/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkRadialGradient.h" #include "SkRadialGradient_Table.h" #include "SkNx.h" #define kSQRT_TABLE_BITS 11 #define kSQRT_TABLE_SIZE (1 << kSQRT_TABLE_BITS) static_assert(sizeof(gSqrt8Table) == kSQRT_TABLE_SIZE, "SqrtTableSizesMatch"); #if 0 #include void SkRadialGradient_BuildTable() { // build it 0..127 x 0..127, so we use 2^15 - 1 in the numerator for our "fixed" table FILE* file = ::fopen("SkRadialGradient_Table.h", "w"); SkASSERT(file); ::fprintf(file, "static const uint8_t gSqrt8Table[] = {\n"); for (int i = 0; i < kSQRT_TABLE_SIZE; i++) { if ((i & 15) == 0) { ::fprintf(file, "\t"); } uint8_t value = SkToU8(SkFixedSqrt(i * SK_Fixed1 / kSQRT_TABLE_SIZE) >> 8); ::fprintf(file, "0x%02X", value); if (i < kSQRT_TABLE_SIZE-1) { ::fprintf(file, ", "); } if ((i & 15) == 15) { ::fprintf(file, "\n"); } } ::fprintf(file, "};\n"); ::fclose(file); } #endif namespace { // GCC doesn't like using static functions as template arguments. So force these to be non-static. inline SkFixed mirror_tileproc_nonstatic(SkFixed x) { return mirror_tileproc(x); } inline SkFixed repeat_tileproc_nonstatic(SkFixed x) { return repeat_tileproc(x); } SkMatrix rad_to_unit_matrix(const SkPoint& center, SkScalar radius) { SkScalar inv = SkScalarInvert(radius); SkMatrix matrix; matrix.setTranslate(-center.fX, -center.fY); matrix.postScale(inv, inv); return matrix; } typedef void (* RadialShade16Proc)(SkScalar sfx, SkScalar sdx, SkScalar sfy, SkScalar sdy, uint16_t* dstC, const uint16_t* cache, int toggle, int count); void shadeSpan16_radial_clamp(SkScalar sfx, SkScalar sdx, SkScalar sfy, SkScalar sdy, uint16_t* SK_RESTRICT dstC, const uint16_t* SK_RESTRICT cache, int toggle, int count) { const uint8_t* SK_RESTRICT sqrt_table = gSqrt8Table; /* knock these down so we can pin against +- 0x7FFF, which is an immediate load, rather than 0xFFFF which is slower. This is a compromise, since it reduces our precision, but that appears to be visually OK. If we decide this is OK for all of our cases, we could (it seems) put this scale-down into fDstToIndex, to avoid having to do these extra shifts each time. */ SkFixed fx = SkScalarToFixed(sfx) >> 1; SkFixed dx = SkScalarToFixed(sdx) >> 1; SkFixed fy = SkScalarToFixed(sfy) >> 1; SkFixed dy = SkScalarToFixed(sdy) >> 1; // might perform this check for the other modes, // but the win will be a smaller % of the total if (dy == 0) { fy = SkTPin(fy, -0xFFFF >> 1, 0xFFFF >> 1); fy *= fy; do { unsigned xx = SkTPin(fx, -0xFFFF >> 1, 0xFFFF >> 1); unsigned fi = (xx * xx + fy) >> (14 + 16 - kSQRT_TABLE_BITS); fi = SkFastMin32(fi, 0xFFFF >> (16 - kSQRT_TABLE_BITS)); fx += dx; *dstC++ = cache[toggle + (sqrt_table[fi] >> SkGradientShaderBase::kSqrt16Shift)]; toggle = next_dither_toggle16(toggle); } while (--count != 0); } else { do { unsigned xx = SkTPin(fx, -0xFFFF >> 1, 0xFFFF >> 1); unsigned fi = SkTPin(fy, -0xFFFF >> 1, 0xFFFF >> 1); fi = (xx * xx + fi * fi) >> (14 + 16 - kSQRT_TABLE_BITS); fi = SkFastMin32(fi, 0xFFFF >> (16 - kSQRT_TABLE_BITS)); fx += dx; fy += dy; *dstC++ = cache[toggle + (sqrt_table[fi] >> SkGradientShaderBase::kSqrt16Shift)]; toggle = next_dither_toggle16(toggle); } while (--count != 0); } } template void shadeSpan16_radial(SkScalar fx, SkScalar dx, SkScalar fy, SkScalar dy, uint16_t* SK_RESTRICT dstC, const uint16_t* SK_RESTRICT cache, int toggle, int count) { do { const SkFixed dist = SkFloatToFixed(sk_float_sqrt(fx*fx + fy*fy)); const unsigned fi = TileProc(dist); SkASSERT(fi <= 0xFFFF); *dstC++ = cache[toggle + (fi >> SkGradientShaderBase::kCache16Shift)]; toggle = next_dither_toggle16(toggle); fx += dx; fy += dy; } while (--count != 0); } void shadeSpan16_radial_mirror(SkScalar fx, SkScalar dx, SkScalar fy, SkScalar dy, uint16_t* SK_RESTRICT dstC, const uint16_t* SK_RESTRICT cache, int toggle, int count) { shadeSpan16_radial(fx, dx, fy, dy, dstC, cache, toggle, count); } void shadeSpan16_radial_repeat(SkScalar fx, SkScalar dx, SkScalar fy, SkScalar dy, uint16_t* SK_RESTRICT dstC, const uint16_t* SK_RESTRICT cache, int toggle, int count) { shadeSpan16_radial(fx, dx, fy, dy, dstC, cache, toggle, count); } } // namespace ///////////////////////////////////////////////////////////////////// SkRadialGradient::SkRadialGradient(const SkPoint& center, SkScalar radius, const Descriptor& desc) : SkGradientShaderBase(desc, rad_to_unit_matrix(center, radius)) , fCenter(center) , fRadius(radius) { } size_t SkRadialGradient::contextSize() const { return sizeof(RadialGradientContext); } SkShader::Context* SkRadialGradient::onCreateContext(const ContextRec& rec, void* storage) const { return new (storage) RadialGradientContext(*this, rec); } SkRadialGradient::RadialGradientContext::RadialGradientContext( const SkRadialGradient& shader, const ContextRec& rec) : INHERITED(shader, rec) {} void SkRadialGradient::RadialGradientContext::shadeSpan16(int x, int y, uint16_t* dstCParam, int count) { SkASSERT(count > 0); const SkRadialGradient& radialGradient = static_cast(fShader); uint16_t* SK_RESTRICT dstC = dstCParam; SkPoint srcPt; SkMatrix::MapXYProc dstProc = fDstToIndexProc; TileProc proc = radialGradient.fTileProc; const uint16_t* SK_RESTRICT cache = fCache->getCache16(); int toggle = init_dither_toggle16(x, y); if (fDstToIndexClass != kPerspective_MatrixClass) { dstProc(fDstToIndex, SkIntToScalar(x) + SK_ScalarHalf, SkIntToScalar(y) + SK_ScalarHalf, &srcPt); SkScalar sdx = fDstToIndex.getScaleX(); SkScalar sdy = fDstToIndex.getSkewY(); if (fDstToIndexClass == kFixedStepInX_MatrixClass) { SkFixed storage[2]; (void)fDstToIndex.fixedStepInX(SkIntToScalar(y), &storage[0], &storage[1]); sdx = SkFixedToScalar(storage[0]); sdy = SkFixedToScalar(storage[1]); } else { SkASSERT(fDstToIndexClass == kLinear_MatrixClass); } RadialShade16Proc shadeProc = shadeSpan16_radial_repeat; if (SkShader::kClamp_TileMode == radialGradient.fTileMode) { shadeProc = shadeSpan16_radial_clamp; } else if (SkShader::kMirror_TileMode == radialGradient.fTileMode) { shadeProc = shadeSpan16_radial_mirror; } else { SkASSERT(SkShader::kRepeat_TileMode == radialGradient.fTileMode); } (*shadeProc)(srcPt.fX, sdx, srcPt.fY, sdy, dstC, cache, toggle, count); } else { // perspective case SkScalar dstX = SkIntToScalar(x); SkScalar dstY = SkIntToScalar(y); do { dstProc(fDstToIndex, dstX, dstY, &srcPt); unsigned fi = proc(SkScalarToFixed(srcPt.length())); SkASSERT(fi <= 0xFFFF); int index = fi >> (16 - kCache16Bits); *dstC++ = cache[toggle + index]; toggle = next_dither_toggle16(toggle); dstX += SK_Scalar1; } while (--count != 0); } } SkShader::GradientType SkRadialGradient::asAGradient(GradientInfo* info) const { if (info) { commonAsAGradient(info); info->fPoint[0] = fCenter; info->fRadius[0] = fRadius; } return kRadial_GradientType; } SkFlattenable* SkRadialGradient::CreateProc(SkReadBuffer& buffer) { DescriptorScope desc; if (!desc.unflatten(buffer)) { return nullptr; } const SkPoint center = buffer.readPoint(); const SkScalar radius = buffer.readScalar(); return SkGradientShader::CreateRadial(center, radius, desc.fColors, desc.fPos, desc.fCount, desc.fTileMode, desc.fGradFlags, desc.fLocalMatrix); } void SkRadialGradient::flatten(SkWriteBuffer& buffer) const { this->INHERITED::flatten(buffer); buffer.writePoint(fCenter); buffer.writeScalar(fRadius); } namespace { inline bool radial_completely_pinned(SkScalar fx, SkScalar dx, SkScalar fy, SkScalar dy) { // fast, overly-conservative test: checks unit square instead of unit circle bool xClamped = (fx >= 1 && dx >= 0) || (fx <= -1 && dx <= 0); bool yClamped = (fy >= 1 && dy >= 0) || (fy <= -1 && dy <= 0); return xClamped || yClamped; } typedef void (* RadialShadeProc)(SkScalar sfx, SkScalar sdx, SkScalar sfy, SkScalar sdy, SkPMColor* dstC, const SkPMColor* cache, int count, int toggle); static inline Sk4f fast_sqrt(const Sk4f& R) { // R * R.rsqrt0() is much faster, but it's non-monotonic, which isn't so pretty for gradients. return R * R.rsqrt1(); } static inline Sk4f sum_squares(const Sk4f& a, const Sk4f& b) { return a * a + b * b; } void shadeSpan_radial_clamp2(SkScalar sfx, SkScalar sdx, SkScalar sfy, SkScalar sdy, SkPMColor* SK_RESTRICT dstC, const SkPMColor* SK_RESTRICT cache, int count, int toggle) { if (radial_completely_pinned(sfx, sdx, sfy, sdy)) { unsigned fi = SkGradientShaderBase::kCache32Count - 1; sk_memset32_dither(dstC, cache[toggle + fi], cache[next_dither_toggle(toggle) + fi], count); } else { const Sk4f max(255); const float scale = 255; sfx *= scale; sfy *= scale; sdx *= scale; sdy *= scale; const Sk4f fx4(sfx, sfx + sdx, sfx + 2*sdx, sfx + 3*sdx); const Sk4f fy4(sfy, sfy + sdy, sfy + 2*sdy, sfy + 3*sdy); const Sk4f dx4(sdx * 4); const Sk4f dy4(sdy * 4); Sk4f tmpxy = fx4 * dx4 + fy4 * dy4; Sk4f tmpdxdy = sum_squares(dx4, dy4); Sk4f R = sum_squares(fx4, fy4); Sk4f dR = tmpxy + tmpxy + tmpdxdy; const Sk4f ddR = tmpdxdy + tmpdxdy; for (int i = 0; i < (count >> 2); ++i) { Sk4f dist = Sk4f::Min(fast_sqrt(R), max); R = R + dR; dR = dR + ddR; int fi[4]; dist.castTrunc().store(fi); for (int i = 0; i < 4; i++) { *dstC++ = cache[toggle + fi[i]]; toggle = next_dither_toggle(toggle); } } count &= 3; if (count) { Sk4f dist = Sk4f::Min(fast_sqrt(R), max); int fi[4]; dist.castTrunc().store(fi); for (int i = 0; i < count; i++) { *dstC++ = cache[toggle + fi[i]]; toggle = next_dither_toggle(toggle); } } } } // Unrolling this loop doesn't seem to help (when float); we're stalling to // get the results of the sqrt (?), and don't have enough extra registers to // have many in flight. template void shadeSpan_radial(SkScalar fx, SkScalar dx, SkScalar fy, SkScalar dy, SkPMColor* SK_RESTRICT dstC, const SkPMColor* SK_RESTRICT cache, int count, int toggle) { do { const SkFixed dist = SkFloatToFixed(sk_float_sqrt(fx*fx + fy*fy)); const unsigned fi = TileProc(dist); SkASSERT(fi <= 0xFFFF); *dstC++ = cache[toggle + (fi >> SkGradientShaderBase::kCache32Shift)]; toggle = next_dither_toggle(toggle); fx += dx; fy += dy; } while (--count != 0); } void shadeSpan_radial_mirror(SkScalar fx, SkScalar dx, SkScalar fy, SkScalar dy, SkPMColor* SK_RESTRICT dstC, const SkPMColor* SK_RESTRICT cache, int count, int toggle) { shadeSpan_radial(fx, dx, fy, dy, dstC, cache, count, toggle); } void shadeSpan_radial_repeat(SkScalar fx, SkScalar dx, SkScalar fy, SkScalar dy, SkPMColor* SK_RESTRICT dstC, const SkPMColor* SK_RESTRICT cache, int count, int toggle) { shadeSpan_radial(fx, dx, fy, dy, dstC, cache, count, toggle); } } // namespace void SkRadialGradient::RadialGradientContext::shadeSpan(int x, int y, SkPMColor* SK_RESTRICT dstC, int count) { SkASSERT(count > 0); const SkRadialGradient& radialGradient = static_cast(fShader); SkPoint srcPt; SkMatrix::MapXYProc dstProc = fDstToIndexProc; TileProc proc = radialGradient.fTileProc; const SkPMColor* SK_RESTRICT cache = fCache->getCache32(); int toggle = init_dither_toggle(x, y); if (fDstToIndexClass != kPerspective_MatrixClass) { dstProc(fDstToIndex, SkIntToScalar(x) + SK_ScalarHalf, SkIntToScalar(y) + SK_ScalarHalf, &srcPt); SkScalar sdx = fDstToIndex.getScaleX(); SkScalar sdy = fDstToIndex.getSkewY(); if (fDstToIndexClass == kFixedStepInX_MatrixClass) { SkFixed storage[2]; (void)fDstToIndex.fixedStepInX(SkIntToScalar(y), &storage[0], &storage[1]); sdx = SkFixedToScalar(storage[0]); sdy = SkFixedToScalar(storage[1]); } else { SkASSERT(fDstToIndexClass == kLinear_MatrixClass); } RadialShadeProc shadeProc = shadeSpan_radial_repeat; if (SkShader::kClamp_TileMode == radialGradient.fTileMode) { shadeProc = shadeSpan_radial_clamp2; } else if (SkShader::kMirror_TileMode == radialGradient.fTileMode) { shadeProc = shadeSpan_radial_mirror; } else { SkASSERT(SkShader::kRepeat_TileMode == radialGradient.fTileMode); } (*shadeProc)(srcPt.fX, sdx, srcPt.fY, sdy, dstC, cache, count, toggle); } else { // perspective case SkScalar dstX = SkIntToScalar(x); SkScalar dstY = SkIntToScalar(y); do { dstProc(fDstToIndex, dstX, dstY, &srcPt); unsigned fi = proc(SkScalarToFixed(srcPt.length())); SkASSERT(fi <= 0xFFFF); *dstC++ = cache[fi >> SkGradientShaderBase::kCache32Shift]; dstX += SK_Scalar1; } while (--count != 0); } } ///////////////////////////////////////////////////////////////////// #if SK_SUPPORT_GPU #include "SkGr.h" #include "gl/builders/GrGLProgramBuilder.h" class GrGLRadialGradient : public GrGLGradientEffect { public: GrGLRadialGradient(const GrProcessor&) {} virtual ~GrGLRadialGradient() { } virtual void emitCode(EmitArgs&) override; static void GenKey(const GrProcessor& processor, const GrGLSLCaps&, GrProcessorKeyBuilder* b) { b->add32(GenBaseGradientKey(processor)); } private: typedef GrGLGradientEffect INHERITED; }; ///////////////////////////////////////////////////////////////////// class GrRadialGradient : public GrGradientEffect { public: static GrFragmentProcessor* Create(GrContext* ctx, const SkRadialGradient& shader, const SkMatrix& matrix, SkShader::TileMode tm) { return new GrRadialGradient(ctx, shader, matrix, tm); } virtual ~GrRadialGradient() { } const char* name() const override { return "Radial Gradient"; } private: GrRadialGradient(GrContext* ctx, const SkRadialGradient& shader, const SkMatrix& matrix, SkShader::TileMode tm) : INHERITED(ctx, shader, matrix, tm) { this->initClassID(); } GrGLFragmentProcessor* onCreateGLInstance() const override { return new GrGLRadialGradient(*this); } virtual void onGetGLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) const override { GrGLRadialGradient::GenKey(*this, caps, b); } GR_DECLARE_FRAGMENT_PROCESSOR_TEST; typedef GrGradientEffect INHERITED; }; ///////////////////////////////////////////////////////////////////// GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrRadialGradient); const GrFragmentProcessor* GrRadialGradient::TestCreate(GrProcessorTestData* d) { SkPoint center = {d->fRandom->nextUScalar1(), d->fRandom->nextUScalar1()}; SkScalar radius = d->fRandom->nextUScalar1(); SkColor colors[kMaxRandomGradientColors]; SkScalar stopsArray[kMaxRandomGradientColors]; SkScalar* stops = stopsArray; SkShader::TileMode tm; int colorCount = RandomGradientParams(d->fRandom, colors, &stops, &tm); SkAutoTUnref shader(SkGradientShader::CreateRadial(center, radius, colors, stops, colorCount, tm)); const GrFragmentProcessor* fp = shader->asFragmentProcessor(d->fContext, GrTest::TestMatrix(d->fRandom), NULL, kNone_SkFilterQuality); GrAlwaysAssert(fp); return fp; } ///////////////////////////////////////////////////////////////////// void GrGLRadialGradient::emitCode(EmitArgs& args) { const GrRadialGradient& ge = args.fFp.cast(); this->emitUniforms(args.fBuilder, ge); SkString t("length("); t.append(args.fBuilder->getFragmentShaderBuilder()->ensureFSCoords2D(args.fCoords, 0)); t.append(")"); this->emitColor(args.fBuilder, ge, t.c_str(), args.fOutputColor, args.fInputColor, args.fSamplers); } ///////////////////////////////////////////////////////////////////// const GrFragmentProcessor* SkRadialGradient::asFragmentProcessor( GrContext* context, const SkMatrix& viewM, const SkMatrix* localMatrix, SkFilterQuality) const { SkASSERT(context); SkMatrix matrix; if (!this->getLocalMatrix().invert(&matrix)) { return nullptr; } if (localMatrix) { SkMatrix inv; if (!localMatrix->invert(&inv)) { return nullptr; } matrix.postConcat(inv); } matrix.postConcat(fPtsToUnit); SkAutoTUnref inner( GrRadialGradient::Create(context, *this, matrix, fTileMode)); return GrFragmentProcessor::MulOutputByInputAlpha(inner); } #endif #ifndef SK_IGNORE_TO_STRING void SkRadialGradient::toString(SkString* str) const { str->append("SkRadialGradient: ("); str->append("center: ("); str->appendScalar(fCenter.fX); str->append(", "); str->appendScalar(fCenter.fY); str->append(") radius: "); str->appendScalar(fRadius); str->append(" "); this->INHERITED::toString(str); str->append(")"); } #endif