/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrAAConvexTessellator.h" #include "SkCanvas.h" #include "SkPath.h" #include "SkPoint.h" #include "SkString.h" #include "GrPathUtils.h" // Next steps: // use in AAConvexPathRenderer // add an interactive sample app slide // add debug check that all points are suitably far apart // test more degenerate cases // The tolerance for fusing vertices and eliminating colinear lines (It is in device space). static const SkScalar kClose = (SK_Scalar1 / 16); static const SkScalar kCloseSqd = SkScalarMul(kClose, kClose); static SkScalar intersect(const SkPoint& p0, const SkPoint& n0, const SkPoint& p1, const SkPoint& n1) { const SkPoint v = p1 - p0; SkScalar perpDot = n0.fX * n1.fY - n0.fY * n1.fX; return (v.fX * n1.fY - v.fY * n1.fX) / perpDot; } // This is a special case version of intersect where we have the vector // perpendicular to the second line rather than the vector parallel to it. static SkScalar perp_intersect(const SkPoint& p0, const SkPoint& n0, const SkPoint& p1, const SkPoint& perp) { const SkPoint v = p1 - p0; SkScalar perpDot = n0.dot(perp); return v.dot(perp) / perpDot; } static bool duplicate_pt(const SkPoint& p0, const SkPoint& p1) { SkScalar distSq = p0.distanceToSqd(p1); return distSq < kCloseSqd; } static SkScalar abs_dist_from_line(const SkPoint& p0, const SkVector& v, const SkPoint& test) { SkPoint testV = test - p0; SkScalar dist = testV.fX * v.fY - testV.fY * v.fX; return SkScalarAbs(dist); } int GrAAConvexTessellator::addPt(const SkPoint& pt, SkScalar depth, bool movable, bool isCurve) { this->validate(); int index = fPts.count(); *fPts.push() = pt; *fDepths.push() = depth; *fMovable.push() = movable; *fIsCurve.push() = isCurve; this->validate(); return index; } void GrAAConvexTessellator::popLastPt() { this->validate(); fPts.pop(); fDepths.pop(); fMovable.pop(); this->validate(); } void GrAAConvexTessellator::popFirstPtShuffle() { this->validate(); fPts.removeShuffle(0); fDepths.removeShuffle(0); fMovable.removeShuffle(0); this->validate(); } void GrAAConvexTessellator::updatePt(int index, const SkPoint& pt, SkScalar depth) { this->validate(); SkASSERT(fMovable[index]); fPts[index] = pt; fDepths[index] = depth; } void GrAAConvexTessellator::addTri(int i0, int i1, int i2) { if (i0 == i1 || i1 == i2 || i2 == i0) { return; } *fIndices.push() = i0; *fIndices.push() = i1; *fIndices.push() = i2; } void GrAAConvexTessellator::rewind() { fPts.rewind(); fDepths.rewind(); fMovable.rewind(); fIndices.rewind(); fNorms.rewind(); fInitialRing.rewind(); fCandidateVerts.rewind(); #if GR_AA_CONVEX_TESSELLATOR_VIZ fRings.rewind(); // TODO: leak in this case! #else fRings[0].rewind(); fRings[1].rewind(); #endif } void GrAAConvexTessellator::computeBisectors() { fBisectors.setCount(fNorms.count()); int prev = fBisectors.count() - 1; for (int cur = 0; cur < fBisectors.count(); prev = cur, ++cur) { fBisectors[cur] = fNorms[cur] + fNorms[prev]; if (!fBisectors[cur].normalize()) { SkASSERT(SkPoint::kLeft_Side == fSide || SkPoint::kRight_Side == fSide); fBisectors[cur].setOrthog(fNorms[cur], (SkPoint::Side)-fSide); SkVector other; other.setOrthog(fNorms[prev], fSide); fBisectors[cur] += other; SkAssertResult(fBisectors[cur].normalize()); } else { fBisectors[cur].negate(); // make the bisector face in } SkASSERT(SkScalarNearlyEqual(1.0f, fBisectors[cur].length())); } } // The general idea here is to, conceptually, start with the original polygon and slide // the vertices along the bisectors until the first intersection. At that // point two of the edges collapse and the process repeats on the new polygon. // The polygon state is captured in the Ring class while the GrAAConvexTessellator // controls the iteration. The CandidateVerts holds the formative points for the // next ring. bool GrAAConvexTessellator::tessellate(const SkMatrix& m, const SkPath& path) { static const int kMaxNumRings = 8; SkDEBUGCODE(fShouldCheckDepths = true;) if (!this->extractFromPath(m, path)) { return false; } this->createOuterRing(); // the bisectors are only needed for the computation of the outer ring fBisectors.rewind(); Ring* lastRing = &fInitialRing; int i; for (i = 0; i < kMaxNumRings; ++i) { Ring* nextRing = this->getNextRing(lastRing); if (this->createInsetRing(*lastRing, nextRing)) { break; } nextRing->init(*this); lastRing = nextRing; } if (kMaxNumRings == i) { // If we've exceeded the amount of time we want to throw at this, set // the depth of all points in the final ring to 'fTargetDepth' and // create a fan. this->terminate(*lastRing); SkDEBUGCODE(fShouldCheckDepths = false;) } #ifdef SK_DEBUG this->validate(); if (fShouldCheckDepths) { SkDEBUGCODE(this->checkAllDepths();) } #endif return true; } SkScalar GrAAConvexTessellator::computeDepthFromEdge(int edgeIdx, const SkPoint& p) const { SkASSERT(edgeIdx < fNorms.count()); SkPoint v = p - fPts[edgeIdx]; SkScalar depth = -fNorms[edgeIdx].dot(v); SkASSERT(depth >= 0.0f); return depth; } // Find a point that is 'desiredDepth' away from the 'edgeIdx'-th edge and lies // along the 'bisector' from the 'startIdx'-th point. bool GrAAConvexTessellator::computePtAlongBisector(int startIdx, const SkVector& bisector, int edgeIdx, SkScalar desiredDepth, SkPoint* result) const { const SkPoint& norm = fNorms[edgeIdx]; // First find the point where the edge and the bisector intersect SkPoint newP; SkScalar t = perp_intersect(fPts[startIdx], bisector, fPts[edgeIdx], norm); if (SkScalarNearlyEqual(t, 0.0f)) { // the start point was one of the original ring points SkASSERT(startIdx < fNorms.count()); newP = fPts[startIdx]; } else if (t > 0.0f) { SkASSERT(t < 0.0f); newP = bisector; newP.scale(t); newP += fPts[startIdx]; } else { return false; } // Then offset along the bisector from that point the correct distance t = -desiredDepth / bisector.dot(norm); SkASSERT(t > 0.0f); *result = bisector; result->scale(t); *result += newP; return true; } bool GrAAConvexTessellator::extractFromPath(const SkMatrix& m, const SkPath& path) { SkASSERT(SkPath::kConvex_Convexity == path.getConvexity()); // Outer ring: 3*numPts // Middle ring: numPts // Presumptive inner ring: numPts this->reservePts(5*path.countPoints()); // Outer ring: 12*numPts // Middle ring: 0 // Presumptive inner ring: 6*numPts + 6 fIndices.setReserve(18*path.countPoints() + 6); fNorms.setReserve(path.countPoints()); SkDEBUGCODE(fMinCross = SK_ScalarMax;) SkDEBUGCODE(fMaxCross = -SK_ScalarMax;) // TODO: is there a faster way to extract the points from the path? Perhaps // get all the points via a new entry point, transform them all in bulk // and then walk them to find duplicates? SkPath::Iter iter(path, true); SkPoint pts[4]; SkPath::Verb verb; while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { switch (verb) { case SkPath::kLine_Verb: this->lineTo(m, pts[1], false); break; case SkPath::kQuad_Verb: this->quadTo(m, pts); break; case SkPath::kCubic_Verb: this->cubicTo(m, pts); break; case SkPath::kConic_Verb: this->conicTo(m, pts, iter.conicWeight()); break; case SkPath::kMove_Verb: case SkPath::kClose_Verb: case SkPath::kDone_Verb: break; } } if (this->numPts() < 3) { return false; } // check if last point is a duplicate of the first point. If so, remove it. if (duplicate_pt(fPts[this->numPts()-1], fPts[0])) { this->popLastPt(); fNorms.pop(); } SkASSERT(fPts.count() == fNorms.count()+1); if (this->numPts() >= 3 && abs_dist_from_line(fPts.top(), fNorms.top(), fPts[0]) < kClose) { // The last point is on the line from the second to last to the first point. this->popLastPt(); fNorms.pop(); } if (this->numPts() < 3) { return false; } *fNorms.push() = fPts[0] - fPts.top(); SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top()); SkASSERT(len > 0.0f); SkASSERT(fPts.count() == fNorms.count()); if (abs_dist_from_line(fPts[0], fNorms.top(), fPts[1]) < kClose) { // The first point is on the line from the last to the second. this->popFirstPtShuffle(); fNorms.removeShuffle(0); fNorms[0] = fPts[1] - fPts[0]; SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms[0]); SkASSERT(len > 0.0f); SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[0].length())); } if (this->numPts() < 3) { return false; } // Check the cross product of the final trio SkScalar cross = SkPoint::CrossProduct(fNorms[0], fNorms.top()); SkDEBUGCODE(fMaxCross = SkTMax(fMaxCross, cross)); SkDEBUGCODE(fMinCross = SkTMin(fMinCross, cross)); SkASSERT((fMaxCross >= 0.0f) == (fMinCross >= 0.0f)); if (cross > 0.0f) { fSide = SkPoint::kRight_Side; } else { fSide = SkPoint::kLeft_Side; } // Make all the normals face outwards rather than along the edge for (int cur = 0; cur < fNorms.count(); ++cur) { fNorms[cur].setOrthog(fNorms[cur], fSide); SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[cur].length())); } this->computeBisectors(); fCandidateVerts.setReserve(this->numPts()); fInitialRing.setReserve(this->numPts()); for (int i = 0; i < this->numPts(); ++i) { fInitialRing.addIdx(i, i); } fInitialRing.init(fNorms, fBisectors); this->validate(); return true; } GrAAConvexTessellator::Ring* GrAAConvexTessellator::getNextRing(Ring* lastRing) { #if GR_AA_CONVEX_TESSELLATOR_VIZ Ring* ring = *fRings.push() = SkNEW(Ring); ring->setReserve(fInitialRing.numPts()); ring->rewind(); return ring; #else // Flip flop back and forth between fRings[0] & fRings[1] int nextRing = (lastRing == &fRings[0]) ? 1 : 0; fRings[nextRing].setReserve(fInitialRing.numPts()); fRings[nextRing].rewind(); return &fRings[nextRing]; #endif } void GrAAConvexTessellator::fanRing(const Ring& ring) { // fan out from point 0 for (int cur = 1; cur < ring.numPts()-1; ++cur) { this->addTri(ring.index(0), ring.index(cur), ring.index(cur+1)); } } void GrAAConvexTessellator::createOuterRing() { // For now, we're only generating one outer ring (at the start). This // could be relaxed for stroking use cases. SkASSERT(0 == fIndices.count()); SkASSERT(fPts.count() == fNorms.count()); const int numPts = fPts.count(); int prev = numPts - 1; int lastPerpIdx = -1, firstPerpIdx = -1, newIdx0, newIdx1, newIdx2; for (int cur = 0; cur < numPts; ++cur) { if (fIsCurve[cur]) { // Inside a curve, we assume that the curvature is shallow enough (due to tesselation) // that we only need one corner point. Mathematically, the distance the corner point // gets shifted out should depend on the angle between the two line segments (as in // mitering), but again due to tesselation we assume that this angle is small and // therefore the correction factor is negligible and we do not bother with it. // The bisector outset point SkPoint temp = fBisectors[cur]; temp.scale(-fTargetDepth); // the bisectors point in temp += fPts[cur]; // double-check our "sufficiently flat" assumption; we want the bisector point to be // close to the normal point. #define kFlatnessTolerance 1.0f SkDEBUGCODE(SkPoint prevNormal = fNorms[prev];) SkDEBUGCODE(prevNormal.scale(fTargetDepth);) SkDEBUGCODE(prevNormal += fPts[cur];) SkASSERT((temp - prevNormal).length() < kFlatnessTolerance); newIdx1 = this->addPt(temp, -fTargetDepth, false, true); if (0 == cur) { // Store the index of the first perpendicular point to finish up firstPerpIdx = newIdx1; SkASSERT(-1 == lastPerpIdx); } else { // The triangles for the previous edge this->addTri(prev, newIdx1, cur); this->addTri(prev, lastPerpIdx, newIdx1); } prev = cur; // Track the last perpendicular outset point so we can construct the // trailing edge triangles. lastPerpIdx = newIdx1; } else { // For each vertex of the original polygon we add three points to the // outset polygon - one extending perpendicular to each impinging edge // and one along the bisector. Two triangles are added for each corner // and two are added along each edge. // The perpendicular point for the last edge SkPoint temp = fNorms[prev]; temp.scale(fTargetDepth); temp += fPts[cur]; // We know it isn't a duplicate of the prior point (since it and this // one are just perpendicular offsets from the non-merged polygon points) newIdx0 = this->addPt(temp, -fTargetDepth, false, false); // The bisector outset point temp = fBisectors[cur]; temp.scale(-fTargetDepth); // the bisectors point in temp += fPts[cur]; // For very shallow angles all the corner points could fuse if (duplicate_pt(temp, this->point(newIdx0))) { newIdx1 = newIdx0; } else { newIdx1 = this->addPt(temp, -fTargetDepth, false, false); } // The perpendicular point for the next edge. temp = fNorms[cur]; temp.scale(fTargetDepth); temp += fPts[cur]; // For very shallow angles all the corner points could fuse. if (duplicate_pt(temp, this->point(newIdx1))) { newIdx2 = newIdx1; } else { newIdx2 = this->addPt(temp, -fTargetDepth, false, false); } if (0 == cur) { // Store the index of the first perpendicular point to finish up firstPerpIdx = newIdx0; SkASSERT(-1 == lastPerpIdx); } else { // The triangles for the previous edge this->addTri(prev, newIdx0, cur); this->addTri(prev, lastPerpIdx, newIdx0); } // The two triangles for the corner this->addTri(cur, newIdx0, newIdx1); this->addTri(cur, newIdx1, newIdx2); prev = cur; // Track the last perpendicular outset point so we can construct the // trailing edge triangles. lastPerpIdx = newIdx2; } } // pick up the final edge rect this->addTri(numPts - 1, firstPerpIdx, 0); this->addTri(numPts - 1, lastPerpIdx, firstPerpIdx); this->validate(); } // Something went wrong in the creation of the next ring. Mark the last good // ring as being at the desired depth and fan it. void GrAAConvexTessellator::terminate(const Ring& ring) { for (int i = 0; i < ring.numPts(); ++i) { fDepths[ring.index(i)] = fTargetDepth; } this->fanRing(ring); } // return true when processing is complete bool GrAAConvexTessellator::createInsetRing(const Ring& lastRing, Ring* nextRing) { bool done = false; fCandidateVerts.rewind(); // Loop through all the points in the ring and find the intersection with the smallest depth SkScalar minDist = SK_ScalarMax, minT = 0.0f; int minEdgeIdx = -1; for (int cur = 0; cur < lastRing.numPts(); ++cur) { int next = (cur + 1) % lastRing.numPts(); SkScalar t = intersect(this->point(lastRing.index(cur)), lastRing.bisector(cur), this->point(lastRing.index(next)), lastRing.bisector(next)); SkScalar dist = -t * lastRing.norm(cur).dot(lastRing.bisector(cur)); if (minDist > dist) { minDist = dist; minT = t; minEdgeIdx = cur; } } SkPoint newPt = lastRing.bisector(minEdgeIdx); newPt.scale(minT); newPt += this->point(lastRing.index(minEdgeIdx)); SkScalar depth = this->computeDepthFromEdge(lastRing.origEdgeID(minEdgeIdx), newPt); if (depth >= fTargetDepth) { // None of the bisectors intersect before reaching the desired depth. // Just step them all to the desired depth depth = fTargetDepth; done = true; } // 'dst' stores where each point in the last ring maps to/transforms into // in the next ring. SkTDArray dst; dst.setCount(lastRing.numPts()); // Create the first point (who compares with no one) if (!this->computePtAlongBisector(lastRing.index(0), lastRing.bisector(0), lastRing.origEdgeID(0), depth, &newPt)) { this->terminate(lastRing); SkDEBUGCODE(fShouldCheckDepths = false;) return true; } dst[0] = fCandidateVerts.addNewPt(newPt, lastRing.index(0), lastRing.origEdgeID(0), !this->movable(lastRing.index(0))); // Handle the middle points (who only compare with the prior point) for (int cur = 1; cur < lastRing.numPts()-1; ++cur) { if (!this->computePtAlongBisector(lastRing.index(cur), lastRing.bisector(cur), lastRing.origEdgeID(cur), depth, &newPt)) { this->terminate(lastRing); SkDEBUGCODE(fShouldCheckDepths = false;) return true; } if (!duplicate_pt(newPt, fCandidateVerts.lastPoint())) { dst[cur] = fCandidateVerts.addNewPt(newPt, lastRing.index(cur), lastRing.origEdgeID(cur), !this->movable(lastRing.index(cur))); } else { dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur)); } } // Check on the last point (handling the wrap around) int cur = lastRing.numPts()-1; if (!this->computePtAlongBisector(lastRing.index(cur), lastRing.bisector(cur), lastRing.origEdgeID(cur), depth, &newPt)) { this->terminate(lastRing); SkDEBUGCODE(fShouldCheckDepths = false;) return true; } bool dupPrev = duplicate_pt(newPt, fCandidateVerts.lastPoint()); bool dupNext = duplicate_pt(newPt, fCandidateVerts.firstPoint()); if (!dupPrev && !dupNext) { dst[cur] = fCandidateVerts.addNewPt(newPt, lastRing.index(cur), lastRing.origEdgeID(cur), !this->movable(lastRing.index(cur))); } else if (dupPrev && !dupNext) { dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur)); } else if (!dupPrev && dupNext) { dst[cur] = fCandidateVerts.fuseWithNext(); } else { bool dupPrevVsNext = duplicate_pt(fCandidateVerts.firstPoint(), fCandidateVerts.lastPoint()); if (!dupPrevVsNext) { dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur)); } else { dst[cur] = dst[cur-1] = fCandidateVerts.fuseWithBoth(); } } // Fold the new ring's points into the global pool for (int i = 0; i < fCandidateVerts.numPts(); ++i) { int newIdx; if (fCandidateVerts.needsToBeNew(i)) { // if the originating index is still valid then this point wasn't // fused (and is thus movable) newIdx = this->addPt(fCandidateVerts.point(i), depth, fCandidateVerts.originatingIdx(i) != -1, false); } else { SkASSERT(fCandidateVerts.originatingIdx(i) != -1); this->updatePt(fCandidateVerts.originatingIdx(i), fCandidateVerts.point(i), depth); newIdx = fCandidateVerts.originatingIdx(i); } nextRing->addIdx(newIdx, fCandidateVerts.origEdge(i)); } // 'dst' currently has indices into the ring. Remap these to be indices // into the global pool since the triangulation operates in that space. for (int i = 0; i < dst.count(); ++i) { dst[i] = nextRing->index(dst[i]); } for (int cur = 0; cur < lastRing.numPts(); ++cur) { int next = (cur + 1) % lastRing.numPts(); this->addTri(lastRing.index(cur), lastRing.index(next), dst[next]); this->addTri(lastRing.index(cur), dst[next], dst[cur]); } if (done) { this->fanRing(*nextRing); } if (nextRing->numPts() < 3) { done = true; } return done; } void GrAAConvexTessellator::validate() const { SkASSERT(fPts.count() == fDepths.count()); SkASSERT(fPts.count() == fMovable.count()); SkASSERT(0 == (fIndices.count() % 3)); } ////////////////////////////////////////////////////////////////////////////// void GrAAConvexTessellator::Ring::init(const GrAAConvexTessellator& tess) { this->computeNormals(tess); this->computeBisectors(tess); SkASSERT(this->isConvex(tess)); } void GrAAConvexTessellator::Ring::init(const SkTDArray& norms, const SkTDArray& bisectors) { for (int i = 0; i < fPts.count(); ++i) { fPts[i].fNorm = norms[i]; fPts[i].fBisector = bisectors[i]; } } // Compute the outward facing normal at each vertex. void GrAAConvexTessellator::Ring::computeNormals(const GrAAConvexTessellator& tess) { for (int cur = 0; cur < fPts.count(); ++cur) { int next = (cur + 1) % fPts.count(); fPts[cur].fNorm = tess.point(fPts[next].fIndex) - tess.point(fPts[cur].fIndex); SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fPts[cur].fNorm); SkASSERT(len > 0.0f); fPts[cur].fNorm.setOrthog(fPts[cur].fNorm, tess.side()); SkASSERT(SkScalarNearlyEqual(1.0f, fPts[cur].fNorm.length())); } } void GrAAConvexTessellator::Ring::computeBisectors(const GrAAConvexTessellator& tess) { int prev = fPts.count() - 1; for (int cur = 0; cur < fPts.count(); prev = cur, ++cur) { fPts[cur].fBisector = fPts[cur].fNorm + fPts[prev].fNorm; if (!fPts[cur].fBisector.normalize()) { SkASSERT(SkPoint::kLeft_Side == tess.side() || SkPoint::kRight_Side == tess.side()); fPts[cur].fBisector.setOrthog(fPts[cur].fNorm, (SkPoint::Side)-tess.side()); SkVector other; other.setOrthog(fPts[prev].fNorm, tess.side()); fPts[cur].fBisector += other; SkAssertResult(fPts[cur].fBisector.normalize()); } else { fPts[cur].fBisector.negate(); // make the bisector face in } SkASSERT(SkScalarNearlyEqual(1.0f, fPts[cur].fBisector.length())); } } ////////////////////////////////////////////////////////////////////////////// #ifdef SK_DEBUG // Is this ring convex? bool GrAAConvexTessellator::Ring::isConvex(const GrAAConvexTessellator& tess) const { if (fPts.count() < 3) { return false; } SkPoint prev = tess.point(fPts[0].fIndex) - tess.point(fPts.top().fIndex); SkPoint cur = tess.point(fPts[1].fIndex) - tess.point(fPts[0].fIndex); SkScalar minDot = prev.fX * cur.fY - prev.fY * cur.fX; SkScalar maxDot = minDot; prev = cur; for (int i = 1; i < fPts.count(); ++i) { int next = (i + 1) % fPts.count(); cur = tess.point(fPts[next].fIndex) - tess.point(fPts[i].fIndex); SkScalar dot = prev.fX * cur.fY - prev.fY * cur.fX; minDot = SkMinScalar(minDot, dot); maxDot = SkMaxScalar(maxDot, dot); prev = cur; } return (maxDot > 0.0f) == (minDot >= 0.0f); } static SkScalar capsule_depth(const SkPoint& p0, const SkPoint& p1, const SkPoint& test, SkPoint::Side side, int* sign) { *sign = -1; SkPoint edge = p1 - p0; SkScalar len = SkPoint::Normalize(&edge); SkPoint testVec = test - p0; SkScalar d0 = edge.dot(testVec); if (d0 < 0.0f) { return SkPoint::Distance(p0, test); } if (d0 > len) { return SkPoint::Distance(p1, test); } SkScalar perpDist = testVec.fY * edge.fX - testVec.fX * edge.fY; if (SkPoint::kRight_Side == side) { perpDist = -perpDist; } if (perpDist < 0.0f) { perpDist = -perpDist; } else { *sign = 1; } return perpDist; } SkScalar GrAAConvexTessellator::computeRealDepth(const SkPoint& p) const { SkScalar minDist = SK_ScalarMax; int closestSign, sign; for (int edge = 0; edge < fNorms.count(); ++edge) { SkScalar dist = capsule_depth(this->point(edge), this->point((edge+1) % fNorms.count()), p, fSide, &sign); SkASSERT(dist >= 0.0f); if (minDist > dist) { minDist = dist; closestSign = sign; } } return closestSign * minDist; } // Verify that the incrementally computed depths are close to the actual depths. void GrAAConvexTessellator::checkAllDepths() const { for (int cur = 0; cur < this->numPts(); ++cur) { SkScalar realDepth = this->computeRealDepth(this->point(cur)); SkScalar computedDepth = this->depth(cur); SkASSERT(SkScalarNearlyEqual(realDepth, computedDepth, 0.01f)); } } #endif #define kQuadTolerance 0.2f #define kCubicTolerance 0.2f #define kConicTolerance 0.5f void GrAAConvexTessellator::lineTo(const SkMatrix& m, SkPoint p, bool isCurve) { m.mapPoints(&p, 1); if (this->numPts() > 0 && duplicate_pt(p, this->lastPoint())) { return; } SkASSERT(fPts.count() <= 1 || fPts.count() == fNorms.count()+1); if (this->numPts() >= 2 && abs_dist_from_line(fPts.top(), fNorms.top(), p) < kClose) { // The old last point is on the line from the second to last to the new point this->popLastPt(); fNorms.pop(); fIsCurve.pop(); } this->addPt(p, 0.0f, false, isCurve); if (this->numPts() > 1) { *fNorms.push() = fPts.top() - fPts[fPts.count()-2]; SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top()); SkASSERT(len > 0.0f); SkASSERT(SkScalarNearlyEqual(1.0f, fNorms.top().length())); } SkDEBUGCODE( if (this->numPts() >= 3) { int cur = this->numPts()-1; SkScalar cross = SkPoint::CrossProduct(fNorms[cur-1], fNorms[cur-2]); fMaxCross = SkTMax(fMaxCross, cross); fMinCross = SkTMin(fMinCross, cross); } ) } void GrAAConvexTessellator::quadTo(const SkMatrix& m, SkPoint pts[3]) { int maxCount = GrPathUtils::quadraticPointCount(pts, kQuadTolerance); fPointBuffer.setReserve(maxCount); SkPoint* target = fPointBuffer.begin(); int count = GrPathUtils::generateQuadraticPoints(pts[0], pts[1], pts[2], kQuadTolerance, &target, maxCount); fPointBuffer.setCount(count); for (int i = 0; i < count; i++) { lineTo(m, fPointBuffer[i], true); } } void GrAAConvexTessellator::cubicTo(const SkMatrix& m, SkPoint pts[4]) { int maxCount = GrPathUtils::cubicPointCount(pts, kCubicTolerance); fPointBuffer.setReserve(maxCount); SkPoint* target = fPointBuffer.begin(); int count = GrPathUtils::generateCubicPoints(pts[0], pts[1], pts[2], pts[3], kCubicTolerance, &target, maxCount); fPointBuffer.setCount(count); for (int i = 0; i < count; i++) { lineTo(m, fPointBuffer[i], true); } } // include down here to avoid compilation errors caused by "-" overload in SkGeometry.h #include "SkGeometry.h" void GrAAConvexTessellator::conicTo(const SkMatrix& m, SkPoint* pts, SkScalar w) { SkAutoConicToQuads quadder; const SkPoint* quads = quadder.computeQuads(pts, w, kConicTolerance); SkPoint lastPoint = *(quads++); int count = quadder.countQuads(); for (int i = 0; i < count; ++i) { SkPoint quadPts[3]; quadPts[0] = lastPoint; quadPts[1] = quads[0]; quadPts[2] = i == count - 1 ? pts[2] : quads[1]; quadTo(m, quadPts); lastPoint = quadPts[2]; quads += 2; } } ////////////////////////////////////////////////////////////////////////////// #if GR_AA_CONVEX_TESSELLATOR_VIZ static const SkScalar kPointRadius = 0.02f; static const SkScalar kArrowStrokeWidth = 0.0f; static const SkScalar kArrowLength = 0.2f; static const SkScalar kEdgeTextSize = 0.1f; static const SkScalar kPointTextSize = 0.02f; static void draw_point(SkCanvas* canvas, const SkPoint& p, SkScalar paramValue, bool stroke) { SkPaint paint; SkASSERT(paramValue <= 1.0f); int gs = int(255*paramValue); paint.setARGB(255, gs, gs, gs); canvas->drawCircle(p.fX, p.fY, kPointRadius, paint); if (stroke) { SkPaint stroke; stroke.setColor(SK_ColorYELLOW); stroke.setStyle(SkPaint::kStroke_Style); stroke.setStrokeWidth(kPointRadius/3.0f); canvas->drawCircle(p.fX, p.fY, kPointRadius, stroke); } } static void draw_line(SkCanvas* canvas, const SkPoint& p0, const SkPoint& p1, SkColor color) { SkPaint p; p.setColor(color); canvas->drawLine(p0.fX, p0.fY, p1.fX, p1.fY, p); } static void draw_arrow(SkCanvas*canvas, const SkPoint& p, const SkPoint &n, SkScalar len, SkColor color) { SkPaint paint; paint.setColor(color); paint.setStrokeWidth(kArrowStrokeWidth); paint.setStyle(SkPaint::kStroke_Style); canvas->drawLine(p.fX, p.fY, p.fX + len * n.fX, p.fY + len * n.fY, paint); } void GrAAConvexTessellator::Ring::draw(SkCanvas* canvas, const GrAAConvexTessellator& tess) const { SkPaint paint; paint.setTextSize(kEdgeTextSize); for (int cur = 0; cur < fPts.count(); ++cur) { int next = (cur + 1) % fPts.count(); draw_line(canvas, tess.point(fPts[cur].fIndex), tess.point(fPts[next].fIndex), SK_ColorGREEN); SkPoint mid = tess.point(fPts[cur].fIndex) + tess.point(fPts[next].fIndex); mid.scale(0.5f); if (fPts.count()) { draw_arrow(canvas, mid, fPts[cur].fNorm, kArrowLength, SK_ColorRED); mid.fX += (kArrowLength/2) * fPts[cur].fNorm.fX; mid.fY += (kArrowLength/2) * fPts[cur].fNorm.fY; } SkString num; num.printf("%d", this->origEdgeID(cur)); canvas->drawText(num.c_str(), num.size(), mid.fX, mid.fY, paint); if (fPts.count()) { draw_arrow(canvas, tess.point(fPts[cur].fIndex), fPts[cur].fBisector, kArrowLength, SK_ColorBLUE); } } } void GrAAConvexTessellator::draw(SkCanvas* canvas) const { for (int i = 0; i < fIndices.count(); i += 3) { SkASSERT(fIndices[i] < this->numPts()) ; SkASSERT(fIndices[i+1] < this->numPts()) ; SkASSERT(fIndices[i+2] < this->numPts()) ; draw_line(canvas, this->point(this->fIndices[i]), this->point(this->fIndices[i+1]), SK_ColorBLACK); draw_line(canvas, this->point(this->fIndices[i+1]), this->point(this->fIndices[i+2]), SK_ColorBLACK); draw_line(canvas, this->point(this->fIndices[i+2]), this->point(this->fIndices[i]), SK_ColorBLACK); } fInitialRing.draw(canvas, *this); for (int i = 0; i < fRings.count(); ++i) { fRings[i]->draw(canvas, *this); } for (int i = 0; i < this->numPts(); ++i) { draw_point(canvas, this->point(i), 0.5f + (this->depth(i)/(2*fTargetDepth)), !this->movable(i)); SkPaint paint; paint.setTextSize(kPointTextSize); paint.setTextAlign(SkPaint::kCenter_Align); if (this->depth(i) <= -fTargetDepth) { paint.setColor(SK_ColorWHITE); } SkString num; num.printf("%d", i); canvas->drawText(num.c_str(), num.size(), this->point(i).fX, this->point(i).fY+(kPointRadius/2.0f), paint); } } #endif