/* * Copyright 2014 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkTwoPointConicalGradient_gpu.h" #include "SkTwoPointConicalGradient.h" #if SK_SUPPORT_GPU #include "GrTBackendEffectFactory.h" // For brevity typedef GrGLUniformManager::UniformHandle UniformHandle; ////////////////////////////////////////////////////////////////////////////// static void set_matrix_default_conical(const SkTwoPointConicalGradient& shader, SkMatrix* invLMatrix) { // Inverse of the current local matrix is passed in then, // translate to center1, rotate so center2 is on x axis. const SkPoint& center1 = shader.getStartCenter(); const SkPoint& center2 = shader.getEndCenter(); invLMatrix->postTranslate(-center1.fX, -center1.fY); SkPoint diff = center2 - center1; SkScalar diffLen = diff.length(); if (0 != diffLen) { SkScalar invDiffLen = SkScalarInvert(diffLen); SkMatrix rot; rot.setSinCos(-SkScalarMul(invDiffLen, diff.fY), SkScalarMul(invDiffLen, diff.fX)); invLMatrix->postConcat(rot); } } class GLDefault2PtConicalEffect; class Default2PtConicalEffect : public GrGradientEffect { public: static GrEffectRef* Create(GrContext* ctx, const SkTwoPointConicalGradient& shader, const SkMatrix& matrix, SkShader::TileMode tm) { AutoEffectUnref effect(SkNEW_ARGS(Default2PtConicalEffect, (ctx, shader, matrix, tm))); return CreateEffectRef(effect); } virtual ~Default2PtConicalEffect() { } static const char* Name() { return "Two-Point Conical Gradient"; } virtual const GrBackendEffectFactory& getFactory() const SK_OVERRIDE; // The radial gradient parameters can collapse to a linear (instead of quadratic) equation. bool isDegenerate() const { return SkScalarAbs(fDiffRadius) == SkScalarAbs(fCenterX1); } SkScalar center() const { return fCenterX1; } SkScalar diffRadius() const { return fDiffRadius; } SkScalar radius() const { return fRadius0; } typedef GLDefault2PtConicalEffect GLEffect; private: virtual bool onIsEqual(const GrEffect& sBase) const SK_OVERRIDE { const Default2PtConicalEffect& s = CastEffect(sBase); return (INHERITED::onIsEqual(sBase) && this->fCenterX1 == s.fCenterX1 && this->fRadius0 == s.fRadius0 && this->fDiffRadius == s.fDiffRadius); } Default2PtConicalEffect(GrContext* ctx, const SkTwoPointConicalGradient& shader, const SkMatrix& matrix, SkShader::TileMode tm) : INHERITED(ctx, shader, matrix, tm), fCenterX1(shader.getCenterX1()), fRadius0(shader.getStartRadius()), fDiffRadius(shader.getDiffRadius()) { // We pass the linear part of the quadratic as a varying. // float b = -2.0 * (fCenterX1 * x + fRadius0 * fDiffRadius * z) fBTransform = this->getCoordTransform(); SkMatrix& bMatrix = *fBTransform.accessMatrix(); SkScalar r0dr = SkScalarMul(fRadius0, fDiffRadius); bMatrix[SkMatrix::kMScaleX] = -2 * (SkScalarMul(fCenterX1, bMatrix[SkMatrix::kMScaleX]) + SkScalarMul(r0dr, bMatrix[SkMatrix::kMPersp0])); bMatrix[SkMatrix::kMSkewX] = -2 * (SkScalarMul(fCenterX1, bMatrix[SkMatrix::kMSkewX]) + SkScalarMul(r0dr, bMatrix[SkMatrix::kMPersp1])); bMatrix[SkMatrix::kMTransX] = -2 * (SkScalarMul(fCenterX1, bMatrix[SkMatrix::kMTransX]) + SkScalarMul(r0dr, bMatrix[SkMatrix::kMPersp2])); this->addCoordTransform(&fBTransform); } GR_DECLARE_EFFECT_TEST; // @{ // Cache of values - these can change arbitrarily, EXCEPT // we shouldn't change between degenerate and non-degenerate?! GrCoordTransform fBTransform; SkScalar fCenterX1; SkScalar fRadius0; SkScalar fDiffRadius; // @} typedef GrGradientEffect INHERITED; }; class GLDefault2PtConicalEffect : public GrGLGradientEffect { public: GLDefault2PtConicalEffect(const GrBackendEffectFactory& factory, const GrDrawEffect&); virtual ~GLDefault2PtConicalEffect() { } virtual void emitCode(GrGLShaderBuilder*, const GrDrawEffect&, EffectKey, const char* outputColor, const char* inputColor, const TransformedCoordsArray&, const TextureSamplerArray&) SK_OVERRIDE; virtual void setData(const GrGLUniformManager&, const GrDrawEffect&) SK_OVERRIDE; static EffectKey GenKey(const GrDrawEffect&, const GrGLCaps& caps); protected: UniformHandle fParamUni; const char* fVSVaryingName; const char* fFSVaryingName; bool fIsDegenerate; // @{ /// Values last uploaded as uniforms SkScalar fCachedCenter; SkScalar fCachedRadius; SkScalar fCachedDiffRadius; // @} private: typedef GrGLGradientEffect INHERITED; }; const GrBackendEffectFactory& Default2PtConicalEffect::getFactory() const { return GrTBackendEffectFactory::getInstance(); } GR_DEFINE_EFFECT_TEST(Default2PtConicalEffect); GrEffectRef* Default2PtConicalEffect::TestCreate(SkRandom* random, GrContext* context, const GrDrawTargetCaps&, GrTexture**) { SkPoint center1 = {random->nextUScalar1(), random->nextUScalar1()}; SkScalar radius1 = random->nextUScalar1(); SkPoint center2; SkScalar radius2; do { center2.set(random->nextUScalar1(), random->nextUScalar1()); radius2 = random->nextUScalar1 (); // If the circles are identical the factory will give us an empty shader. } while (radius1 == radius2 && center1 == center2); SkColor colors[kMaxRandomGradientColors]; SkScalar stopsArray[kMaxRandomGradientColors]; SkScalar* stops = stopsArray; SkShader::TileMode tm; int colorCount = RandomGradientParams(random, colors, &stops, &tm); SkAutoTUnref shader(SkGradientShader::CreateTwoPointConical(center1, radius1, center2, radius2, colors, stops, colorCount, tm)); SkPaint paint; return shader->asNewEffect(context, paint); } ///////////////////////////////////////////////////////////////////// GLDefault2PtConicalEffect::GLDefault2PtConicalEffect(const GrBackendEffectFactory& factory, const GrDrawEffect& drawEffect) : INHERITED(factory) , fVSVaryingName(NULL) , fFSVaryingName(NULL) , fCachedCenter(SK_ScalarMax) , fCachedRadius(-SK_ScalarMax) , fCachedDiffRadius(-SK_ScalarMax) { const Default2PtConicalEffect& data = drawEffect.castEffect(); fIsDegenerate = data.isDegenerate(); } void GLDefault2PtConicalEffect::emitCode(GrGLShaderBuilder* builder, const GrDrawEffect&, EffectKey key, const char* outputColor, const char* inputColor, const TransformedCoordsArray& coords, const TextureSamplerArray& samplers) { this->emitUniforms(builder, key); fParamUni = builder->addUniformArray(GrGLShaderBuilder::kFragment_Visibility, kFloat_GrSLType, "Conical2FSParams", 6); SkString cName("c"); SkString ac4Name("ac4"); SkString dName("d"); SkString qName("q"); SkString r0Name("r0"); SkString r1Name("r1"); SkString tName("t"); SkString p0; // 4a SkString p1; // 1/a SkString p2; // distance between centers SkString p3; // start radius SkString p4; // start radius squared SkString p5; // difference in radii (r1 - r0) builder->getUniformVariable(fParamUni).appendArrayAccess(0, &p0); builder->getUniformVariable(fParamUni).appendArrayAccess(1, &p1); builder->getUniformVariable(fParamUni).appendArrayAccess(2, &p2); builder->getUniformVariable(fParamUni).appendArrayAccess(3, &p3); builder->getUniformVariable(fParamUni).appendArrayAccess(4, &p4); builder->getUniformVariable(fParamUni).appendArrayAccess(5, &p5); // We interpolate the linear component in coords[1]. SkASSERT(coords[0].type() == coords[1].type()); const char* coords2D; SkString bVar; if (kVec3f_GrSLType == coords[0].type()) { builder->fsCodeAppendf("\tvec3 interpolants = vec3(%s.xy, %s.x) / %s.z;\n", coords[0].c_str(), coords[1].c_str(), coords[0].c_str()); coords2D = "interpolants.xy"; bVar = "interpolants.z"; } else { coords2D = coords[0].c_str(); bVar.printf("%s.x", coords[1].c_str()); } // output will default to transparent black (we simply won't write anything // else to it if invalid, instead of discarding or returning prematurely) builder->fsCodeAppendf("\t%s = vec4(0.0,0.0,0.0,0.0);\n", outputColor); // c = (x^2)+(y^2) - params[4] builder->fsCodeAppendf("\tfloat %s = dot(%s, %s) - %s;\n", cName.c_str(), coords2D, coords2D, p4.c_str()); // Non-degenerate case (quadratic) if (!fIsDegenerate) { // ac4 = params[0] * c builder->fsCodeAppendf("\tfloat %s = %s * %s;\n", ac4Name.c_str(), p0.c_str(), cName.c_str()); // d = b^2 - ac4 builder->fsCodeAppendf("\tfloat %s = %s * %s - %s;\n", dName.c_str(), bVar.c_str(), bVar.c_str(), ac4Name.c_str()); // only proceed if discriminant is >= 0 builder->fsCodeAppendf("\tif (%s >= 0.0) {\n", dName.c_str()); // intermediate value we'll use to compute the roots // q = -0.5 * (b +/- sqrt(d)) builder->fsCodeAppendf("\t\tfloat %s = -0.5 * (%s + (%s < 0.0 ? -1.0 : 1.0)" " * sqrt(%s));\n", qName.c_str(), bVar.c_str(), bVar.c_str(), dName.c_str()); // compute both roots // r0 = q * params[1] builder->fsCodeAppendf("\t\tfloat %s = %s * %s;\n", r0Name.c_str(), qName.c_str(), p1.c_str()); // r1 = c / q builder->fsCodeAppendf("\t\tfloat %s = %s / %s;\n", r1Name.c_str(), cName.c_str(), qName.c_str()); // Note: If there are two roots that both generate radius(t) > 0, the // Canvas spec says to choose the larger t. // so we'll look at the larger one first: builder->fsCodeAppendf("\t\tfloat %s = max(%s, %s);\n", tName.c_str(), r0Name.c_str(), r1Name.c_str()); // if r(t) > 0, then we're done; t will be our x coordinate builder->fsCodeAppendf("\t\tif (%s * %s + %s > 0.0) {\n", tName.c_str(), p5.c_str(), p3.c_str()); builder->fsCodeAppend("\t\t"); this->emitColor(builder, tName.c_str(), key, outputColor, inputColor, samplers); // otherwise, if r(t) for the larger root was <= 0, try the other root builder->fsCodeAppend("\t\t} else {\n"); builder->fsCodeAppendf("\t\t\t%s = min(%s, %s);\n", tName.c_str(), r0Name.c_str(), r1Name.c_str()); // if r(t) > 0 for the smaller root, then t will be our x coordinate builder->fsCodeAppendf("\t\t\tif (%s * %s + %s > 0.0) {\n", tName.c_str(), p5.c_str(), p3.c_str()); builder->fsCodeAppend("\t\t\t"); this->emitColor(builder, tName.c_str(), key, outputColor, inputColor, samplers); // end if (r(t) > 0) for smaller root builder->fsCodeAppend("\t\t\t}\n"); // end if (r(t) > 0), else, for larger root builder->fsCodeAppend("\t\t}\n"); // end if (discriminant >= 0) builder->fsCodeAppend("\t}\n"); } else { // linear case: t = -c/b builder->fsCodeAppendf("\tfloat %s = -(%s / %s);\n", tName.c_str(), cName.c_str(), bVar.c_str()); // if r(t) > 0, then t will be the x coordinate builder->fsCodeAppendf("\tif (%s * %s + %s > 0.0) {\n", tName.c_str(), p5.c_str(), p3.c_str()); builder->fsCodeAppend("\t"); this->emitColor(builder, tName.c_str(), key, outputColor, inputColor, samplers); builder->fsCodeAppend("\t}\n"); } } void GLDefault2PtConicalEffect::setData(const GrGLUniformManager& uman, const GrDrawEffect& drawEffect) { INHERITED::setData(uman, drawEffect); const Default2PtConicalEffect& data = drawEffect.castEffect(); SkASSERT(data.isDegenerate() == fIsDegenerate); SkScalar centerX1 = data.center(); SkScalar radius0 = data.radius(); SkScalar diffRadius = data.diffRadius(); if (fCachedCenter != centerX1 || fCachedRadius != radius0 || fCachedDiffRadius != diffRadius) { SkScalar a = SkScalarMul(centerX1, centerX1) - diffRadius * diffRadius; // When we're in the degenerate (linear) case, the second // value will be INF but the program doesn't read it. (We // use the same 6 uniforms even though we don't need them // all in the linear case just to keep the code complexity // down). float values[6] = { SkScalarToFloat(a * 4), 1.f / (SkScalarToFloat(a)), SkScalarToFloat(centerX1), SkScalarToFloat(radius0), SkScalarToFloat(SkScalarMul(radius0, radius0)), SkScalarToFloat(diffRadius) }; uman.set1fv(fParamUni, 6, values); fCachedCenter = centerX1; fCachedRadius = radius0; fCachedDiffRadius = diffRadius; } } GrGLEffect::EffectKey GLDefault2PtConicalEffect::GenKey(const GrDrawEffect& drawEffect, const GrGLCaps&) { enum { kIsDegenerate = 1 << kBaseKeyBitCnt, }; EffectKey key = GenBaseGradientKey(drawEffect); if (drawEffect.castEffect().isDegenerate()) { key |= kIsDegenerate; } return key; } ////////////////////////////////////////////////////////////////////////////// GrEffectRef* Gr2PtConicalGradientEffect::Create(GrContext* ctx, const SkTwoPointConicalGradient& shader, SkShader::TileMode tm) { SkMatrix matrix; if (!shader.getLocalMatrix().invert(&matrix)) { return NULL; } set_matrix_default_conical(shader, &matrix); return Default2PtConicalEffect::Create(ctx, shader, matrix, tm); } #endif