/* * Copyright 2006 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkGradientShaderPriv.h" #include "SkLinearGradient.h" #include "SkRadialGradient.h" #include "SkTwoPointRadialGradient.h" #include "SkTwoPointConicalGradient.h" #include "SkSweepGradient.h" SkGradientShaderBase::SkGradientShaderBase(const SkColor colors[], const SkScalar pos[], int colorCount, SkShader::TileMode mode, SkUnitMapper* mapper) { SkASSERT(colorCount > 1); fCacheAlpha = 256; // init to a value that paint.getAlpha() can't return fMapper = mapper; SkSafeRef(mapper); SkASSERT((unsigned)mode < SkShader::kTileModeCount); SkASSERT(SkShader::kTileModeCount == SK_ARRAY_COUNT(gTileProcs)); fTileMode = mode; fTileProc = gTileProcs[mode]; fCache16 = fCache16Storage = NULL; fCache32 = NULL; fCache32PixelRef = NULL; /* Note: we let the caller skip the first and/or last position. i.e. pos[0] = 0.3, pos[1] = 0.7 In these cases, we insert dummy entries to ensure that the final data will be bracketed by [0, 1]. i.e. our_pos[0] = 0, our_pos[1] = 0.3, our_pos[2] = 0.7, our_pos[3] = 1 Thus colorCount (the caller's value, and fColorCount (our value) may differ by up to 2. In the above example: colorCount = 2 fColorCount = 4 */ fColorCount = colorCount; // check if we need to add in dummy start and/or end position/colors bool dummyFirst = false; bool dummyLast = false; if (pos) { dummyFirst = pos[0] != 0; dummyLast = pos[colorCount - 1] != SK_Scalar1; fColorCount += dummyFirst + dummyLast; } if (fColorCount > kColorStorageCount) { size_t size = sizeof(SkColor) + sizeof(Rec); fOrigColors = reinterpret_cast( sk_malloc_throw(size * fColorCount)); } else { fOrigColors = fStorage; } // Now copy over the colors, adding the dummies as needed { SkColor* origColors = fOrigColors; if (dummyFirst) { *origColors++ = colors[0]; } memcpy(origColors, colors, colorCount * sizeof(SkColor)); if (dummyLast) { origColors += colorCount; *origColors = colors[colorCount - 1]; } } fRecs = (Rec*)(fOrigColors + fColorCount); if (fColorCount > 2) { Rec* recs = fRecs; recs->fPos = 0; // recs->fScale = 0; // unused; recs += 1; if (pos) { /* We need to convert the user's array of relative positions into fixed-point positions and scale factors. We need these results to be strictly monotonic (no two values equal or out of order). Hence this complex loop that just jams a zero for the scale value if it sees a segment out of order, and it assures that we start at 0 and end at 1.0 */ SkFixed prev = 0; int startIndex = dummyFirst ? 0 : 1; int count = colorCount + dummyLast; for (int i = startIndex; i < count; i++) { // force the last value to be 1.0 SkFixed curr; if (i == colorCount) { // we're really at the dummyLast curr = SK_Fixed1; } else { curr = SkScalarToFixed(pos[i]); } // pin curr withing range if (curr < 0) { curr = 0; } else if (curr > SK_Fixed1) { curr = SK_Fixed1; } recs->fPos = curr; if (curr > prev) { recs->fScale = (1 << 24) / (curr - prev); } else { recs->fScale = 0; // ignore this segment } // get ready for the next value prev = curr; recs += 1; } } else { // assume even distribution SkFixed dp = SK_Fixed1 / (colorCount - 1); SkFixed p = dp; SkFixed scale = (colorCount - 1) << 8; // (1 << 24) / dp for (int i = 1; i < colorCount; i++) { recs->fPos = p; recs->fScale = scale; recs += 1; p += dp; } } } this->initCommon(); } SkGradientShaderBase::SkGradientShaderBase(SkFlattenableReadBuffer& buffer) : INHERITED(buffer) { fCacheAlpha = 256; fMapper = buffer.readFlattenableT(); fCache16 = fCache16Storage = NULL; fCache32 = NULL; fCache32PixelRef = NULL; int colorCount = fColorCount = buffer.getArrayCount(); if (colorCount > kColorStorageCount) { size_t size = sizeof(SkColor) + sizeof(SkPMColor) + sizeof(Rec); fOrigColors = (SkColor*)sk_malloc_throw(size * colorCount); } else { fOrigColors = fStorage; } buffer.readColorArray(fOrigColors); fTileMode = (TileMode)buffer.readUInt(); fTileProc = gTileProcs[fTileMode]; fRecs = (Rec*)(fOrigColors + colorCount); if (colorCount > 2) { Rec* recs = fRecs; recs[0].fPos = 0; for (int i = 1; i < colorCount; i++) { recs[i].fPos = buffer.readInt(); recs[i].fScale = buffer.readUInt(); } } buffer.readMatrix(&fPtsToUnit); this->initCommon(); } SkGradientShaderBase::~SkGradientShaderBase() { if (fCache16Storage) { sk_free(fCache16Storage); } SkSafeUnref(fCache32PixelRef); if (fOrigColors != fStorage) { sk_free(fOrigColors); } SkSafeUnref(fMapper); } void SkGradientShaderBase::initCommon() { fFlags = 0; unsigned colorAlpha = 0xFF; for (int i = 0; i < fColorCount; i++) { colorAlpha &= SkColorGetA(fOrigColors[i]); } fColorsAreOpaque = colorAlpha == 0xFF; } void SkGradientShaderBase::flatten(SkFlattenableWriteBuffer& buffer) const { this->INHERITED::flatten(buffer); buffer.writeFlattenable(fMapper); buffer.writeColorArray(fOrigColors, fColorCount); buffer.writeUInt(fTileMode); if (fColorCount > 2) { Rec* recs = fRecs; for (int i = 1; i < fColorCount; i++) { buffer.writeInt(recs[i].fPos); buffer.writeUInt(recs[i].fScale); } } buffer.writeMatrix(fPtsToUnit); } bool SkGradientShaderBase::isOpaque() const { return fColorsAreOpaque; } bool SkGradientShaderBase::setContext(const SkBitmap& device, const SkPaint& paint, const SkMatrix& matrix) { if (!this->INHERITED::setContext(device, paint, matrix)) { return false; } const SkMatrix& inverse = this->getTotalInverse(); if (!fDstToIndex.setConcat(fPtsToUnit, inverse)) { return false; } fDstToIndexProc = fDstToIndex.getMapXYProc(); fDstToIndexClass = (uint8_t)SkShader::ComputeMatrixClass(fDstToIndex); // now convert our colors in to PMColors unsigned paintAlpha = this->getPaintAlpha(); fFlags = this->INHERITED::getFlags(); if (fColorsAreOpaque && paintAlpha == 0xFF) { fFlags |= kOpaqueAlpha_Flag; } // we can do span16 as long as our individual colors are opaque, // regardless of the paint's alpha if (fColorsAreOpaque) { fFlags |= kHasSpan16_Flag; } this->setCacheAlpha(paintAlpha); return true; } void SkGradientShaderBase::setCacheAlpha(U8CPU alpha) const { // if the new alpha differs from the previous time we were called, inval our cache // this will trigger the cache to be rebuilt. // we don't care about the first time, since the cache ptrs will already be NULL if (fCacheAlpha != alpha) { fCache16 = NULL; // inval the cache fCache32 = NULL; // inval the cache fCacheAlpha = alpha; // record the new alpha // inform our subclasses if (fCache32PixelRef) { fCache32PixelRef->notifyPixelsChanged(); } } } #define Fixed_To_Dot8(x) (((x) + 0x80) >> 8) /** We take the original colors, not our premultiplied PMColors, since we can build a 16bit table as long as the original colors are opaque, even if the paint specifies a non-opaque alpha. */ void SkGradientShaderBase::Build16bitCache(uint16_t cache[], SkColor c0, SkColor c1, int count) { SkASSERT(count > 1); SkASSERT(SkColorGetA(c0) == 0xFF); SkASSERT(SkColorGetA(c1) == 0xFF); SkFixed r = SkColorGetR(c0); SkFixed g = SkColorGetG(c0); SkFixed b = SkColorGetB(c0); SkFixed dr = SkIntToFixed(SkColorGetR(c1) - r) / (count - 1); SkFixed dg = SkIntToFixed(SkColorGetG(c1) - g) / (count - 1); SkFixed db = SkIntToFixed(SkColorGetB(c1) - b) / (count - 1); r = SkIntToFixed(r) + 0x8000; g = SkIntToFixed(g) + 0x8000; b = SkIntToFixed(b) + 0x8000; do { unsigned rr = r >> 16; unsigned gg = g >> 16; unsigned bb = b >> 16; cache[0] = SkPackRGB16(SkR32ToR16(rr), SkG32ToG16(gg), SkB32ToB16(bb)); cache[kCache16Count] = SkDitherPack888ToRGB16(rr, gg, bb); cache += 1; r += dr; g += dg; b += db; } while (--count != 0); } /* * 2x2 dither a fixed-point color component (8.16) down to 8, matching the * semantics of how we 2x2 dither 32->16 */ static inline U8CPU dither_fixed_to_8(SkFixed n) { n >>= 8; return ((n << 1) - ((n >> 8 << 8) | (n >> 8))) >> 8; } /* * For dithering with premultiply, we want to ceiling the alpha component, * to ensure that it is always >= any color component. */ static inline U8CPU dither_ceil_fixed_to_8(SkFixed n) { n >>= 8; return ((n << 1) - (n | (n >> 8))) >> 8; } void SkGradientShaderBase::Build32bitCache(SkPMColor cache[], SkColor c0, SkColor c1, int count, U8CPU paintAlpha) { SkASSERT(count > 1); // need to apply paintAlpha to our two endpoints SkFixed a = SkMulDiv255Round(SkColorGetA(c0), paintAlpha); SkFixed da; { int tmp = SkMulDiv255Round(SkColorGetA(c1), paintAlpha); da = SkIntToFixed(tmp - a) / (count - 1); } SkFixed r = SkColorGetR(c0); SkFixed g = SkColorGetG(c0); SkFixed b = SkColorGetB(c0); SkFixed dr = SkIntToFixed(SkColorGetR(c1) - r) / (count - 1); SkFixed dg = SkIntToFixed(SkColorGetG(c1) - g) / (count - 1); SkFixed db = SkIntToFixed(SkColorGetB(c1) - b) / (count - 1); a = SkIntToFixed(a) + 0x8000; r = SkIntToFixed(r) + 0x8000; g = SkIntToFixed(g) + 0x8000; b = SkIntToFixed(b) + 0x8000; do { cache[0] = SkPremultiplyARGBInline(a >> 16, r >> 16, g >> 16, b >> 16); cache[kCache32Count] = SkPremultiplyARGBInline(dither_ceil_fixed_to_8(a), dither_fixed_to_8(r), dither_fixed_to_8(g), dither_fixed_to_8(b)); cache += 1; a += da; r += dr; g += dg; b += db; } while (--count != 0); } static inline int SkFixedToFFFF(SkFixed x) { SkASSERT((unsigned)x <= SK_Fixed1); return x - (x >> 16); } static inline U16CPU bitsTo16(unsigned x, const unsigned bits) { SkASSERT(x < (1U << bits)); if (6 == bits) { return (x << 10) | (x << 4) | (x >> 2); } if (8 == bits) { return (x << 8) | x; } sk_throw(); return 0; } /** We duplicate the last value in each half of the cache so that interpolation doesn't have to special-case being at the last point. */ static void complete_16bit_cache(uint16_t* cache, int stride) { cache[stride - 1] = cache[stride - 2]; cache[2 * stride - 1] = cache[2 * stride - 2]; } const uint16_t* SkGradientShaderBase::getCache16() const { if (fCache16 == NULL) { // double the count for dither entries const int entryCount = kCache16Count * 2; const size_t allocSize = sizeof(uint16_t) * entryCount; if (fCache16Storage == NULL) { // set the storage and our working ptr fCache16Storage = (uint16_t*)sk_malloc_throw(allocSize); } fCache16 = fCache16Storage; if (fColorCount == 2) { Build16bitCache(fCache16, fOrigColors[0], fOrigColors[1], kGradient16Length); } else { Rec* rec = fRecs; int prevIndex = 0; for (int i = 1; i < fColorCount; i++) { int nextIndex = SkFixedToFFFF(rec[i].fPos) >> kCache16Shift; SkASSERT(nextIndex < kCache16Count); if (nextIndex > prevIndex) Build16bitCache(fCache16 + prevIndex, fOrigColors[i-1], fOrigColors[i], nextIndex - prevIndex + 1); prevIndex = nextIndex; } // one extra space left over at the end for complete_16bit_cache() SkASSERT(prevIndex == kGradient16Length - 1); } if (fMapper) { fCache16Storage = (uint16_t*)sk_malloc_throw(allocSize); uint16_t* linear = fCache16; // just computed linear data uint16_t* mapped = fCache16Storage; // storage for mapped data SkUnitMapper* map = fMapper; for (int i = 0; i < kGradient16Length; i++) { int index = map->mapUnit16(bitsTo16(i, kCache16Bits)) >> kCache16Shift; mapped[i] = linear[index]; mapped[i + kCache16Count] = linear[index + kCache16Count]; } sk_free(fCache16); fCache16 = fCache16Storage; } complete_16bit_cache(fCache16, kCache16Count); } return fCache16; } /** We duplicate the last value in each half of the cache so that interpolation doesn't have to special-case being at the last point. */ static void complete_32bit_cache(SkPMColor* cache, int stride) { cache[stride - 1] = cache[stride - 2]; cache[2 * stride - 1] = cache[2 * stride - 2]; } const SkPMColor* SkGradientShaderBase::getCache32() const { if (fCache32 == NULL) { // double the count for dither entries const int entryCount = kCache32Count * 2; const size_t allocSize = sizeof(SkPMColor) * entryCount; if (NULL == fCache32PixelRef) { fCache32PixelRef = SkNEW_ARGS(SkMallocPixelRef, (NULL, allocSize, NULL)); } fCache32 = (SkPMColor*)fCache32PixelRef->getAddr(); if (fColorCount == 2) { Build32bitCache(fCache32, fOrigColors[0], fOrigColors[1], kGradient32Length, fCacheAlpha); } else { Rec* rec = fRecs; int prevIndex = 0; for (int i = 1; i < fColorCount; i++) { int nextIndex = SkFixedToFFFF(rec[i].fPos) >> kCache32Shift; SkASSERT(nextIndex < kGradient32Length); if (nextIndex > prevIndex) Build32bitCache(fCache32 + prevIndex, fOrigColors[i-1], fOrigColors[i], nextIndex - prevIndex + 1, fCacheAlpha); prevIndex = nextIndex; } SkASSERT(prevIndex == kGradient32Length - 1); } if (fMapper) { SkMallocPixelRef* newPR = SkNEW_ARGS(SkMallocPixelRef, (NULL, allocSize, NULL)); SkPMColor* linear = fCache32; // just computed linear data SkPMColor* mapped = (SkPMColor*)newPR->getAddr(); // storage for mapped data SkUnitMapper* map = fMapper; for (int i = 0; i < kGradient32Length; i++) { int index = map->mapUnit16((i << 8) | i) >> 8; mapped[i] = linear[index]; mapped[i + kCache32Count] = linear[index + kCache32Count]; } fCache32PixelRef->unref(); fCache32PixelRef = newPR; fCache32 = (SkPMColor*)newPR->getAddr(); } complete_32bit_cache(fCache32, kCache32Count); } return fCache32; } /* * Because our caller might rebuild the same (logically the same) gradient * over and over, we'd like to return exactly the same "bitmap" if possible, * allowing the client to utilize a cache of our bitmap (e.g. with a GPU). * To do that, we maintain a private cache of built-bitmaps, based on our * colors and positions. Note: we don't try to flatten the fMapper, so if one * is present, we skip the cache for now. */ void SkGradientShaderBase::getGradientTableBitmap(SkBitmap* bitmap) const { // our caller assumes no external alpha, so we ensure that our cache is // built with 0xFF this->setCacheAlpha(0xFF); // don't have a way to put the mapper into our cache-key yet if (fMapper) { // force our cahce32pixelref to be built (void)this->getCache32(); bitmap->setConfig(SkBitmap::kARGB_8888_Config, kGradient32Length, 1); bitmap->setPixelRef(fCache32PixelRef); return; } // build our key: [numColors + colors[] + {positions[]} ] int count = 1 + fColorCount; if (fColorCount > 2) { count += fColorCount - 1; // fRecs[].fPos } SkAutoSTMalloc<16, int32_t> storage(count); int32_t* buffer = storage.get(); *buffer++ = fColorCount; memcpy(buffer, fOrigColors, fColorCount * sizeof(SkColor)); buffer += fColorCount; if (fColorCount > 2) { for (int i = 1; i < fColorCount; i++) { *buffer++ = fRecs[i].fPos; } } SkASSERT(buffer - storage.get() == count); /////////////////////////////////// SK_DECLARE_STATIC_MUTEX(gMutex); static SkBitmapCache* gCache; // each cache cost 1K of RAM, since each bitmap will be 1x256 at 32bpp static const int MAX_NUM_CACHED_GRADIENT_BITMAPS = 32; SkAutoMutexAcquire ama(gMutex); if (NULL == gCache) { gCache = SkNEW_ARGS(SkBitmapCache, (MAX_NUM_CACHED_GRADIENT_BITMAPS)); } size_t size = count * sizeof(int32_t); if (!gCache->find(storage.get(), size, bitmap)) { // force our cahce32pixelref to be built (void)this->getCache32(); // Only expose the linear section of the cache; don't let the caller // know about the padding at the end to make interpolation faster. bitmap->setConfig(SkBitmap::kARGB_8888_Config, kGradient32Length, 1); bitmap->setPixelRef(fCache32PixelRef); gCache->add(storage.get(), size, *bitmap); } } void SkGradientShaderBase::commonAsAGradient(GradientInfo* info) const { if (info) { if (info->fColorCount >= fColorCount) { if (info->fColors) { memcpy(info->fColors, fOrigColors, fColorCount * sizeof(SkColor)); } if (info->fColorOffsets) { if (fColorCount == 2) { info->fColorOffsets[0] = 0; info->fColorOffsets[1] = SK_Scalar1; } else if (fColorCount > 2) { for (int i = 0; i < fColorCount; i++) info->fColorOffsets[i] = SkFixedToScalar(fRecs[i].fPos); } } } info->fColorCount = fColorCount; info->fTileMode = fTileMode; } } /////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// #include "SkEmptyShader.h" // assumes colors is SkColor* and pos is SkScalar* #define EXPAND_1_COLOR(count) \ SkColor tmp[2]; \ do { \ if (1 == count) { \ tmp[0] = tmp[1] = colors[0]; \ colors = tmp; \ pos = NULL; \ count = 2; \ } \ } while (0) SkShader* SkGradientShader::CreateLinear(const SkPoint pts[2], const SkColor colors[], const SkScalar pos[], int colorCount, SkShader::TileMode mode, SkUnitMapper* mapper) { if (NULL == pts || NULL == colors || colorCount < 1) { return NULL; } EXPAND_1_COLOR(colorCount); return SkNEW_ARGS(SkLinearGradient, (pts, colors, pos, colorCount, mode, mapper)); } SkShader* SkGradientShader::CreateRadial(const SkPoint& center, SkScalar radius, const SkColor colors[], const SkScalar pos[], int colorCount, SkShader::TileMode mode, SkUnitMapper* mapper) { if (radius <= 0 || NULL == colors || colorCount < 1) { return NULL; } EXPAND_1_COLOR(colorCount); return SkNEW_ARGS(SkRadialGradient, (center, radius, colors, pos, colorCount, mode, mapper)); } SkShader* SkGradientShader::CreateTwoPointRadial(const SkPoint& start, SkScalar startRadius, const SkPoint& end, SkScalar endRadius, const SkColor colors[], const SkScalar pos[], int colorCount, SkShader::TileMode mode, SkUnitMapper* mapper) { if (startRadius < 0 || endRadius < 0 || NULL == colors || colorCount < 1) { return NULL; } EXPAND_1_COLOR(colorCount); return SkNEW_ARGS(SkTwoPointRadialGradient, (start, startRadius, end, endRadius, colors, pos, colorCount, mode, mapper)); } SkShader* SkGradientShader::CreateTwoPointConical(const SkPoint& start, SkScalar startRadius, const SkPoint& end, SkScalar endRadius, const SkColor colors[], const SkScalar pos[], int colorCount, SkShader::TileMode mode, SkUnitMapper* mapper) { if (startRadius < 0 || endRadius < 0 || NULL == colors || colorCount < 1) { return NULL; } if (start == end && startRadius == endRadius) { return SkNEW(SkEmptyShader); } EXPAND_1_COLOR(colorCount); return SkNEW_ARGS(SkTwoPointConicalGradient, (start, startRadius, end, endRadius, colors, pos, colorCount, mode, mapper)); } SkShader* SkGradientShader::CreateSweep(SkScalar cx, SkScalar cy, const SkColor colors[], const SkScalar pos[], int count, SkUnitMapper* mapper) { if (NULL == colors || count < 1) { return NULL; } EXPAND_1_COLOR(count); return SkNEW_ARGS(SkSweepGradient, (cx, cy, colors, pos, count, mapper)); } SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_START(SkGradientShader) SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkLinearGradient) SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkRadialGradient) SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkSweepGradient) SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkTwoPointRadialGradient) SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkTwoPointConicalGradient) SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_END /////////////////////////////////////////////////////////////////////////////// #if SK_SUPPORT_GPU #include "effects/GrTextureStripAtlas.h" #include "SkGr.h" GrGLGradientStage::GrGLGradientStage(const GrProgramStageFactory& factory) : INHERITED(factory) , fCachedYCoord(GR_ScalarMax) , fFSYUni(GrGLUniformManager::kInvalidUniformHandle) { } GrGLGradientStage::~GrGLGradientStage() { } void GrGLGradientStage::setupVariables(GrGLShaderBuilder* builder) { fFSYUni = builder->addUniform(GrGLShaderBuilder::kFragment_ShaderType, kFloat_GrSLType, "GradientYCoordFS"); } void GrGLGradientStage::setData(const GrGLUniformManager& uman, const GrCustomStage& stage, const GrRenderTarget*, int stageNum) { GrScalar yCoord = static_cast(stage).getYCoord(); if (yCoord != fCachedYCoord) { uman.set1f(fFSYUni, yCoord); fCachedYCoord = yCoord; } } void GrGLGradientStage::emitColorLookup(GrGLShaderBuilder* builder, const char* gradientTValue, const char* outputColor, const char* inputColor, const GrGLShaderBuilder::TextureSampler& sampler) { SkString* code = &builder->fFSCode; code->appendf("\tvec2 coord = vec2(%s, %s);\n", gradientTValue, builder->getUniformVariable(fFSYUni).c_str()); GrGLSLMulVarBy4f(code, 1, outputColor, inputColor); code->appendf("\t%s = ", outputColor); builder->appendTextureLookupAndModulate(code, inputColor, sampler, "coord"); code->append(";\n"); } ///////////////////////////////////////////////////////////////////// GrGradientEffect::GrGradientEffect(GrContext* ctx, const SkGradientShaderBase& shader, SkShader::TileMode tileMode) : INHERITED(1) { // TODO: check for simple cases where we don't need a texture: //GradientInfo info; //shader.asAGradient(&info); //if (info.fColorCount == 2) { ... SkBitmap bitmap; shader.getGradientTableBitmap(&bitmap); GrTextureStripAtlas::Desc desc; desc.fWidth = bitmap.width(); desc.fHeight = 32; desc.fRowHeight = bitmap.height(); desc.fContext = ctx; desc.fConfig = SkBitmapConfig2GrPixelConfig(bitmap.config()); fAtlas = GrTextureStripAtlas::GetAtlas(desc); GrAssert(NULL != fAtlas); // We always filter the gradient table. Each table is one row of a texture, so always y-clamp. GrTextureParams params; params.setBilerp(true); params.setTileModeX(tileMode); fRow = fAtlas->lockRow(bitmap); if (-1 != fRow) { fYCoord = fAtlas->getYOffset(fRow) + GR_ScalarHalf * fAtlas->getVerticalScaleFactor(); fTextureAccess.reset(fAtlas->getTexture(), params); } else { GrTexture* texture = GrLockCachedBitmapTexture(ctx, bitmap, ¶ms); fTextureAccess.reset(texture, params); fYCoord = GR_ScalarHalf; // Unlock immediately, this is not great, but we don't have a way of // knowing when else to unlock it currently, so it may get purged from // the cache, but it'll still be ref'd until it's no longer being used. GrUnlockCachedBitmapTexture(texture); } } GrGradientEffect::~GrGradientEffect() { if (this->useAtlas()) { fAtlas->unlockRow(fRow); } } const GrTextureAccess& GrGradientEffect::textureAccess(int index) const { GrAssert(0 == index); return fTextureAccess; } int GrGradientEffect::RandomGradientParams(SkRandom* random, SkColor colors[], SkScalar** stops, SkShader::TileMode* tm) { int outColors = random->nextRangeU(1, kMaxRandomGradientColors); // if one color, omit stops, otherwise randomly decide whether or not to if (outColors == 1 || (outColors >= 2 && random->nextBool())) { *stops = NULL; } GrScalar stop = 0.f; for (int i = 0; i < outColors; ++i) { colors[i] = random->nextU(); if (NULL != *stops) { (*stops)[i] = stop; stop = i < outColors - 1 ? stop + random->nextUScalar1() * (1.f - stop) : 1.f; } } *tm = static_cast(random->nextULessThan(SkShader::kTileModeCount)); return outColors; } #endif