAssert(sizeof(GrPoint) + sizeof(GrColor) == vsize); // We create vertices for four nested rectangles. There are two ramps from 0 to full // coverage, one on the exterior of the stroke and the other on the interior. // The following pointers refer to the four rects, from outermost to innermost. GrPoint* fan0Pos = reinterpret_cast(verts); GrPoint* fan1Pos = reinterpret_cast(verts + 4 * vsize); GrPoint* fan2Pos = reinterpret_cast(verts + 8 * vsize); GrPoint* fan3Pos = reinterpret_cast(verts + 12 * vsize); set_inset_fan(fan0Pos, vsize, devRect, -rx - SK_ScalarHalf, -ry - SK_ScalarHalf); set_inset_fan(fan1Pos, vsize, devRect, -rx + SK_ScalarHalf, -ry + SK_ScalarHalf); set_inset_fan(fan2Pos, vsize, devRect, rx - SK_ScalarHalf, ry - SK_ScalarHalf); set_inset_fan(fan3Pos, vsize, devRect, rx + SK_ScalarHalf, ry + SK_ScalarHalf); // The outermost rect has 0 coverage verts += sizeof(GrPoint); for (int i = 0; i < 4; ++i) { *reinterpret_cast(verts + i * vsize) = 0; } // The inner two rects have full coverage GrColor innerColor; if (useVertexCoverage) { innerColor = 0xffffffff; } else { innerColor = target->getDrawState().getColor(); } verts += 4 * vsize; for (int i = 0; i < 8; ++i) { *reinterpret_cast(verts + i * vsize) = innerColor; } // The innermost rect has full coverage verts += 8 * vsize; for (int i = 0; i < 4; ++i) { *reinterpret_cast(verts + i * vsize) = 0; } target->setIndexSourceToBuffer(indexBuffer); target->drawIndexed(kTriangles_GrPrimitiveType, 0, 0, 16, aaStrokeRectIndexCount()); }