/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrAAConvexPathRenderer.h" #include "GrContext.h" #include "GrDrawState.h" #include "GrDrawTargetCaps.h" #include "GrProcessor.h" #include "GrPathUtils.h" #include "GrTBackendProcessorFactory.h" #include "SkString.h" #include "SkStrokeRec.h" #include "SkTraceEvent.h" #include "gl/builders/GrGLProgramBuilder.h" #include "gl/GrGLProcessor.h" #include "gl/GrGLSL.h" #include "gl/GrGLGeometryProcessor.h" #include "GrGeometryProcessor.h" GrAAConvexPathRenderer::GrAAConvexPathRenderer() { } struct Segment { enum { // These enum values are assumed in member functions below. kLine = 0, kQuad = 1, } fType; // line uses one pt, quad uses 2 pts SkPoint fPts[2]; // normal to edge ending at each pt SkVector fNorms[2]; // is the corner where the previous segment meets this segment // sharp. If so, fMid is a normalized bisector facing outward. SkVector fMid; int countPoints() { GR_STATIC_ASSERT(0 == kLine && 1 == kQuad); return fType + 1; } const SkPoint& endPt() const { GR_STATIC_ASSERT(0 == kLine && 1 == kQuad); return fPts[fType]; }; const SkPoint& endNorm() const { GR_STATIC_ASSERT(0 == kLine && 1 == kQuad); return fNorms[fType]; }; }; typedef SkTArray SegmentArray; static void center_of_mass(const SegmentArray& segments, SkPoint* c) { SkScalar area = 0; SkPoint center = {0, 0}; int count = segments.count(); SkPoint p0 = {0, 0}; if (count > 2) { // We translate the polygon so that the first point is at the origin. // This avoids some precision issues with small area polygons far away // from the origin. p0 = segments[0].endPt(); SkPoint pi; SkPoint pj; // the first and last iteration of the below loop would compute // zeros since the starting / ending point is (0,0). So instead we start // at i=1 and make the last iteration i=count-2. pj = segments[1].endPt() - p0; for (int i = 1; i < count - 1; ++i) { pi = pj; const SkPoint pj = segments[i + 1].endPt() - p0; SkScalar t = SkScalarMul(pi.fX, pj.fY) - SkScalarMul(pj.fX, pi.fY); area += t; center.fX += (pi.fX + pj.fX) * t; center.fY += (pi.fY + pj.fY) * t; } } // If the poly has no area then we instead return the average of // its points. if (SkScalarNearlyZero(area)) { SkPoint avg; avg.set(0, 0); for (int i = 0; i < count; ++i) { const SkPoint& pt = segments[i].endPt(); avg.fX += pt.fX; avg.fY += pt.fY; } SkScalar denom = SK_Scalar1 / count; avg.scale(denom); *c = avg; } else { area *= 3; area = SkScalarDiv(SK_Scalar1, area); center.fX = SkScalarMul(center.fX, area); center.fY = SkScalarMul(center.fY, area); // undo the translate of p0 to the origin. *c = center + p0; } SkASSERT(!SkScalarIsNaN(c->fX) && !SkScalarIsNaN(c->fY)); } static void compute_vectors(SegmentArray* segments, SkPoint* fanPt, SkPath::Direction dir, int* vCount, int* iCount) { center_of_mass(*segments, fanPt); int count = segments->count(); // Make the normals point towards the outside SkPoint::Side normSide; if (dir == SkPath::kCCW_Direction) { normSide = SkPoint::kRight_Side; } else { normSide = SkPoint::kLeft_Side; } *vCount = 0; *iCount = 0; // compute normals at all points for (int a = 0; a < count; ++a) { Segment& sega = (*segments)[a]; int b = (a + 1) % count; Segment& segb = (*segments)[b]; const SkPoint* prevPt = &sega.endPt(); int n = segb.countPoints(); for (int p = 0; p < n; ++p) { segb.fNorms[p] = segb.fPts[p] - *prevPt; segb.fNorms[p].normalize(); segb.fNorms[p].setOrthog(segb.fNorms[p], normSide); prevPt = &segb.fPts[p]; } if (Segment::kLine == segb.fType) { *vCount += 5; *iCount += 9; } else { *vCount += 6; *iCount += 12; } } // compute mid-vectors where segments meet. TODO: Detect shallow corners // and leave out the wedges and close gaps by stitching segments together. for (int a = 0; a < count; ++a) { const Segment& sega = (*segments)[a]; int b = (a + 1) % count; Segment& segb = (*segments)[b]; segb.fMid = segb.fNorms[0] + sega.endNorm(); segb.fMid.normalize(); // corner wedges *vCount += 4; *iCount += 6; } } struct DegenerateTestData { DegenerateTestData() { fStage = kInitial; } bool isDegenerate() const { return kNonDegenerate != fStage; } enum { kInitial, kPoint, kLine, kNonDegenerate } fStage; SkPoint fFirstPoint; SkVector fLineNormal; SkScalar fLineC; }; static const SkScalar kClose = (SK_Scalar1 / 16); static const SkScalar kCloseSqd = SkScalarMul(kClose, kClose); static void update_degenerate_test(DegenerateTestData* data, const SkPoint& pt) { switch (data->fStage) { case DegenerateTestData::kInitial: data->fFirstPoint = pt; data->fStage = DegenerateTestData::kPoint; break; case DegenerateTestData::kPoint: if (pt.distanceToSqd(data->fFirstPoint) > kCloseSqd) { data->fLineNormal = pt - data->fFirstPoint; data->fLineNormal.normalize(); data->fLineNormal.setOrthog(data->fLineNormal); data->fLineC = -data->fLineNormal.dot(data->fFirstPoint); data->fStage = DegenerateTestData::kLine; } break; case DegenerateTestData::kLine: if (SkScalarAbs(data->fLineNormal.dot(pt) + data->fLineC) > kClose) { data->fStage = DegenerateTestData::kNonDegenerate; } case DegenerateTestData::kNonDegenerate: break; default: SkFAIL("Unexpected degenerate test stage."); } } static inline bool get_direction(const SkPath& path, const SkMatrix& m, SkPath::Direction* dir) { if (!path.cheapComputeDirection(dir)) { return false; } // check whether m reverses the orientation SkASSERT(!m.hasPerspective()); SkScalar det2x2 = SkScalarMul(m.get(SkMatrix::kMScaleX), m.get(SkMatrix::kMScaleY)) - SkScalarMul(m.get(SkMatrix::kMSkewX), m.get(SkMatrix::kMSkewY)); if (det2x2 < 0) { *dir = SkPath::OppositeDirection(*dir); } return true; } static inline void add_line_to_segment(const SkPoint& pt, SegmentArray* segments, SkRect* devBounds) { segments->push_back(); segments->back().fType = Segment::kLine; segments->back().fPts[0] = pt; devBounds->growToInclude(pt.fX, pt.fY); } #ifdef SK_DEBUG static inline bool contains_inclusive(const SkRect& rect, const SkPoint& p) { return p.fX >= rect.fLeft && p.fX <= rect.fRight && p.fY >= rect.fTop && p.fY <= rect.fBottom; } #endif static inline void add_quad_segment(const SkPoint pts[3], SegmentArray* segments, SkRect* devBounds) { if (pts[0].distanceToSqd(pts[1]) < kCloseSqd || pts[1].distanceToSqd(pts[2]) < kCloseSqd) { if (pts[0] != pts[2]) { add_line_to_segment(pts[2], segments, devBounds); } } else { segments->push_back(); segments->back().fType = Segment::kQuad; segments->back().fPts[0] = pts[1]; segments->back().fPts[1] = pts[2]; SkASSERT(contains_inclusive(*devBounds, pts[0])); devBounds->growToInclude(pts + 1, 2); } } static inline void add_cubic_segments(const SkPoint pts[4], SkPath::Direction dir, SegmentArray* segments, SkRect* devBounds) { SkSTArray<15, SkPoint, true> quads; GrPathUtils::convertCubicToQuads(pts, SK_Scalar1, true, dir, &quads); int count = quads.count(); for (int q = 0; q < count; q += 3) { add_quad_segment(&quads[q], segments, devBounds); } } static bool get_segments(const SkPath& path, const SkMatrix& m, SegmentArray* segments, SkPoint* fanPt, int* vCount, int* iCount, SkRect* devBounds) { SkPath::Iter iter(path, true); // This renderer over-emphasizes very thin path regions. We use the distance // to the path from the sample to compute coverage. Every pixel intersected // by the path will be hit and the maximum distance is sqrt(2)/2. We don't // notice that the sample may be close to a very thin area of the path and // thus should be very light. This is particularly egregious for degenerate // line paths. We detect paths that are very close to a line (zero area) and // draw nothing. DegenerateTestData degenerateData; SkPath::Direction dir; // get_direction can fail for some degenerate paths. if (!get_direction(path, m, &dir)) { return false; } for (;;) { SkPoint pts[4]; SkPath::Verb verb = iter.next(pts); switch (verb) { case SkPath::kMove_Verb: m.mapPoints(pts, 1); update_degenerate_test(°enerateData, pts[0]); devBounds->set(pts->fX, pts->fY, pts->fX, pts->fY); break; case SkPath::kLine_Verb: { m.mapPoints(&pts[1], 1); update_degenerate_test(°enerateData, pts[1]); add_line_to_segment(pts[1], segments, devBounds); break; } case SkPath::kQuad_Verb: m.mapPoints(pts, 3); update_degenerate_test(°enerateData, pts[1]); update_degenerate_test(°enerateData, pts[2]); add_quad_segment(pts, segments, devBounds); break; case SkPath::kCubic_Verb: { m.mapPoints(pts, 4); update_degenerate_test(°enerateData, pts[1]); update_degenerate_test(°enerateData, pts[2]); update_degenerate_test(°enerateData, pts[3]); add_cubic_segments(pts, dir, segments, devBounds); break; }; case SkPath::kDone_Verb: if (degenerateData.isDegenerate()) { return false; } else { compute_vectors(segments, fanPt, dir, vCount, iCount); return true; } default: break; } } } struct QuadVertex { SkPoint fPos; SkPoint fUV; SkScalar fD0; SkScalar fD1; }; struct Draw { Draw() : fVertexCnt(0), fIndexCnt(0) {} int fVertexCnt; int fIndexCnt; }; typedef SkTArray DrawArray; static void create_vertices(const SegmentArray& segments, const SkPoint& fanPt, DrawArray* draws, QuadVertex* verts, uint16_t* idxs) { Draw* draw = &draws->push_back(); // alias just to make vert/index assignments easier to read. int* v = &draw->fVertexCnt; int* i = &draw->fIndexCnt; int count = segments.count(); for (int a = 0; a < count; ++a) { const Segment& sega = segments[a]; int b = (a + 1) % count; const Segment& segb = segments[b]; // Check whether adding the verts for this segment to the current draw would cause index // values to overflow. int vCount = 4; if (Segment::kLine == segb.fType) { vCount += 5; } else { vCount += 6; } if (draw->fVertexCnt + vCount > (1 << 16)) { verts += *v; idxs += *i; draw = &draws->push_back(); v = &draw->fVertexCnt; i = &draw->fIndexCnt; } // FIXME: These tris are inset in the 1 unit arc around the corner verts[*v + 0].fPos = sega.endPt(); verts[*v + 1].fPos = verts[*v + 0].fPos + sega.endNorm(); verts[*v + 2].fPos = verts[*v + 0].fPos + segb.fMid; verts[*v + 3].fPos = verts[*v + 0].fPos + segb.fNorms[0]; verts[*v + 0].fUV.set(0,0); verts[*v + 1].fUV.set(0,-SK_Scalar1); verts[*v + 2].fUV.set(0,-SK_Scalar1); verts[*v + 3].fUV.set(0,-SK_Scalar1); verts[*v + 0].fD0 = verts[*v + 0].fD1 = -SK_Scalar1; verts[*v + 1].fD0 = verts[*v + 1].fD1 = -SK_Scalar1; verts[*v + 2].fD0 = verts[*v + 2].fD1 = -SK_Scalar1; verts[*v + 3].fD0 = verts[*v + 3].fD1 = -SK_Scalar1; idxs[*i + 0] = *v + 0; idxs[*i + 1] = *v + 2; idxs[*i + 2] = *v + 1; idxs[*i + 3] = *v + 0; idxs[*i + 4] = *v + 3; idxs[*i + 5] = *v + 2; *v += 4; *i += 6; if (Segment::kLine == segb.fType) { verts[*v + 0].fPos = fanPt; verts[*v + 1].fPos = sega.endPt(); verts[*v + 2].fPos = segb.fPts[0]; verts[*v + 3].fPos = verts[*v + 1].fPos + segb.fNorms[0]; verts[*v + 4].fPos = verts[*v + 2].fPos + segb.fNorms[0]; // we draw the line edge as a degenerate quad (u is 0, v is the // signed distance to the edge) SkScalar dist = fanPt.distanceToLineBetween(verts[*v + 1].fPos, verts[*v + 2].fPos); verts[*v + 0].fUV.set(0, dist); verts[*v + 1].fUV.set(0, 0); verts[*v + 2].fUV.set(0, 0); verts[*v + 3].fUV.set(0, -SK_Scalar1); verts[*v + 4].fUV.set(0, -SK_Scalar1); verts[*v + 0].fD0 = verts[*v + 0].fD1 = -SK_Scalar1; verts[*v + 1].fD0 = verts[*v + 1].fD1 = -SK_Scalar1; verts[*v + 2].fD0 = verts[*v + 2].fD1 = -SK_Scalar1; verts[*v + 3].fD0 = verts[*v + 3].fD1 = -SK_Scalar1; verts[*v + 4].fD0 = verts[*v + 4].fD1 = -SK_Scalar1; idxs[*i + 0] = *v + 0; idxs[*i + 1] = *v + 2; idxs[*i + 2] = *v + 1; idxs[*i + 3] = *v + 3; idxs[*i + 4] = *v + 1; idxs[*i + 5] = *v + 2; idxs[*i + 6] = *v + 4; idxs[*i + 7] = *v + 3; idxs[*i + 8] = *v + 2; *v += 5; *i += 9; } else { SkPoint qpts[] = {sega.endPt(), segb.fPts[0], segb.fPts[1]}; SkVector midVec = segb.fNorms[0] + segb.fNorms[1]; midVec.normalize(); verts[*v + 0].fPos = fanPt; verts[*v + 1].fPos = qpts[0]; verts[*v + 2].fPos = qpts[2]; verts[*v + 3].fPos = qpts[0] + segb.fNorms[0]; verts[*v + 4].fPos = qpts[2] + segb.fNorms[1]; verts[*v + 5].fPos = qpts[1] + midVec; SkScalar c = segb.fNorms[0].dot(qpts[0]); verts[*v + 0].fD0 = -segb.fNorms[0].dot(fanPt) + c; verts[*v + 1].fD0 = 0.f; verts[*v + 2].fD0 = -segb.fNorms[0].dot(qpts[2]) + c; verts[*v + 3].fD0 = -SK_ScalarMax/100; verts[*v + 4].fD0 = -SK_ScalarMax/100; verts[*v + 5].fD0 = -SK_ScalarMax/100; c = segb.fNorms[1].dot(qpts[2]); verts[*v + 0].fD1 = -segb.fNorms[1].dot(fanPt) + c; verts[*v + 1].fD1 = -segb.fNorms[1].dot(qpts[0]) + c; verts[*v + 2].fD1 = 0.f; verts[*v + 3].fD1 = -SK_ScalarMax/100; verts[*v + 4].fD1 = -SK_ScalarMax/100; verts[*v + 5].fD1 = -SK_ScalarMax/100; GrPathUtils::QuadUVMatrix toUV(qpts); toUV.apply<6, sizeof(QuadVertex), sizeof(SkPoint)>(verts + *v); idxs[*i + 0] = *v + 3; idxs[*i + 1] = *v + 1; idxs[*i + 2] = *v + 2; idxs[*i + 3] = *v + 4; idxs[*i + 4] = *v + 3; idxs[*i + 5] = *v + 2; idxs[*i + 6] = *v + 5; idxs[*i + 7] = *v + 3; idxs[*i + 8] = *v + 4; idxs[*i + 9] = *v + 0; idxs[*i + 10] = *v + 2; idxs[*i + 11] = *v + 1; *v += 6; *i += 12; } } } /////////////////////////////////////////////////////////////////////////////// /* * Quadratic specified by 0=u^2-v canonical coords. u and v are the first * two components of the vertex attribute. Coverage is based on signed * distance with negative being inside, positive outside. The edge is specified in * window space (y-down). If either the third or fourth component of the interpolated * vertex coord is > 0 then the pixel is considered outside the edge. This is used to * attempt to trim to a portion of the infinite quad. * Requires shader derivative instruction support. */ class QuadEdgeEffect : public GrGeometryProcessor { public: static GrGeometryProcessor* Create() { GR_CREATE_STATIC_PROCESSOR(gQuadEdgeEffect, QuadEdgeEffect, ()); gQuadEdgeEffect->ref(); return gQuadEdgeEffect; } virtual ~QuadEdgeEffect() {} static const char* Name() { return "QuadEdge"; } const GrShaderVar& inQuadEdge() const { return fInQuadEdge; } virtual const GrBackendGeometryProcessorFactory& getFactory() const SK_OVERRIDE { return GrTBackendGeometryProcessorFactory::getInstance(); } class GLProcessor : public GrGLGeometryProcessor { public: GLProcessor(const GrBackendProcessorFactory& factory, const GrProcessor&) : INHERITED (factory) {} virtual void emitCode(const EmitArgs& args) SK_OVERRIDE { const char *vsName, *fsName; args.fPB->addVarying(kVec4f_GrSLType, "QuadEdge", &vsName, &fsName); GrGLGPFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder(); SkAssertResult(fsBuilder->enableFeature( GrGLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature)); fsBuilder->codeAppendf("\t\tfloat edgeAlpha;\n"); // keep the derivative instructions outside the conditional fsBuilder->codeAppendf("\t\tvec2 duvdx = dFdx(%s.xy);\n", fsName); fsBuilder->codeAppendf("\t\tvec2 duvdy = dFdy(%s.xy);\n", fsName); fsBuilder->codeAppendf("\t\tif (%s.z > 0.0 && %s.w > 0.0) {\n", fsName, fsName); // today we know z and w are in device space. We could use derivatives fsBuilder->codeAppendf("\t\t\tedgeAlpha = min(min(%s.z, %s.w) + 0.5, 1.0);\n", fsName, fsName); fsBuilder->codeAppendf ("\t\t} else {\n"); fsBuilder->codeAppendf("\t\t\tvec2 gF = vec2(2.0*%s.x*duvdx.x - duvdx.y,\n" "\t\t\t 2.0*%s.x*duvdy.x - duvdy.y);\n", fsName, fsName); fsBuilder->codeAppendf("\t\t\tedgeAlpha = (%s.x*%s.x - %s.y);\n", fsName, fsName, fsName); fsBuilder->codeAppendf("\t\t\tedgeAlpha = " "clamp(0.5 - edgeAlpha / length(gF), 0.0, 1.0);\n\t\t}\n"); fsBuilder->codeAppendf("\t%s = %s;\n", args.fOutput, (GrGLSLExpr4(args.fInput) * GrGLSLExpr1("edgeAlpha")).c_str()); const GrShaderVar& inQuadEdge = args.fGP.cast().inQuadEdge(); GrGLVertexBuilder* vsBuilder = args.fPB->getVertexShaderBuilder(); vsBuilder->codeAppendf("\t%s = %s;\n", vsName, inQuadEdge.c_str()); } static inline void GenKey(const GrProcessor&, const GrGLCaps&, GrProcessorKeyBuilder*) {} virtual void setData(const GrGLProgramDataManager&, const GrProcessor&) SK_OVERRIDE {} private: typedef GrGLGeometryProcessor INHERITED; }; private: QuadEdgeEffect() : fInQuadEdge(this->addVertexAttrib(GrShaderVar("inQuadEdge", kVec4f_GrSLType, GrShaderVar::kAttribute_TypeModifier))) { } virtual bool onIsEqual(const GrGeometryProcessor& other) const SK_OVERRIDE { return true; } virtual void onComputeInvariantOutput(InvariantOutput* inout) const SK_OVERRIDE { inout->mulByUnknownAlpha(); } const GrShaderVar& fInQuadEdge; GR_DECLARE_GEOMETRY_PROCESSOR_TEST; typedef GrFragmentProcessor INHERITED; }; GR_DEFINE_GEOMETRY_PROCESSOR_TEST(QuadEdgeEffect); GrGeometryProcessor* QuadEdgeEffect::TestCreate(SkRandom* random, GrContext*, const GrDrawTargetCaps& caps, GrTexture*[]) { // Doesn't work without derivative instructions. return caps.shaderDerivativeSupport() ? QuadEdgeEffect::Create() : NULL; } /////////////////////////////////////////////////////////////////////////////// bool GrAAConvexPathRenderer::canDrawPath(const SkPath& path, const SkStrokeRec& stroke, const GrDrawTarget* target, bool antiAlias) const { return (target->caps()->shaderDerivativeSupport() && antiAlias && stroke.isFillStyle() && !path.isInverseFillType() && path.isConvex()); } namespace { // position + edge extern const GrVertexAttrib gPathAttribs[] = { {kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding}, {kVec4f_GrVertexAttribType, sizeof(SkPoint), kGeometryProcessor_GrVertexAttribBinding} }; }; bool GrAAConvexPathRenderer::onDrawPath(const SkPath& origPath, const SkStrokeRec&, GrDrawTarget* target, bool antiAlias) { const SkPath* path = &origPath; if (path->isEmpty()) { return true; } SkMatrix viewMatrix = target->getDrawState().getViewMatrix(); GrDrawTarget::AutoStateRestore asr; if (!asr.setIdentity(target, GrDrawTarget::kPreserve_ASRInit)) { return false; } GrDrawState* drawState = target->drawState(); // We use the fact that SkPath::transform path does subdivision based on // perspective. Otherwise, we apply the view matrix when copying to the // segment representation. SkPath tmpPath; if (viewMatrix.hasPerspective()) { origPath.transform(viewMatrix, &tmpPath); path = &tmpPath; viewMatrix = SkMatrix::I(); } QuadVertex *verts; uint16_t* idxs; int vCount; int iCount; enum { kPreallocSegmentCnt = 512 / sizeof(Segment), kPreallocDrawCnt = 4, }; SkSTArray segments; SkPoint fanPt; // We can't simply use the path bounds because we may degenerate cubics to quads which produces // new control points outside the original convex hull. SkRect devBounds; if (!get_segments(*path, viewMatrix, &segments, &fanPt, &vCount, &iCount, &devBounds)) { return false; } // Our computed verts should all be within one pixel of the segment control points. devBounds.outset(SK_Scalar1, SK_Scalar1); drawState->setVertexAttribs(SK_ARRAY_COUNT(gPathAttribs), sizeof(QuadVertex)); GrGeometryProcessor* quadProcessor = QuadEdgeEffect::Create(); drawState->setGeometryProcessor(quadProcessor)->unref(); GrDrawTarget::AutoReleaseGeometry arg(target, vCount, iCount); if (!arg.succeeded()) { return false; } verts = reinterpret_cast(arg.vertices()); idxs = reinterpret_cast(arg.indices()); SkSTArray draws; create_vertices(segments, fanPt, &draws, verts, idxs); // Check devBounds #ifdef SK_DEBUG SkRect tolDevBounds = devBounds; tolDevBounds.outset(SK_Scalar1 / 10000, SK_Scalar1 / 10000); SkRect actualBounds; actualBounds.set(verts[0].fPos, verts[1].fPos); for (int i = 2; i < vCount; ++i) { actualBounds.growToInclude(verts[i].fPos.fX, verts[i].fPos.fY); } SkASSERT(tolDevBounds.contains(actualBounds)); #endif int vOffset = 0; for (int i = 0; i < draws.count(); ++i) { const Draw& draw = draws[i]; target->drawIndexed(kTriangles_GrPrimitiveType, vOffset, // start vertex 0, // start index draw.fVertexCnt, draw.fIndexCnt, &devBounds); vOffset += draw.fVertexCnt; } return true; }