/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrAAHairLinePathRenderer.h" #include "GrContext.h" #include "GrDrawState.h" #include "GrDrawTargetCaps.h" #include "GrEffect.h" #include "GrGpu.h" #include "GrIndexBuffer.h" #include "GrPathUtils.h" #include "GrTBackendEffectFactory.h" #include "SkGeometry.h" #include "SkStroke.h" #include "SkTemplates.h" #include "gl/GrGLEffect.h" #include "gl/GrGLSL.h" namespace { // quadratics are rendered as 5-sided polys in order to bound the // AA stroke around the center-curve. See comments in push_quad_index_buffer and // bloat_quad. Quadratics and conics share an index buffer static const int kVertsPerQuad = 5; static const int kIdxsPerQuad = 9; static const int kVertsPerLineSeg = 6; static const int kIdxsPerLineSeg = 12; static const int kNumQuadsInIdxBuffer = 256; static const size_t kQuadIdxSBufize = kIdxsPerQuad * sizeof(uint16_t) * kNumQuadsInIdxBuffer; static const int kNumLineSegsInIdxBuffer = 256; static const size_t kLineSegIdxSBufize = kIdxsPerLineSeg * sizeof(uint16_t) * kNumLineSegsInIdxBuffer; static bool push_quad_index_data(GrIndexBuffer* qIdxBuffer) { uint16_t* data = (uint16_t*) qIdxBuffer->lock(); bool tempData = NULL == data; if (tempData) { data = SkNEW_ARRAY(uint16_t, kNumQuadsInIdxBuffer * kIdxsPerQuad); } for (int i = 0; i < kNumQuadsInIdxBuffer; ++i) { // Each quadratic is rendered as a five sided polygon. This poly bounds // the quadratic's bounding triangle but has been expanded so that the // 1-pixel wide area around the curve is inside the poly. // If a,b,c are the original control points then the poly a0,b0,c0,c1,a1 // that is rendered would look like this: // b0 // b // // a0 c0 // a c // a1 c1 // Each is drawn as three triangles specified by these 9 indices: int baseIdx = i * kIdxsPerQuad; uint16_t baseVert = (uint16_t)(i * kVertsPerQuad); data[0 + baseIdx] = baseVert + 0; // a0 data[1 + baseIdx] = baseVert + 1; // a1 data[2 + baseIdx] = baseVert + 2; // b0 data[3 + baseIdx] = baseVert + 2; // b0 data[4 + baseIdx] = baseVert + 4; // c1 data[5 + baseIdx] = baseVert + 3; // c0 data[6 + baseIdx] = baseVert + 1; // a1 data[7 + baseIdx] = baseVert + 4; // c1 data[8 + baseIdx] = baseVert + 2; // b0 } if (tempData) { bool ret = qIdxBuffer->updateData(data, kQuadIdxSBufize); delete[] data; return ret; } else { qIdxBuffer->unlock(); return true; } } static bool push_line_index_data(GrIndexBuffer* lIdxBuffer) { uint16_t* data = (uint16_t*) lIdxBuffer->lock(); bool tempData = NULL == data; if (tempData) { data = SkNEW_ARRAY(uint16_t, kNumLineSegsInIdxBuffer * kIdxsPerLineSeg); } for (int i = 0; i < kNumLineSegsInIdxBuffer; ++i) { // Each line segment is rendered as two quads, with alpha = 1 along the // spine of the segment, and alpha = 0 along the outer edges, represented // horizontally (i.e., the line equation is t*(p1-p0) + p0) // // p4 p5 // p0 p1 // p2 p3 // // Each is drawn as four triangles specified by these 12 indices: int baseIdx = i * kIdxsPerLineSeg; uint16_t baseVert = (uint16_t)(i * kVertsPerLineSeg); data[0 + baseIdx] = baseVert + 0; // p0 data[1 + baseIdx] = baseVert + 1; // p1 data[2 + baseIdx] = baseVert + 2; // p2 data[3 + baseIdx] = baseVert + 2; // p2 data[4 + baseIdx] = baseVert + 1; // p1 data[5 + baseIdx] = baseVert + 3; // p3 data[6 + baseIdx] = baseVert + 0; // p0 data[7 + baseIdx] = baseVert + 5; // p5 data[8 + baseIdx] = baseVert + 1; // p1 data[9 + baseIdx] = baseVert + 0; // p0 data[10+ baseIdx] = baseVert + 4; // p4 data[11+ baseIdx] = baseVert + 5; // p5 } if (tempData) { bool ret = lIdxBuffer->updateData(data, kLineSegIdxSBufize); delete[] data; return ret; } else { lIdxBuffer->unlock(); return true; } } } GrPathRenderer* GrAAHairLinePathRenderer::Create(GrContext* context) { GrGpu* gpu = context->getGpu(); GrIndexBuffer* qIdxBuf = gpu->createIndexBuffer(kQuadIdxSBufize, false); SkAutoTUnref qIdxBuffer(qIdxBuf); if (NULL == qIdxBuf || !push_quad_index_data(qIdxBuf)) { return NULL; } GrIndexBuffer* lIdxBuf = gpu->createIndexBuffer(kLineSegIdxSBufize, false); SkAutoTUnref lIdxBuffer(lIdxBuf); if (NULL == lIdxBuf || !push_line_index_data(lIdxBuf)) { return NULL; } return SkNEW_ARGS(GrAAHairLinePathRenderer, (context, lIdxBuf, qIdxBuf)); } GrAAHairLinePathRenderer::GrAAHairLinePathRenderer( const GrContext* context, const GrIndexBuffer* linesIndexBuffer, const GrIndexBuffer* quadsIndexBuffer) { fLinesIndexBuffer = linesIndexBuffer; linesIndexBuffer->ref(); fQuadsIndexBuffer = quadsIndexBuffer; quadsIndexBuffer->ref(); } GrAAHairLinePathRenderer::~GrAAHairLinePathRenderer() { fLinesIndexBuffer->unref(); fQuadsIndexBuffer->unref(); } namespace { #define PREALLOC_PTARRAY(N) SkSTArray<(N),SkPoint, true> // Takes 178th time of logf on Z600 / VC2010 int get_float_exp(float x) { GR_STATIC_ASSERT(sizeof(int) == sizeof(float)); #if GR_DEBUG static bool tested; if (!tested) { tested = true; SkASSERT(get_float_exp(0.25f) == -2); SkASSERT(get_float_exp(0.3f) == -2); SkASSERT(get_float_exp(0.5f) == -1); SkASSERT(get_float_exp(1.f) == 0); SkASSERT(get_float_exp(2.f) == 1); SkASSERT(get_float_exp(2.5f) == 1); SkASSERT(get_float_exp(8.f) == 3); SkASSERT(get_float_exp(100.f) == 6); SkASSERT(get_float_exp(1000.f) == 9); SkASSERT(get_float_exp(1024.f) == 10); SkASSERT(get_float_exp(3000000.f) == 21); } #endif const int* iptr = (const int*)&x; return (((*iptr) & 0x7f800000) >> 23) - 127; } // Uses the max curvature function for quads to estimate // where to chop the conic. If the max curvature is not // found along the curve segment it will return 1 and // dst[0] is the original conic. If it returns 2 the dst[0] // and dst[1] are the two new conics. int split_conic(const SkPoint src[3], SkConic dst[2], const SkScalar weight) { SkScalar t = SkFindQuadMaxCurvature(src); if (t == 0) { if (dst) { dst[0].set(src, weight); } return 1; } else { if (dst) { SkConic conic; conic.set(src, weight); conic.chopAt(t, dst); } return 2; } } // Calls split_conic on the entire conic and then once more on each subsection. // Most cases will result in either 1 conic (chop point is not within t range) // or 3 points (split once and then one subsection is split again). int chop_conic(const SkPoint src[3], SkConic dst[4], const SkScalar weight) { SkConic dstTemp[2]; int conicCnt = split_conic(src, dstTemp, weight); if (2 == conicCnt) { int conicCnt2 = split_conic(dstTemp[0].fPts, dst, dstTemp[0].fW); conicCnt = conicCnt2 + split_conic(dstTemp[1].fPts, &dst[conicCnt2], dstTemp[1].fW); } else { dst[0] = dstTemp[0]; } return conicCnt; } // returns 0 if quad/conic is degen or close to it // in this case approx the path with lines // otherwise returns 1 int is_degen_quad_or_conic(const SkPoint p[3]) { static const SkScalar gDegenerateToLineTol = SK_Scalar1; static const SkScalar gDegenerateToLineTolSqd = SkScalarMul(gDegenerateToLineTol, gDegenerateToLineTol); if (p[0].distanceToSqd(p[1]) < gDegenerateToLineTolSqd || p[1].distanceToSqd(p[2]) < gDegenerateToLineTolSqd) { return 1; } SkScalar dsqd = p[1].distanceToLineBetweenSqd(p[0], p[2]); if (dsqd < gDegenerateToLineTolSqd) { return 1; } if (p[2].distanceToLineBetweenSqd(p[1], p[0]) < gDegenerateToLineTolSqd) { return 1; } return 0; } // we subdivide the quads to avoid huge overfill // if it returns -1 then should be drawn as lines int num_quad_subdivs(const SkPoint p[3]) { static const SkScalar gDegenerateToLineTol = SK_Scalar1; static const SkScalar gDegenerateToLineTolSqd = SkScalarMul(gDegenerateToLineTol, gDegenerateToLineTol); if (p[0].distanceToSqd(p[1]) < gDegenerateToLineTolSqd || p[1].distanceToSqd(p[2]) < gDegenerateToLineTolSqd) { return -1; } SkScalar dsqd = p[1].distanceToLineBetweenSqd(p[0], p[2]); if (dsqd < gDegenerateToLineTolSqd) { return -1; } if (p[2].distanceToLineBetweenSqd(p[1], p[0]) < gDegenerateToLineTolSqd) { return -1; } // tolerance of triangle height in pixels // tuned on windows Quadro FX 380 / Z600 // trade off of fill vs cpu time on verts // maybe different when do this using gpu (geo or tess shaders) static const SkScalar gSubdivTol = 175 * SK_Scalar1; if (dsqd <= SkScalarMul(gSubdivTol, gSubdivTol)) { return 0; } else { static const int kMaxSub = 4; // subdividing the quad reduces d by 4. so we want x = log4(d/tol) // = log4(d*d/tol*tol)/2 // = log2(d*d/tol*tol) #ifdef SK_SCALAR_IS_FLOAT // +1 since we're ignoring the mantissa contribution. int log = get_float_exp(dsqd/(gSubdivTol*gSubdivTol)) + 1; log = GrMin(GrMax(0, log), kMaxSub); return log; #else SkScalar log = SkScalarLog( SkScalarDiv(dsqd, SkScalarMul(gSubdivTol, gSubdivTol))); static const SkScalar conv = SkScalarInvert(SkScalarLog(2)); log = SkScalarMul(log, conv); return GrMin(GrMax(0, SkScalarCeilToInt(log)),kMaxSub); #endif } } /** * Generates the lines and quads to be rendered. Lines are always recorded in * device space. We will do a device space bloat to account for the 1pixel * thickness. * Quads are recorded in device space unless m contains * perspective, then in they are in src space. We do this because we will * subdivide large quads to reduce over-fill. This subdivision has to be * performed before applying the perspective matrix. */ int generate_lines_and_quads(const SkPath& path, const SkMatrix& m, const SkIRect& devClipBounds, GrAAHairLinePathRenderer::PtArray* lines, GrAAHairLinePathRenderer::PtArray* quads, GrAAHairLinePathRenderer::PtArray* conics, GrAAHairLinePathRenderer::IntArray* quadSubdivCnts, GrAAHairLinePathRenderer::FloatArray* conicWeights) { SkPath::Iter iter(path, false); int totalQuadCount = 0; SkRect bounds; SkIRect ibounds; bool persp = m.hasPerspective(); for (;;) { GrPoint pathPts[4]; GrPoint devPts[4]; SkPath::Verb verb = iter.next(pathPts); switch (verb) { case SkPath::kConic_Verb: { SkConic dst[4]; // We chop the conics to create tighter clipping to hide error // that appears near max curvature of very thin conics. Thin // hyperbolas with high weight still show error. int conicCnt = chop_conic(pathPts, dst, iter.conicWeight()); for (int i = 0; i < conicCnt; ++i) { SkPoint* chopPnts = dst[i].fPts; m.mapPoints(devPts, chopPnts, 3); bounds.setBounds(devPts, 3); bounds.outset(SK_Scalar1, SK_Scalar1); bounds.roundOut(&ibounds); if (SkIRect::Intersects(devClipBounds, ibounds)) { if (is_degen_quad_or_conic(devPts)) { SkPoint* pts = lines->push_back_n(4); pts[0] = devPts[0]; pts[1] = devPts[1]; pts[2] = devPts[1]; pts[3] = devPts[2]; } else { // when in perspective keep conics in src space SkPoint* cPts = persp ? chopPnts : devPts; SkPoint* pts = conics->push_back_n(3); pts[0] = cPts[0]; pts[1] = cPts[1]; pts[2] = cPts[2]; conicWeights->push_back() = dst[i].fW; } } } break; } case SkPath::kMove_Verb: break; case SkPath::kLine_Verb: m.mapPoints(devPts, pathPts, 2); bounds.setBounds(devPts, 2); bounds.outset(SK_Scalar1, SK_Scalar1); bounds.roundOut(&ibounds); if (SkIRect::Intersects(devClipBounds, ibounds)) { SkPoint* pts = lines->push_back_n(2); pts[0] = devPts[0]; pts[1] = devPts[1]; } break; case SkPath::kQuad_Verb: { SkPoint choppedPts[5]; // Chopping the quad helps when the quad is either degenerate or nearly degenerate. // When it is degenerate it allows the approximation with lines to work since the // chop point (if there is one) will be at the parabola's vertex. In the nearly // degenerate the QuadUVMatrix computed for the points is almost singular which // can cause rendering artifacts. int n = SkChopQuadAtMaxCurvature(pathPts, choppedPts); for (int i = 0; i < n; ++i) { SkPoint* quadPts = choppedPts + i * 2; m.mapPoints(devPts, quadPts, 3); bounds.setBounds(devPts, 3); bounds.outset(SK_Scalar1, SK_Scalar1); bounds.roundOut(&ibounds); if (SkIRect::Intersects(devClipBounds, ibounds)) { int subdiv = num_quad_subdivs(devPts); SkASSERT(subdiv >= -1); if (-1 == subdiv) { SkPoint* pts = lines->push_back_n(4); pts[0] = devPts[0]; pts[1] = devPts[1]; pts[2] = devPts[1]; pts[3] = devPts[2]; } else { // when in perspective keep quads in src space SkPoint* qPts = persp ? quadPts : devPts; SkPoint* pts = quads->push_back_n(3); pts[0] = qPts[0]; pts[1] = qPts[1]; pts[2] = qPts[2]; quadSubdivCnts->push_back() = subdiv; totalQuadCount += 1 << subdiv; } } } break; } case SkPath::kCubic_Verb: m.mapPoints(devPts, pathPts, 4); bounds.setBounds(devPts, 4); bounds.outset(SK_Scalar1, SK_Scalar1); bounds.roundOut(&ibounds); if (SkIRect::Intersects(devClipBounds, ibounds)) { PREALLOC_PTARRAY(32) q; // we don't need a direction if we aren't constraining the subdivision static const SkPath::Direction kDummyDir = SkPath::kCCW_Direction; // We convert cubics to quadratics (for now). // In perspective have to do conversion in src space. if (persp) { SkScalar tolScale = GrPathUtils::scaleToleranceToSrc(SK_Scalar1, m, path.getBounds()); GrPathUtils::convertCubicToQuads(pathPts, tolScale, false, kDummyDir, &q); } else { GrPathUtils::convertCubicToQuads(devPts, SK_Scalar1, false, kDummyDir, &q); } for (int i = 0; i < q.count(); i += 3) { SkPoint* qInDevSpace; // bounds has to be calculated in device space, but q is // in src space when there is perspective. if (persp) { m.mapPoints(devPts, &q[i], 3); bounds.setBounds(devPts, 3); qInDevSpace = devPts; } else { bounds.setBounds(&q[i], 3); qInDevSpace = &q[i]; } bounds.outset(SK_Scalar1, SK_Scalar1); bounds.roundOut(&ibounds); if (SkIRect::Intersects(devClipBounds, ibounds)) { int subdiv = num_quad_subdivs(qInDevSpace); SkASSERT(subdiv >= -1); if (-1 == subdiv) { SkPoint* pts = lines->push_back_n(4); // lines should always be in device coords pts[0] = qInDevSpace[0]; pts[1] = qInDevSpace[1]; pts[2] = qInDevSpace[1]; pts[3] = qInDevSpace[2]; } else { SkPoint* pts = quads->push_back_n(3); // q is already in src space when there is no // perspective and dev coords otherwise. pts[0] = q[0 + i]; pts[1] = q[1 + i]; pts[2] = q[2 + i]; quadSubdivCnts->push_back() = subdiv; totalQuadCount += 1 << subdiv; } } } } break; case SkPath::kClose_Verb: break; case SkPath::kDone_Verb: return totalQuadCount; } } } struct LineVertex { GrPoint fPos; GrColor fCoverage; }; struct BezierVertex { GrPoint fPos; union { struct { SkScalar fK; SkScalar fL; SkScalar fM; } fConic; GrVec fQuadCoord; struct { SkScalar fBogus[4]; }; }; }; GR_STATIC_ASSERT(sizeof(BezierVertex) == 3 * sizeof(GrPoint)); void intersect_lines(const SkPoint& ptA, const SkVector& normA, const SkPoint& ptB, const SkVector& normB, SkPoint* result) { SkScalar lineAW = -normA.dot(ptA); SkScalar lineBW = -normB.dot(ptB); SkScalar wInv = SkScalarMul(normA.fX, normB.fY) - SkScalarMul(normA.fY, normB.fX); wInv = SkScalarInvert(wInv); result->fX = SkScalarMul(normA.fY, lineBW) - SkScalarMul(lineAW, normB.fY); result->fX = SkScalarMul(result->fX, wInv); result->fY = SkScalarMul(lineAW, normB.fX) - SkScalarMul(normA.fX, lineBW); result->fY = SkScalarMul(result->fY, wInv); } void set_uv_quad(const SkPoint qpts[3], BezierVertex verts[kVertsPerQuad]) { // this should be in the src space, not dev coords, when we have perspective GrPathUtils::QuadUVMatrix DevToUV(qpts); DevToUV.apply(verts); } void bloat_quad(const SkPoint qpts[3], const SkMatrix* toDevice, const SkMatrix* toSrc, BezierVertex verts[kVertsPerQuad], SkRect* devBounds) { SkASSERT(!toDevice == !toSrc); // original quad is specified by tri a,b,c SkPoint a = qpts[0]; SkPoint b = qpts[1]; SkPoint c = qpts[2]; if (toDevice) { toDevice->mapPoints(&a, 1); toDevice->mapPoints(&b, 1); toDevice->mapPoints(&c, 1); } // make a new poly where we replace a and c by a 1-pixel wide edges orthog // to edges ab and bc: // // before | after // | b0 // b | // | // | a0 c0 // a c | a1 c1 // // edges a0->b0 and b0->c0 are parallel to original edges a->b and b->c, // respectively. BezierVertex& a0 = verts[0]; BezierVertex& a1 = verts[1]; BezierVertex& b0 = verts[2]; BezierVertex& c0 = verts[3]; BezierVertex& c1 = verts[4]; SkVector ab = b; ab -= a; SkVector ac = c; ac -= a; SkVector cb = b; cb -= c; // We should have already handled degenerates SkASSERT(ab.length() > 0 && cb.length() > 0); ab.normalize(); SkVector abN; abN.setOrthog(ab, SkVector::kLeft_Side); if (abN.dot(ac) > 0) { abN.negate(); } cb.normalize(); SkVector cbN; cbN.setOrthog(cb, SkVector::kLeft_Side); if (cbN.dot(ac) < 0) { cbN.negate(); } a0.fPos = a; a0.fPos += abN; a1.fPos = a; a1.fPos -= abN; c0.fPos = c; c0.fPos += cbN; c1.fPos = c; c1.fPos -= cbN; // This point may not be within 1 pixel of a control point. We update the bounding box to // include it. intersect_lines(a0.fPos, abN, c0.fPos, cbN, &b0.fPos); devBounds->growToInclude(b0.fPos.fX, b0.fPos.fY); if (toSrc) { toSrc->mapPointsWithStride(&verts[0].fPos, sizeof(BezierVertex), kVertsPerQuad); } } // Equations based off of Loop-Blinn Quadratic GPU Rendering // Input Parametric: // P(t) = (P0*(1-t)^2 + 2*w*P1*t*(1-t) + P2*t^2) / (1-t)^2 + 2*w*t*(1-t) + t^2) // Output Implicit: // f(x, y, w) = f(P) = K^2 - LM // K = dot(k, P), L = dot(l, P), M = dot(m, P) // k, l, m are calculated in function GrPathUtils::getConicKLM void set_conic_coeffs(const SkPoint p[3], BezierVertex verts[kVertsPerQuad], const SkScalar weight) { SkScalar klm[9]; GrPathUtils::getConicKLM(p, weight, klm); for (int i = 0; i < kVertsPerQuad; ++i) { const SkPoint pnt = verts[i].fPos; verts[i].fConic.fK = pnt.fX * klm[0] + pnt.fY * klm[1] + klm[2]; verts[i].fConic.fL = pnt.fX * klm[3] + pnt.fY * klm[4] + klm[5]; verts[i].fConic.fM = pnt.fX * klm[6] + pnt.fY * klm[7] + klm[8]; } } void add_conics(const SkPoint p[3], const SkScalar weight, const SkMatrix* toDevice, const SkMatrix* toSrc, BezierVertex** vert, SkRect* devBounds) { bloat_quad(p, toDevice, toSrc, *vert, devBounds); set_conic_coeffs(p, *vert, weight); *vert += kVertsPerQuad; } void add_quads(const SkPoint p[3], int subdiv, const SkMatrix* toDevice, const SkMatrix* toSrc, BezierVertex** vert, SkRect* devBounds) { SkASSERT(subdiv >= 0); if (subdiv) { SkPoint newP[5]; SkChopQuadAtHalf(p, newP); add_quads(newP + 0, subdiv-1, toDevice, toSrc, vert, devBounds); add_quads(newP + 2, subdiv-1, toDevice, toSrc, vert, devBounds); } else { bloat_quad(p, toDevice, toSrc, *vert, devBounds); set_uv_quad(p, *vert); *vert += kVertsPerQuad; } } void add_line(const SkPoint p[2], int rtHeight, const SkMatrix* toSrc, GrColor coverage, LineVertex** vert) { const SkPoint& a = p[0]; const SkPoint& b = p[1]; SkVector orthVec = b; orthVec -= a; if (orthVec.setLength(SK_Scalar1)) { orthVec.setOrthog(orthVec); for (int i = 0; i < kVertsPerLineSeg; ++i) { (*vert)[i].fPos = (i & 0x1) ? b : a; if (i & 0x2) { (*vert)[i].fPos += orthVec; (*vert)[i].fCoverage = 0; } else if (i & 0x4) { (*vert)[i].fPos -= orthVec; (*vert)[i].fCoverage = 0; } else { (*vert)[i].fCoverage = coverage; } } if (NULL != toSrc) { toSrc->mapPointsWithStride(&(*vert)->fPos, sizeof(LineVertex), kVertsPerLineSeg); } } else { // just make it degenerate and likely offscreen for (int i = 0; i < kVertsPerLineSeg; ++i) { (*vert)[i].fPos.set(SK_ScalarMax, SK_ScalarMax); } } *vert += kVertsPerLineSeg; } } /** * Shader is based off of "Resolution Independent Curve Rendering using * Programmable Graphics Hardware" by Loop and Blinn. * The output of this effect is a hairline edge for non rational cubics. * Cubics are specified by implicit equation K^3 - LM. * K, L, and M, are the first three values of the vertex attribute, * the fourth value is not used. Distance is calculated using a * first order approximation from the taylor series. * Coverage is max(0, 1-distance). */ class HairCubicEdgeEffect : public GrEffect { public: static GrEffectRef* Create() { GR_CREATE_STATIC_EFFECT(gHairCubicEdgeEffect, HairCubicEdgeEffect, ()); gHairCubicEdgeEffect->ref(); return gHairCubicEdgeEffect; } virtual ~HairCubicEdgeEffect() {} static const char* Name() { return "HairCubicEdge"; } virtual void getConstantColorComponents(GrColor* color, uint32_t* validFlags) const SK_OVERRIDE { *validFlags = 0; } virtual const GrBackendEffectFactory& getFactory() const SK_OVERRIDE { return GrTBackendEffectFactory::getInstance(); } class GLEffect : public GrGLEffect { public: GLEffect(const GrBackendEffectFactory& factory, const GrDrawEffect&) : INHERITED (factory) {} virtual void emitCode(GrGLShaderBuilder* builder, const GrDrawEffect& drawEffect, EffectKey key, const char* outputColor, const char* inputColor, const TextureSamplerArray& samplers) SK_OVERRIDE { const char *vsName, *fsName; SkAssertResult(builder->enableFeature( GrGLShaderBuilder::kStandardDerivatives_GLSLFeature)); builder->addVarying(kVec4f_GrSLType, "CubicCoeffs", &vsName, &fsName); const SkString* attr0Name = builder->getEffectAttributeName(drawEffect.getVertexAttribIndices()[0]); builder->vsCodeAppendf("\t%s = %s;\n", vsName, attr0Name->c_str()); builder->fsCodeAppend("\t\tfloat edgeAlpha;\n"); builder->fsCodeAppendf("\t\tvec3 dklmdx = dFdx(%s.xyz);\n", fsName); builder->fsCodeAppendf("\t\tvec3 dklmdy = dFdy(%s.xyz);\n", fsName); builder->fsCodeAppendf("\t\tfloat dfdx =\n" "\t\t3.0*%s.x*%s.x*dklmdx.x - %s.y*dklmdx.z - %s.z*dklmdx.y;\n", fsName, fsName, fsName, fsName); builder->fsCodeAppendf("\t\tfloat dfdy =\n" "\t\t3.0*%s.x*%s.x*dklmdy.x - %s.y*dklmdy.z - %s.z*dklmdy.y;\n", fsName, fsName, fsName, fsName); builder->fsCodeAppend("\t\tvec2 gF = vec2(dfdx, dfdy);\n"); builder->fsCodeAppend("\t\tfloat gFM = sqrt(dot(gF, gF));\n"); builder->fsCodeAppendf("\t\tfloat func = abs(%s.x*%s.x*%s.x - %s.y*%s.z);\n", fsName, fsName, fsName, fsName, fsName); builder->fsCodeAppend("\t\tedgeAlpha = func / gFM;\n"); builder->fsCodeAppend("\t\tedgeAlpha = max(1.0 - edgeAlpha, 0.0);\n"); // Add line below for smooth cubic ramp // builder->fsCodeAppend("\t\tedgeAlpha = edgeAlpha*edgeAlpha*(3.0-2.0*edgeAlpha);\n"); SkString modulate; GrGLSLModulatef<4>(&modulate, inputColor, "edgeAlpha"); builder->fsCodeAppendf("\t%s = %s;\n", outputColor, modulate.c_str()); } static inline EffectKey GenKey(const GrDrawEffect& drawEffect, const GrGLCaps&) { return 0x0; } virtual void setData(const GrGLUniformManager&, const GrDrawEffect&) SK_OVERRIDE {} private: typedef GrGLEffect INHERITED; }; private: HairCubicEdgeEffect() { this->addVertexAttrib(kVec4f_GrSLType); } virtual bool onIsEqual(const GrEffect& other) const SK_OVERRIDE { return true; } GR_DECLARE_EFFECT_TEST; typedef GrEffect INHERITED; }; /** * Shader is based off of Loop-Blinn Quadratic GPU Rendering * The output of this effect is a hairline edge for conics. * Conics specified by implicit equation K^2 - LM. * K, L, and M, are the first three values of the vertex attribute, * the fourth value is not used. Distance is calculated using a * first order approximation from the taylor series. * Coverage is max(0, 1-distance). */ /** * Test were also run using a second order distance approximation. * There were two versions of the second order approx. The first version * is of roughly the form: * f(q) = |f(p)| - ||f'(p)||*||q-p|| - ||f''(p)||*||q-p||^2. * The second is similar: * f(q) = |f(p)| + ||f'(p)||*||q-p|| + ||f''(p)||*||q-p||^2. * The exact version of the equations can be found in the paper * "Distance Approximations for Rasterizing Implicit Curves" by Gabriel Taubin * * In both versions we solve the quadratic for ||q-p||. * Version 1: * gFM is magnitude of first partials and gFM2 is magnitude of 2nd partials (as derived from paper) * builder->fsCodeAppend("\t\tedgeAlpha = (sqrt(gFM*gFM+4.0*func*gF2M) - gFM)/(2.0*gF2M);\n"); * Version 2: * builder->fsCodeAppend("\t\tedgeAlpha = (gFM - sqrt(gFM*gFM-4.0*func*gF2M))/(2.0*gF2M);\n"); * * Also note that 2nd partials of k,l,m are zero * * When comparing the two second order approximations to the first order approximations, * the following results were found. Version 1 tends to underestimate the distances, thus it * basically increases all the error that we were already seeing in the first order * approx. So this version is not the one to use. Version 2 has the opposite effect * and tends to overestimate the distances. This is much closer to what we are * looking for. It is able to render ellipses (even thin ones) without the need to chop. * However, it can not handle thin hyperbolas well and thus would still rely on * chopping to tighten the clipping. Another side effect of the overestimating is * that the curves become much thinner and "ropey". If all that was ever rendered * were "not too thin" curves and ellipses then 2nd order may have an advantage since * only one geometry would need to be rendered. However no benches were run comparing * chopped first order and non chopped 2nd order. */ class HairConicEdgeEffect : public GrEffect { public: static GrEffectRef* Create() { GR_CREATE_STATIC_EFFECT(gHairConicEdgeEffect, HairConicEdgeEffect, ()); gHairConicEdgeEffect->ref(); return gHairConicEdgeEffect; } virtual ~HairConicEdgeEffect() {} static const char* Name() { return "HairConicEdge"; } virtual void getConstantColorComponents(GrColor* color, uint32_t* validFlags) const SK_OVERRIDE { *validFlags = 0; } virtual const GrBackendEffectFactory& getFactory() const SK_OVERRIDE { return GrTBackendEffectFactory::getInstance(); } class GLEffect : public GrGLEffect { public: GLEffect(const GrBackendEffectFactory& factory, const GrDrawEffect&) : INHERITED (factory) {} virtual void emitCode(GrGLShaderBuilder* builder, const GrDrawEffect& drawEffect, EffectKey key, const char* outputColor, const char* inputColor, const TextureSamplerArray& samplers) SK_OVERRIDE { const char *vsName, *fsName; SkAssertResult(builder->enableFeature( GrGLShaderBuilder::kStandardDerivatives_GLSLFeature)); builder->addVarying(kVec4f_GrSLType, "ConicCoeffs", &vsName, &fsName); const SkString* attr0Name = builder->getEffectAttributeName(drawEffect.getVertexAttribIndices()[0]); builder->vsCodeAppendf("\t%s = %s;\n", vsName, attr0Name->c_str()); builder->fsCodeAppend("\t\tfloat edgeAlpha;\n"); builder->fsCodeAppendf("\t\tvec3 dklmdx = dFdx(%s.xyz);\n", fsName); builder->fsCodeAppendf("\t\tvec3 dklmdy = dFdy(%s.xyz);\n", fsName); builder->fsCodeAppendf("\t\tfloat dfdx =\n" "\t\t\t2.0*%s.x*dklmdx.x - %s.y*dklmdx.z - %s.z*dklmdx.y;\n", fsName, fsName, fsName); builder->fsCodeAppendf("\t\tfloat dfdy =\n" "\t\t\t2.0*%s.x*dklmdy.x - %s.y*dklmdy.z - %s.z*dklmdy.y;\n", fsName, fsName, fsName); builder->fsCodeAppend("\t\tvec2 gF = vec2(dfdx, dfdy);\n"); builder->fsCodeAppend("\t\tfloat gFM = sqrt(dot(gF, gF));\n"); builder->fsCodeAppendf("\t\tfloat func = abs(%s.x*%s.x - %s.y*%s.z);\n", fsName, fsName, fsName, fsName); builder->fsCodeAppend("\t\tedgeAlpha = func / gFM;\n"); builder->fsCodeAppend("\t\tedgeAlpha = max(1.0 - edgeAlpha, 0.0);\n"); // Add line below for smooth cubic ramp // builder->fsCodeAppend("\t\tedgeAlpha = edgeAlpha*edgeAlpha*(3.0-2.0*edgeAlpha);\n"); SkString modulate; GrGLSLModulatef<4>(&modulate, inputColor, "edgeAlpha"); builder->fsCodeAppendf("\t%s = %s;\n", outputColor, modulate.c_str()); } static inline EffectKey GenKey(const GrDrawEffect& drawEffect, const GrGLCaps&) { return 0x0; } virtual void setData(const GrGLUniformManager&, const GrDrawEffect&) SK_OVERRIDE {} private: typedef GrGLEffect INHERITED; }; private: HairConicEdgeEffect() { this->addVertexAttrib(kVec4f_GrSLType); } virtual bool onIsEqual(const GrEffect& other) const SK_OVERRIDE { return true; } GR_DECLARE_EFFECT_TEST; typedef GrEffect INHERITED; }; GR_DEFINE_EFFECT_TEST(HairConicEdgeEffect); GrEffectRef* HairConicEdgeEffect::TestCreate(SkMWCRandom* random, GrContext*, const GrDrawTargetCaps& caps, GrTexture*[]) { return caps.shaderDerivativeSupport() ? HairConicEdgeEffect::Create() : NULL; } /** * The output of this effect is a hairline edge for quadratics. * Quadratic specified by 0=u^2-v canonical coords. u and v are the first * two components of the vertex attribute. Uses unsigned distance. * Coverage is min(0, 1-distance). 3rd & 4th component unused. * Requires shader derivative instruction support. */ class HairQuadEdgeEffect : public GrEffect { public: static GrEffectRef* Create() { GR_CREATE_STATIC_EFFECT(gHairQuadEdgeEffect, HairQuadEdgeEffect, ()); gHairQuadEdgeEffect->ref(); return gHairQuadEdgeEffect; } virtual ~HairQuadEdgeEffect() {} static const char* Name() { return "HairQuadEdge"; } virtual void getConstantColorComponents(GrColor* color, uint32_t* validFlags) const SK_OVERRIDE { *validFlags = 0; } virtual const GrBackendEffectFactory& getFactory() const SK_OVERRIDE { return GrTBackendEffectFactory::getInstance(); } class GLEffect : public GrGLEffect { public: GLEffect(const GrBackendEffectFactory& factory, const GrDrawEffect&) : INHERITED (factory) {} virtual void emitCode(GrGLShaderBuilder* builder, const GrDrawEffect& drawEffect, EffectKey key, const char* outputColor, const char* inputColor, const TextureSamplerArray& samplers) SK_OVERRIDE { const char *vsName, *fsName; const SkString* attrName = builder->getEffectAttributeName(drawEffect.getVertexAttribIndices()[0]); builder->fsCodeAppendf("\t\tfloat edgeAlpha;\n"); SkAssertResult(builder->enableFeature( GrGLShaderBuilder::kStandardDerivatives_GLSLFeature)); builder->addVarying(kVec4f_GrSLType, "HairQuadEdge", &vsName, &fsName); builder->fsCodeAppendf("\t\tvec2 duvdx = dFdx(%s.xy);\n", fsName); builder->fsCodeAppendf("\t\tvec2 duvdy = dFdy(%s.xy);\n", fsName); builder->fsCodeAppendf("\t\tvec2 gF = vec2(2.0*%s.x*duvdx.x - duvdx.y,\n" "\t\t 2.0*%s.x*duvdy.x - duvdy.y);\n", fsName, fsName); builder->fsCodeAppendf("\t\tedgeAlpha = (%s.x*%s.x - %s.y);\n", fsName, fsName, fsName); builder->fsCodeAppend("\t\tedgeAlpha = sqrt(edgeAlpha*edgeAlpha / dot(gF, gF));\n"); builder->fsCodeAppend("\t\tedgeAlpha = max(1.0 - edgeAlpha, 0.0);\n"); SkString modulate; GrGLSLModulatef<4>(&modulate, inputColor, "edgeAlpha"); builder->fsCodeAppendf("\t%s = %s;\n", outputColor, modulate.c_str()); builder->vsCodeAppendf("\t%s = %s;\n", vsName, attrName->c_str()); } static inline EffectKey GenKey(const GrDrawEffect& drawEffect, const GrGLCaps&) { return 0x0; } virtual void setData(const GrGLUniformManager&, const GrDrawEffect&) SK_OVERRIDE {} private: typedef GrGLEffect INHERITED; }; private: HairQuadEdgeEffect() { this->addVertexAttrib(kVec4f_GrSLType); } virtual bool onIsEqual(const GrEffect& other) const SK_OVERRIDE { return true; } GR_DECLARE_EFFECT_TEST; typedef GrEffect INHERITED; }; GR_DEFINE_EFFECT_TEST(HairQuadEdgeEffect); GrEffectRef* HairQuadEdgeEffect::TestCreate(SkMWCRandom* random, GrContext*, const GrDrawTargetCaps& caps, GrTexture*[]) { // Doesn't work without derivative instructions. return caps.shaderDerivativeSupport() ? HairQuadEdgeEffect::Create() : NULL; } /////////////////////////////////////////////////////////////////////////////// namespace { // position + edge extern const GrVertexAttrib gHairlineBezierAttribs[] = { {kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding}, {kVec4f_GrVertexAttribType, sizeof(GrPoint), kEffect_GrVertexAttribBinding} }; // position + coverage extern const GrVertexAttrib gHairlineLineAttribs[] = { {kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding}, {kVec4ub_GrVertexAttribType, sizeof(GrPoint), kCoverage_GrVertexAttribBinding}, }; }; bool GrAAHairLinePathRenderer::createLineGeom( const SkPath& path, GrDrawTarget* target, const PtArray& lines, int lineCnt, GrDrawTarget::AutoReleaseGeometry* arg, SkRect* devBounds) { GrDrawState* drawState = target->drawState(); int rtHeight = drawState->getRenderTarget()->height(); const SkMatrix& viewM = drawState->getViewMatrix(); *devBounds = path.getBounds(); viewM.mapRect(devBounds); devBounds->outset(SK_Scalar1, SK_Scalar1); int vertCnt = kVertsPerLineSeg * lineCnt; target->drawState()->setVertexAttribs(SK_ARRAY_COUNT(gHairlineLineAttribs)); SkASSERT(sizeof(LineVertex) == target->getDrawState().getVertexSize()); if (!arg->set(target, vertCnt, 0)) { return false; } LineVertex* verts = reinterpret_cast(arg->vertices()); const SkMatrix* toSrc = NULL; SkMatrix ivm; if (viewM.hasPerspective()) { if (viewM.invert(&ivm)) { toSrc = &ivm; } } for (int i = 0; i < lineCnt; ++i) { add_line(&lines[2*i], rtHeight, toSrc, drawState->getCoverage(), &verts); } return true; } bool GrAAHairLinePathRenderer::createBezierGeom( const SkPath& path, GrDrawTarget* target, const PtArray& quads, int quadCnt, const PtArray& conics, int conicCnt, const IntArray& qSubdivs, const FloatArray& cWeights, GrDrawTarget::AutoReleaseGeometry* arg, SkRect* devBounds) { GrDrawState* drawState = target->drawState(); const SkMatrix& viewM = drawState->getViewMatrix(); // All the vertices that we compute are within 1 of path control points with the exception of // one of the bounding vertices for each quad. The add_quads() function will update the bounds // for each quad added. *devBounds = path.getBounds(); viewM.mapRect(devBounds); devBounds->outset(SK_Scalar1, SK_Scalar1); int vertCnt = kVertsPerQuad * quadCnt + kVertsPerQuad * conicCnt; target->drawState()->setVertexAttribs(SK_ARRAY_COUNT(gHairlineBezierAttribs)); SkASSERT(sizeof(BezierVertex) == target->getDrawState().getVertexSize()); if (!arg->set(target, vertCnt, 0)) { return false; } BezierVertex* verts = reinterpret_cast(arg->vertices()); const SkMatrix* toDevice = NULL; const SkMatrix* toSrc = NULL; SkMatrix ivm; if (viewM.hasPerspective()) { if (viewM.invert(&ivm)) { toDevice = &viewM; toSrc = &ivm; } } int unsubdivQuadCnt = quads.count() / 3; for (int i = 0; i < unsubdivQuadCnt; ++i) { SkASSERT(qSubdivs[i] >= 0); add_quads(&quads[3*i], qSubdivs[i], toDevice, toSrc, &verts, devBounds); } // Start Conics for (int i = 0; i < conicCnt; ++i) { add_conics(&conics[3*i], cWeights[i], toDevice, toSrc, &verts, devBounds); } return true; } bool GrAAHairLinePathRenderer::canDrawPath(const SkPath& path, const SkStrokeRec& stroke, const GrDrawTarget* target, bool antiAlias) const { if (!stroke.isHairlineStyle() || !antiAlias) { return false; } if (SkPath::kLine_SegmentMask == path.getSegmentMasks() || target->caps()->shaderDerivativeSupport()) { return true; } return false; } template bool check_bounds(GrDrawState* drawState, const SkRect& devBounds, void* vertices, int vCount) { SkRect tolDevBounds = devBounds; tolDevBounds.outset(SK_Scalar1 / 10000, SK_Scalar1 / 10000); SkRect actualBounds; VertexType* verts = reinterpret_cast(vertices); bool first = true; for (int i = 0; i < vCount; ++i) { SkPoint pos = verts[i].fPos; // This is a hack to workaround the fact that we move some degenerate segments offscreen. if (SK_ScalarMax == pos.fX) { continue; } drawState->getViewMatrix().mapPoints(&pos, 1); if (first) { actualBounds.set(pos.fX, pos.fY, pos.fX, pos.fY); first = false; } else { actualBounds.growToInclude(pos.fX, pos.fY); } } if (!first) { return tolDevBounds.contains(actualBounds); } return true; } bool GrAAHairLinePathRenderer::onDrawPath(const SkPath& path, const SkStrokeRec&, GrDrawTarget* target, bool antiAlias) { GrDrawState* drawState = target->drawState(); SkIRect devClipBounds; target->getClip()->getConservativeBounds(drawState->getRenderTarget(), &devClipBounds); int lineCnt; int quadCnt; int conicCnt; PREALLOC_PTARRAY(128) lines; PREALLOC_PTARRAY(128) quads; PREALLOC_PTARRAY(128) conics; IntArray qSubdivs; FloatArray cWeights; quadCnt = generate_lines_and_quads(path, drawState->getViewMatrix(), devClipBounds, &lines, &quads, &conics, &qSubdivs, &cWeights); lineCnt = lines.count() / 2; conicCnt = conics.count() / 3; // do lines first { GrDrawTarget::AutoReleaseGeometry arg; SkRect devBounds; if (!this->createLineGeom(path, target, lines, lineCnt, &arg, &devBounds)) { return false; } GrDrawTarget::AutoStateRestore asr; // createGeom transforms the geometry to device space when the matrix does not have // perspective. if (target->getDrawState().getViewMatrix().hasPerspective()) { asr.set(target, GrDrawTarget::kPreserve_ASRInit); } else if (!asr.setIdentity(target, GrDrawTarget::kPreserve_ASRInit)) { return false; } GrDrawState* drawState = target->drawState(); // Check devBounds SkASSERT(check_bounds(drawState, devBounds, arg.vertices(), kVertsPerLineSeg * lineCnt)); { GrDrawState::AutoRestoreEffects are(drawState); target->setIndexSourceToBuffer(fLinesIndexBuffer); int lines = 0; while (lines < lineCnt) { int n = GrMin(lineCnt - lines, kNumLineSegsInIdxBuffer); target->drawIndexed(kTriangles_GrPrimitiveType, kVertsPerLineSeg*lines, // startV 0, // startI kVertsPerLineSeg*n, // vCount kIdxsPerLineSeg*n, &devBounds); // iCount lines += n; } } } // then quadratics/conics { GrDrawTarget::AutoReleaseGeometry arg; SkRect devBounds; if (!this->createBezierGeom(path, target, quads, quadCnt, conics, conicCnt, qSubdivs, cWeights, &arg, &devBounds)) { return false; } GrDrawTarget::AutoStateRestore asr; // createGeom transforms the geometry to device space when the matrix does not have // perspective. if (target->getDrawState().getViewMatrix().hasPerspective()) { asr.set(target, GrDrawTarget::kPreserve_ASRInit); } else if (!asr.setIdentity(target, GrDrawTarget::kPreserve_ASRInit)) { return false; } GrDrawState* drawState = target->drawState(); static const int kEdgeAttrIndex = 1; GrEffectRef* hairQuadEffect = HairQuadEdgeEffect::Create(); GrEffectRef* hairConicEffect = HairConicEdgeEffect::Create(); // Check devBounds SkASSERT(check_bounds(drawState, devBounds, arg.vertices(), kVertsPerQuad * quadCnt + kVertsPerQuad * conicCnt)); { GrDrawState::AutoRestoreEffects are(drawState); target->setIndexSourceToBuffer(fQuadsIndexBuffer); int quads = 0; drawState->addCoverageEffect(hairQuadEffect, kEdgeAttrIndex)->unref(); while (quads < quadCnt) { int n = GrMin(quadCnt - quads, kNumQuadsInIdxBuffer); target->drawIndexed(kTriangles_GrPrimitiveType, kVertsPerQuad*quads, // startV 0, // startI kVertsPerQuad*n, // vCount kIdxsPerQuad*n, // iCount &devBounds); quads += n; } } { GrDrawState::AutoRestoreEffects are(drawState); int conics = 0; drawState->addCoverageEffect(hairConicEffect, 1, 2)->unref(); while (conics < conicCnt) { int n = GrMin(conicCnt - conics, kNumQuadsInIdxBuffer); target->drawIndexed(kTriangles_GrPrimitiveType, kVertsPerQuad*(quadCnt + conics), // startV 0, // startI kVertsPerQuad*n, // vCount kIdxsPerQuad*n, // iCount &devBounds); conics += n; } } } target->resetIndexSource(); return true; }