/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkTwoPointConicalGradient.h" static int valid_divide(float numer, float denom, float* ratio) { SkASSERT(ratio); if (0 == denom) { return 0; } *ratio = numer / denom; return 1; } // Return the number of distinct real roots, and write them into roots[] in // ascending order static int find_quad_roots(float A, float B, float C, float roots[2]) { SkASSERT(roots); if (A == 0) { return valid_divide(-C, B, roots); } float R = B*B - 4*A*C; if (R < 0) { return 0; } R = sk_float_sqrt(R); #if 1 float Q = B; if (Q < 0) { Q -= R; } else { Q += R; } #else // on 10.6 this was much slower than the above branch :( float Q = B + copysignf(R, B); #endif Q *= -0.5f; if (0 == Q) { roots[0] = 0; return 1; } float r0 = Q / A; float r1 = C / Q; roots[0] = r0 < r1 ? r0 : r1; roots[1] = r0 > r1 ? r0 : r1; return 2; } static float lerp(float x, float dx, float t) { return x + t * dx; } static float sqr(float x) { return x * x; } void TwoPtRadial::init(const SkPoint& center0, SkScalar rad0, const SkPoint& center1, SkScalar rad1) { fCenterX = SkScalarToFloat(center0.fX); fCenterY = SkScalarToFloat(center0.fY); fDCenterX = SkScalarToFloat(center1.fX) - fCenterX; fDCenterY = SkScalarToFloat(center1.fY) - fCenterY; fRadius = SkScalarToFloat(rad0); fDRadius = SkScalarToFloat(rad1) - fRadius; fA = sqr(fDCenterX) + sqr(fDCenterY) - sqr(fDRadius); fRadius2 = sqr(fRadius); fRDR = fRadius * fDRadius; } void TwoPtRadial::setup(SkScalar fx, SkScalar fy, SkScalar dfx, SkScalar dfy) { fRelX = SkScalarToFloat(fx) - fCenterX; fRelY = SkScalarToFloat(fy) - fCenterY; fIncX = SkScalarToFloat(dfx); fIncY = SkScalarToFloat(dfy); fB = -2 * (fDCenterX * fRelX + fDCenterY * fRelY + fRDR); fDB = -2 * (fDCenterX * fIncX + fDCenterY * fIncY); } SkFixed TwoPtRadial::nextT() { float roots[2]; float C = sqr(fRelX) + sqr(fRelY) - fRadius2; int countRoots = find_quad_roots(fA, fB, C, roots); fRelX += fIncX; fRelY += fIncY; fB += fDB; if (0 == countRoots) { return kDontDrawT; } // Prefer the bigger t value if both give a radius(t) > 0 // find_quad_roots returns the values sorted, so we start with the last float t = roots[countRoots - 1]; float r = lerp(fRadius, fDRadius, t); if (r <= 0) { t = roots[0]; // might be the same as roots[countRoots-1] r = lerp(fRadius, fDRadius, t); if (r <= 0) { return kDontDrawT; } } return SkFloatToFixed(t); } typedef void (*TwoPointRadialProc)(TwoPtRadial* rec, SkPMColor* dstC, const SkPMColor* cache, int count); static void twopoint_clamp(TwoPtRadial* rec, SkPMColor* SK_RESTRICT dstC, const SkPMColor* SK_RESTRICT cache, int count) { for (; count > 0; --count) { SkFixed t = rec->nextT(); if (TwoPtRadial::DontDrawT(t)) { *dstC++ = 0; } else { SkFixed index = SkClampMax(t, 0xFFFF); SkASSERT(index <= 0xFFFF); *dstC++ = cache[index >> SkGradientShaderBase::kCache32Shift]; } } } static void twopoint_repeat(TwoPtRadial* rec, SkPMColor* SK_RESTRICT dstC, const SkPMColor* SK_RESTRICT cache, int count) { for (; count > 0; --count) { SkFixed t = rec->nextT(); if (TwoPtRadial::DontDrawT(t)) { *dstC++ = 0; } else { SkFixed index = repeat_tileproc(t); SkASSERT(index <= 0xFFFF); *dstC++ = cache[index >> SkGradientShaderBase::kCache32Shift]; } } } static void twopoint_mirror(TwoPtRadial* rec, SkPMColor* SK_RESTRICT dstC, const SkPMColor* SK_RESTRICT cache, int count) { for (; count > 0; --count) { SkFixed t = rec->nextT(); if (TwoPtRadial::DontDrawT(t)) { *dstC++ = 0; } else { SkFixed index = mirror_tileproc(t); SkASSERT(index <= 0xFFFF); *dstC++ = cache[index >> SkGradientShaderBase::kCache32Shift]; } } } void SkTwoPointConicalGradient::init() { fRec.init(fCenter1, fRadius1, fCenter2, fRadius2); fPtsToUnit.reset(); } ///////////////////////////////////////////////////////////////////// SkTwoPointConicalGradient::SkTwoPointConicalGradient( const SkPoint& start, SkScalar startRadius, const SkPoint& end, SkScalar endRadius, const SkColor colors[], const SkScalar pos[], int colorCount, SkShader::TileMode mode, SkUnitMapper* mapper) : SkGradientShaderBase(colors, pos, colorCount, mode, mapper), fCenter1(start), fCenter2(end), fRadius1(startRadius), fRadius2(endRadius) { // this is degenerate, and should be caught by our caller SkASSERT(fCenter1 != fCenter2 || fRadius1 != fRadius2); this->init(); } void SkTwoPointConicalGradient::shadeSpan(int x, int y, SkPMColor* dstCParam, int count) { SkASSERT(count > 0); SkPMColor* SK_RESTRICT dstC = dstCParam; SkMatrix::MapXYProc dstProc = fDstToIndexProc; const SkPMColor* SK_RESTRICT cache = this->getCache32(); TwoPointRadialProc shadeProc = twopoint_repeat; if (SkShader::kClamp_TileMode == fTileMode) { shadeProc = twopoint_clamp; } else if (SkShader::kMirror_TileMode == fTileMode) { shadeProc = twopoint_mirror; } else { SkASSERT(SkShader::kRepeat_TileMode == fTileMode); } if (fDstToIndexClass != kPerspective_MatrixClass) { SkPoint srcPt; dstProc(fDstToIndex, SkIntToScalar(x) + SK_ScalarHalf, SkIntToScalar(y) + SK_ScalarHalf, &srcPt); SkScalar dx, fx = srcPt.fX; SkScalar dy, fy = srcPt.fY; if (fDstToIndexClass == kFixedStepInX_MatrixClass) { SkFixed fixedX, fixedY; (void)fDstToIndex.fixedStepInX(SkIntToScalar(y), &fixedX, &fixedY); dx = SkFixedToScalar(fixedX); dy = SkFixedToScalar(fixedY); } else { SkASSERT(fDstToIndexClass == kLinear_MatrixClass); dx = fDstToIndex.getScaleX(); dy = fDstToIndex.getSkewY(); } fRec.setup(fx, fy, dx, dy); (*shadeProc)(&fRec, dstC, cache, count); } else { // perspective case SkScalar dstX = SkIntToScalar(x); SkScalar dstY = SkIntToScalar(y); for (; count > 0; --count) { SkPoint srcPt; dstProc(fDstToIndex, dstX, dstY, &srcPt); dstX += SK_Scalar1; fRec.setup(srcPt.fX, srcPt.fY, 0, 0); (*shadeProc)(&fRec, dstC, cache, 1); } } } bool SkTwoPointConicalGradient::setContext(const SkBitmap& device, const SkPaint& paint, const SkMatrix& matrix) { if (!this->INHERITED::setContext(device, paint, matrix)) { return false; } // we don't have a span16 proc fFlags &= ~kHasSpan16_Flag; // in general, we might discard based on computed-radius, so clear // this flag (todo: sometimes we can detect that we never discard...) fFlags &= ~kOpaqueAlpha_Flag; return true; } SkShader::BitmapType SkTwoPointConicalGradient::asABitmap( SkBitmap* bitmap, SkMatrix* matrix, SkShader::TileMode* xy) const { SkPoint diff = fCenter2 - fCenter1; SkScalar diffLen = 0; if (bitmap) { this->getGradientTableBitmap(bitmap); } if (matrix) { diffLen = diff.length(); } if (matrix) { if (diffLen) { SkScalar invDiffLen = SkScalarInvert(diffLen); // rotate to align circle centers with the x-axis matrix->setSinCos(-SkScalarMul(invDiffLen, diff.fY), SkScalarMul(invDiffLen, diff.fX)); } else { matrix->reset(); } matrix->preTranslate(-fCenter1.fX, -fCenter1.fY); } if (xy) { xy[0] = fTileMode; xy[1] = kClamp_TileMode; } return kTwoPointConical_BitmapType; } SkShader::GradientType SkTwoPointConicalGradient::asAGradient( GradientInfo* info) const { if (info) { commonAsAGradient(info); info->fPoint[0] = fCenter1; info->fPoint[1] = fCenter2; info->fRadius[0] = fRadius1; info->fRadius[1] = fRadius2; } return kConical_GradientType; } SkTwoPointConicalGradient::SkTwoPointConicalGradient( SkFlattenableReadBuffer& buffer) : INHERITED(buffer), fCenter1(buffer.readPoint()), fCenter2(buffer.readPoint()), fRadius1(buffer.readScalar()), fRadius2(buffer.readScalar()) { this->init(); }; void SkTwoPointConicalGradient::flatten( SkFlattenableWriteBuffer& buffer) const { this->INHERITED::flatten(buffer); buffer.writePoint(fCenter1); buffer.writePoint(fCenter2); buffer.writeScalar(fRadius1); buffer.writeScalar(fRadius2); } ///////////////////////////////////////////////////////////////////// #if SK_SUPPORT_GPU #include "GrTBackendEffectFactory.h" // For brevity typedef GrGLUniformManager::UniformHandle UniformHandle; static const UniformHandle kInvalidUniformHandle = GrGLUniformManager::kInvalidUniformHandle; class GrGLConical2Gradient : public GrGLGradientEffect { public: GrGLConical2Gradient(const GrBackendEffectFactory& factory, const GrEffect&); virtual ~GrGLConical2Gradient() { } virtual void emitCode(GrGLShaderBuilder*, const GrEffectStage&, EffectKey, const char* vertexCoords, const char* outputColor, const char* inputColor, const TextureSamplerArray&) SK_OVERRIDE; virtual void setData(const GrGLUniformManager&, const GrEffectStage&) SK_OVERRIDE; static EffectKey GenKey(const GrEffectStage&, const GrGLCaps& caps); protected: UniformHandle fVSParamUni; UniformHandle fFSParamUni; const char* fVSVaryingName; const char* fFSVaryingName; bool fIsDegenerate; // @{ /// Values last uploaded as uniforms SkScalar fCachedCenter; SkScalar fCachedRadius; SkScalar fCachedDiffRadius; // @} private: typedef GrGLGradientEffect INHERITED; }; ///////////////////////////////////////////////////////////////////// class GrConical2Gradient : public GrGradientEffect { public: GrConical2Gradient(GrContext* ctx, const SkTwoPointConicalGradient& shader, const SkMatrix& matrix, SkShader::TileMode tm) : INHERITED(ctx, shader, matrix, tm) , fCenterX1(shader.getCenterX1()) , fRadius0(shader.getStartRadius()) , fDiffRadius(shader.getDiffRadius()) { } virtual ~GrConical2Gradient() { } static const char* Name() { return "Two-Point Conical Gradient"; } virtual const GrBackendEffectFactory& getFactory() const SK_OVERRIDE { return GrTBackendEffectFactory::getInstance(); } virtual bool isEqual(const GrEffect& sBase) const SK_OVERRIDE { const GrConical2Gradient& s = static_cast(sBase); return (INHERITED::isEqual(sBase) && this->fCenterX1 == s.fCenterX1 && this->fRadius0 == s.fRadius0 && this->fDiffRadius == s.fDiffRadius); } // The radial gradient parameters can collapse to a linear (instead of quadratic) equation. bool isDegenerate() const { return SkScalarAbs(fDiffRadius) == SkScalarAbs(fCenterX1); } SkScalar center() const { return fCenterX1; } SkScalar diffRadius() const { return fDiffRadius; } SkScalar radius() const { return fRadius0; } typedef GrGLConical2Gradient GLEffect; private: GR_DECLARE_EFFECT_TEST; // @{ // Cache of values - these can change arbitrarily, EXCEPT // we shouldn't change between degenerate and non-degenerate?! SkScalar fCenterX1; SkScalar fRadius0; SkScalar fDiffRadius; // @} typedef GrGradientEffect INHERITED; }; GR_DEFINE_EFFECT_TEST(GrConical2Gradient); GrEffect* GrConical2Gradient::TestCreate(SkRandom* random, GrContext* context, GrTexture**) { SkPoint center1 = {random->nextUScalar1(), random->nextUScalar1()}; SkScalar radius1 = random->nextUScalar1(); SkPoint center2; SkScalar radius2; do { center1.set(random->nextUScalar1(), random->nextUScalar1()); radius2 = random->nextUScalar1 (); // If the circles are identical the factory will give us an empty shader. } while (radius1 == radius2 && center1 == center2); SkColor colors[kMaxRandomGradientColors]; SkScalar stopsArray[kMaxRandomGradientColors]; SkScalar* stops = stopsArray; SkShader::TileMode tm; int colorCount = RandomGradientParams(random, colors, &stops, &tm); SkAutoTUnref shader(SkGradientShader::CreateTwoPointConical(center1, radius1, center2, radius2, colors, stops, colorCount, tm)); GrEffectStage stage; shader->asNewEffect(context, &stage); GrAssert(NULL != stage.getEffect()); // const_cast and ref is a hack! Will remove when asNewEffect returns GrEffect* stage.getEffect()->ref(); return const_cast(stage.getEffect()); } ///////////////////////////////////////////////////////////////////// GrGLConical2Gradient::GrGLConical2Gradient( const GrBackendEffectFactory& factory, const GrEffect& baseData) : INHERITED(factory) , fVSParamUni(kInvalidUniformHandle) , fFSParamUni(kInvalidUniformHandle) , fVSVaryingName(NULL) , fFSVaryingName(NULL) , fCachedCenter(SK_ScalarMax) , fCachedRadius(-SK_ScalarMax) , fCachedDiffRadius(-SK_ScalarMax) { const GrConical2Gradient& data = static_cast(baseData); fIsDegenerate = data.isDegenerate(); } void GrGLConical2Gradient::emitCode(GrGLShaderBuilder* builder, const GrEffectStage& stage, EffectKey key, const char* vertexCoords, const char* outputColor, const char* inputColor, const TextureSamplerArray& samplers) { const char* fsCoords; const char* vsCoordsVarying; GrSLType coordsVaryingType; this->setupMatrix(builder, key, vertexCoords, &fsCoords, &vsCoordsVarying, &coordsVaryingType); this->emitYCoordUniform(builder); // 2 copies of uniform array, 1 for each of vertex & fragment shader, // to work around Xoom bug. Doesn't seem to cause performance decrease // in test apps, but need to keep an eye on it. fVSParamUni = builder->addUniformArray(GrGLShaderBuilder::kVertex_ShaderType, kFloat_GrSLType, "Conical2VSParams", 6); fFSParamUni = builder->addUniformArray(GrGLShaderBuilder::kFragment_ShaderType, kFloat_GrSLType, "Conical2FSParams", 6); // For radial gradients without perspective we can pass the linear // part of the quadratic as a varying. if (kVec2f_GrSLType == coordsVaryingType) { builder->addVarying(kFloat_GrSLType, "Conical2BCoeff", &fVSVaryingName, &fFSVaryingName); } // VS { SkString* code = &builder->fVSCode; SkString p2; // distance between centers SkString p3; // start radius SkString p5; // difference in radii (r1 - r0) builder->getUniformVariable(fVSParamUni).appendArrayAccess(2, &p2); builder->getUniformVariable(fVSParamUni).appendArrayAccess(3, &p3); builder->getUniformVariable(fVSParamUni).appendArrayAccess(5, &p5); // For radial gradients without perspective we can pass the linear // part of the quadratic as a varying. if (kVec2f_GrSLType == coordsVaryingType) { // r2Var = -2 * (r2Parm[2] * varCoord.x - r2Param[3] * r2Param[5]) code->appendf("\t%s = -2.0 * (%s * %s.x + %s * %s);\n", fVSVaryingName, p2.c_str(), vsCoordsVarying, p3.c_str(), p5.c_str()); } } // FS { SkString* code = &builder->fFSCode; SkString cName("c"); SkString ac4Name("ac4"); SkString dName("d"); SkString qName("q"); SkString r0Name("r0"); SkString r1Name("r1"); SkString tName("t"); SkString p0; // 4a SkString p1; // 1/a SkString p2; // distance between centers SkString p3; // start radius SkString p4; // start radius squared SkString p5; // difference in radii (r1 - r0) builder->getUniformVariable(fFSParamUni).appendArrayAccess(0, &p0); builder->getUniformVariable(fFSParamUni).appendArrayAccess(1, &p1); builder->getUniformVariable(fFSParamUni).appendArrayAccess(2, &p2); builder->getUniformVariable(fFSParamUni).appendArrayAccess(3, &p3); builder->getUniformVariable(fFSParamUni).appendArrayAccess(4, &p4); builder->getUniformVariable(fFSParamUni).appendArrayAccess(5, &p5); // If we we're able to interpolate the linear component, // bVar is the varying; otherwise compute it SkString bVar; if (kVec2f_GrSLType == coordsVaryingType) { bVar = fFSVaryingName; } else { bVar = "b"; code->appendf("\tfloat %s = -2.0 * (%s * %s.x + %s * %s);\n", bVar.c_str(), p2.c_str(), fsCoords, p3.c_str(), p5.c_str()); } // output will default to transparent black (we simply won't write anything // else to it if invalid, instead of discarding or returning prematurely) code->appendf("\t%s = vec4(0.0,0.0,0.0,0.0);\n", outputColor); // c = (x^2)+(y^2) - params[4] code->appendf("\tfloat %s = dot(%s, %s) - %s;\n", cName.c_str(), fsCoords, fsCoords, p4.c_str()); // Non-degenerate case (quadratic) if (!fIsDegenerate) { // ac4 = params[0] * c code->appendf("\tfloat %s = %s * %s;\n", ac4Name.c_str(), p0.c_str(), cName.c_str()); // d = b^2 - ac4 code->appendf("\tfloat %s = %s * %s - %s;\n", dName.c_str(), bVar.c_str(), bVar.c_str(), ac4Name.c_str()); // only proceed if discriminant is >= 0 code->appendf("\tif (%s >= 0.0) {\n", dName.c_str()); // intermediate value we'll use to compute the roots // q = -0.5 * (b +/- sqrt(d)) code->appendf("\t\tfloat %s = -0.5 * (%s + (%s < 0.0 ? -1.0 : 1.0)" " * sqrt(%s));\n", qName.c_str(), bVar.c_str(), bVar.c_str(), dName.c_str()); // compute both roots // r0 = q * params[1] code->appendf("\t\tfloat %s = %s * %s;\n", r0Name.c_str(), qName.c_str(), p1.c_str()); // r1 = c / q code->appendf("\t\tfloat %s = %s / %s;\n", r1Name.c_str(), cName.c_str(), qName.c_str()); // Note: If there are two roots that both generate radius(t) > 0, the // Canvas spec says to choose the larger t. // so we'll look at the larger one first: code->appendf("\t\tfloat %s = max(%s, %s);\n", tName.c_str(), r0Name.c_str(), r1Name.c_str()); // if r(t) > 0, then we're done; t will be our x coordinate code->appendf("\t\tif (%s * %s + %s > 0.0) {\n", tName.c_str(), p5.c_str(), p3.c_str()); code->appendf("\t\t"); this->emitColorLookup(builder, tName.c_str(), outputColor, inputColor, samplers[0]); // otherwise, if r(t) for the larger root was <= 0, try the other root code->appendf("\t\t} else {\n"); code->appendf("\t\t\t%s = min(%s, %s);\n", tName.c_str(), r0Name.c_str(), r1Name.c_str()); // if r(t) > 0 for the smaller root, then t will be our x coordinate code->appendf("\t\t\tif (%s * %s + %s > 0.0) {\n", tName.c_str(), p5.c_str(), p3.c_str()); code->appendf("\t\t\t"); this->emitColorLookup(builder, tName.c_str(), outputColor, inputColor, samplers[0]); // end if (r(t) > 0) for smaller root code->appendf("\t\t\t}\n"); // end if (r(t) > 0), else, for larger root code->appendf("\t\t}\n"); // end if (discriminant >= 0) code->appendf("\t}\n"); } else { // linear case: t = -c/b code->appendf("\tfloat %s = -(%s / %s);\n", tName.c_str(), cName.c_str(), bVar.c_str()); // if r(t) > 0, then t will be the x coordinate code->appendf("\tif (%s * %s + %s > 0.0) {\n", tName.c_str(), p5.c_str(), p3.c_str()); code->appendf("\t"); this->emitColorLookup(builder, tName.c_str(), outputColor, inputColor, samplers[0]); code->appendf("\t}\n"); } } } void GrGLConical2Gradient::setData(const GrGLUniformManager& uman, const GrEffectStage& stage) { INHERITED::setData(uman, stage); const GrConical2Gradient& data = static_cast(*stage.getEffect()); GrAssert(data.isDegenerate() == fIsDegenerate); SkScalar centerX1 = data.center(); SkScalar radius0 = data.radius(); SkScalar diffRadius = data.diffRadius(); if (fCachedCenter != centerX1 || fCachedRadius != radius0 || fCachedDiffRadius != diffRadius) { SkScalar a = SkScalarMul(centerX1, centerX1) - diffRadius * diffRadius; // When we're in the degenerate (linear) case, the second // value will be INF but the program doesn't read it. (We // use the same 6 uniforms even though we don't need them // all in the linear case just to keep the code complexity // down). float values[6] = { SkScalarToFloat(a * 4), 1.f / (SkScalarToFloat(a)), SkScalarToFloat(centerX1), SkScalarToFloat(radius0), SkScalarToFloat(SkScalarMul(radius0, radius0)), SkScalarToFloat(diffRadius) }; uman.set1fv(fVSParamUni, 0, 6, values); uman.set1fv(fFSParamUni, 0, 6, values); fCachedCenter = centerX1; fCachedRadius = radius0; fCachedDiffRadius = diffRadius; } } GrGLEffect::EffectKey GrGLConical2Gradient::GenKey(const GrEffectStage& s, const GrGLCaps&) { enum { kIsDegenerate = 1 << kMatrixKeyBitCnt, }; EffectKey key = GenMatrixKey(s); if (static_cast(*s.getEffect()).isDegenerate()) { key |= kIsDegenerate; } return key; } ///////////////////////////////////////////////////////////////////// bool SkTwoPointConicalGradient::asNewEffect(GrContext* context, GrEffectStage* stage) const { SkASSERT(NULL != context && NULL != stage); SkASSERT(fPtsToUnit.isIdentity()); // invert the localM, translate to center1, rotate so center2 is on x axis. SkMatrix matrix; if (!this->getLocalMatrix().invert(&matrix)) { return false; } matrix.postTranslate(-fCenter1.fX, -fCenter1.fY); SkPoint diff = fCenter2 - fCenter1; SkScalar diffLen = diff.length(); if (0 != diffLen) { SkScalar invDiffLen = SkScalarInvert(diffLen); SkMatrix rot; rot.setSinCos(-SkScalarMul(invDiffLen, diff.fY), SkScalarMul(invDiffLen, diff.fX)); matrix.postConcat(rot); } stage->setEffect(SkNEW_ARGS(GrConical2Gradient, (context, *this, matrix, fTileMode)))->unref(); return true; } #else bool SkTwoPointConicalGradient::asNewEffect(GrContext*, GrEffectStage*) const { SkDEBUGFAIL("Should not call in GPU-less build"); return false; } #endif