/* * Copyright 2006 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "Sk4fLinearGradient.h" #include "SkColorSpace_XYZ.h" #include "SkGradientShaderPriv.h" #include "SkHalf.h" #include "SkLinearGradient.h" #include "SkMallocPixelRef.h" #include "SkRadialGradient.h" #include "SkSweepGradient.h" #include "SkTwoPointConicalGradient.h" enum GradientSerializationFlags { // Bits 29:31 used for various boolean flags kHasPosition_GSF = 0x80000000, kHasLocalMatrix_GSF = 0x40000000, kHasColorSpace_GSF = 0x20000000, // Bits 12:28 unused // Bits 8:11 for fTileMode kTileModeShift_GSF = 8, kTileModeMask_GSF = 0xF, // Bits 0:7 for fGradFlags (note that kForce4fContext_PrivateFlag is 0x80) kGradFlagsShift_GSF = 0, kGradFlagsMask_GSF = 0xFF, }; void SkGradientShaderBase::Descriptor::flatten(SkWriteBuffer& buffer) const { uint32_t flags = 0; if (fPos) { flags |= kHasPosition_GSF; } if (fLocalMatrix) { flags |= kHasLocalMatrix_GSF; } sk_sp colorSpaceData = fColorSpace ? fColorSpace->serialize() : nullptr; if (colorSpaceData) { flags |= kHasColorSpace_GSF; } SkASSERT(static_cast(fTileMode) <= kTileModeMask_GSF); flags |= (fTileMode << kTileModeShift_GSF); SkASSERT(fGradFlags <= kGradFlagsMask_GSF); flags |= (fGradFlags << kGradFlagsShift_GSF); buffer.writeUInt(flags); buffer.writeColor4fArray(fColors, fCount); if (colorSpaceData) { buffer.writeDataAsByteArray(colorSpaceData.get()); } if (fPos) { buffer.writeScalarArray(fPos, fCount); } if (fLocalMatrix) { buffer.writeMatrix(*fLocalMatrix); } } bool SkGradientShaderBase::DescriptorScope::unflatten(SkReadBuffer& buffer) { if (buffer.isVersionLT(SkReadBuffer::kGradientShaderFloatColor_Version)) { fCount = buffer.getArrayCount(); if (fCount > kStorageCount) { size_t allocSize = (sizeof(SkColor4f) + sizeof(SkScalar)) * fCount; fDynamicStorage.reset(allocSize); fColors = (SkColor4f*)fDynamicStorage.get(); fPos = (SkScalar*)(fColors + fCount); } else { fColors = fColorStorage; fPos = fPosStorage; } // Old gradients serialized SkColor. Read that to a temporary location, then convert. SkSTArray<2, SkColor, true> colors; colors.resize_back(fCount); if (!buffer.readColorArray(colors.begin(), fCount)) { return false; } for (int i = 0; i < fCount; ++i) { mutableColors()[i] = SkColor4f::FromColor(colors[i]); } if (buffer.readBool()) { if (!buffer.readScalarArray(const_cast(fPos), fCount)) { return false; } } else { fPos = nullptr; } fColorSpace = nullptr; fTileMode = (SkShader::TileMode)buffer.read32(); fGradFlags = buffer.read32(); if (buffer.readBool()) { fLocalMatrix = &fLocalMatrixStorage; buffer.readMatrix(&fLocalMatrixStorage); } else { fLocalMatrix = nullptr; } } else { // New gradient format. Includes floating point color, color space, densely packed flags uint32_t flags = buffer.readUInt(); fTileMode = (SkShader::TileMode)((flags >> kTileModeShift_GSF) & kTileModeMask_GSF); fGradFlags = (flags >> kGradFlagsShift_GSF) & kGradFlagsMask_GSF; fCount = buffer.getArrayCount(); if (fCount > kStorageCount) { size_t allocSize = (sizeof(SkColor4f) + sizeof(SkScalar)) * fCount; fDynamicStorage.reset(allocSize); fColors = (SkColor4f*)fDynamicStorage.get(); fPos = (SkScalar*)(fColors + fCount); } else { fColors = fColorStorage; fPos = fPosStorage; } if (!buffer.readColor4fArray(mutableColors(), fCount)) { return false; } if (SkToBool(flags & kHasColorSpace_GSF)) { sk_sp data = buffer.readByteArrayAsData(); fColorSpace = SkColorSpace::Deserialize(data->data(), data->size()); } else { fColorSpace = nullptr; } if (SkToBool(flags & kHasPosition_GSF)) { if (!buffer.readScalarArray(mutablePos(), fCount)) { return false; } } else { fPos = nullptr; } if (SkToBool(flags & kHasLocalMatrix_GSF)) { fLocalMatrix = &fLocalMatrixStorage; buffer.readMatrix(&fLocalMatrixStorage); } else { fLocalMatrix = nullptr; } } return buffer.isValid(); } //////////////////////////////////////////////////////////////////////////////////////////// SkGradientShaderBase::SkGradientShaderBase(const Descriptor& desc, const SkMatrix& ptsToUnit) : INHERITED(desc.fLocalMatrix) , fPtsToUnit(ptsToUnit) { fPtsToUnit.getType(); // Precache so reads are threadsafe. SkASSERT(desc.fCount > 1); fGradFlags = static_cast(desc.fGradFlags); SkASSERT((unsigned)desc.fTileMode < SkShader::kTileModeCount); SkASSERT(SkShader::kTileModeCount == SK_ARRAY_COUNT(gTileProcs)); fTileMode = desc.fTileMode; fTileProc = gTileProcs[desc.fTileMode]; /* Note: we let the caller skip the first and/or last position. i.e. pos[0] = 0.3, pos[1] = 0.7 In these cases, we insert dummy entries to ensure that the final data will be bracketed by [0, 1]. i.e. our_pos[0] = 0, our_pos[1] = 0.3, our_pos[2] = 0.7, our_pos[3] = 1 Thus colorCount (the caller's value, and fColorCount (our value) may differ by up to 2. In the above example: colorCount = 2 fColorCount = 4 */ fColorCount = desc.fCount; // check if we need to add in dummy start and/or end position/colors bool dummyFirst = false; bool dummyLast = false; if (desc.fPos) { dummyFirst = desc.fPos[0] != 0; dummyLast = desc.fPos[desc.fCount - 1] != SK_Scalar1; fColorCount += dummyFirst + dummyLast; } if (fColorCount > kColorStorageCount) { size_t size = sizeof(SkColor) + sizeof(SkColor4f) + sizeof(Rec); if (desc.fPos) { size += sizeof(SkScalar); } fOrigColors = reinterpret_cast(sk_malloc_throw(size * fColorCount)); } else { fOrigColors = fStorage; } fOrigColors4f = (SkColor4f*)(fOrigColors + fColorCount); // Now copy over the colors, adding the dummies as needed SkColor4f* origColors = fOrigColors4f; if (dummyFirst) { *origColors++ = desc.fColors[0]; } memcpy(origColors, desc.fColors, desc.fCount * sizeof(SkColor4f)); if (dummyLast) { origColors += desc.fCount; *origColors = desc.fColors[desc.fCount - 1]; } // Convert our SkColor4f colors to SkColor as well. Note that this is incorrect if the // source colors are not in sRGB gamut. We would need to do a gamut transformation, but // SkColorSpaceXform can't do that (yet). GrColorSpaceXform can, but we may not have GPU // support compiled in here. For the common case (sRGB colors), this does the right thing. for (int i = 0; i < fColorCount; ++i) { fOrigColors[i] = fOrigColors4f[i].toSkColor(); } if (!desc.fColorSpace) { // This happens if we were constructed from SkColors, so our colors are really sRGB fColorSpace = SkColorSpace::MakeSRGBLinear(); } else { // The color space refers to the float colors, so it must be linear gamma SkASSERT(desc.fColorSpace->gammaIsLinear()); fColorSpace = desc.fColorSpace; } if (desc.fPos && fColorCount) { fOrigPos = (SkScalar*)(fOrigColors4f + fColorCount); fRecs = (Rec*)(fOrigPos + fColorCount); } else { fOrigPos = nullptr; fRecs = (Rec*)(fOrigColors4f + fColorCount); } if (fColorCount > 2) { Rec* recs = fRecs; recs->fPos = 0; // recs->fScale = 0; // unused; recs += 1; if (desc.fPos) { SkScalar* origPosPtr = fOrigPos; *origPosPtr++ = 0; /* We need to convert the user's array of relative positions into fixed-point positions and scale factors. We need these results to be strictly monotonic (no two values equal or out of order). Hence this complex loop that just jams a zero for the scale value if it sees a segment out of order, and it assures that we start at 0 and end at 1.0 */ SkScalar prev = 0; int startIndex = dummyFirst ? 0 : 1; int count = desc.fCount + dummyLast; for (int i = startIndex; i < count; i++) { // force the last value to be 1.0 SkScalar curr; if (i == desc.fCount) { // we're really at the dummyLast curr = 1; } else { curr = SkScalarPin(desc.fPos[i], 0, 1); } *origPosPtr++ = curr; recs->fPos = SkScalarToFixed(curr); SkFixed diff = SkScalarToFixed(curr - prev); if (diff > 0) { recs->fScale = (1 << 24) / diff; } else { recs->fScale = 0; // ignore this segment } // get ready for the next value prev = curr; recs += 1; } } else { // assume even distribution fOrigPos = nullptr; SkFixed dp = SK_Fixed1 / (desc.fCount - 1); SkFixed p = dp; SkFixed scale = (desc.fCount - 1) << 8; // (1 << 24) / dp for (int i = 1; i < desc.fCount - 1; i++) { recs->fPos = p; recs->fScale = scale; recs += 1; p += dp; } recs->fPos = SK_Fixed1; recs->fScale = scale; } } else if (desc.fPos) { SkASSERT(2 == fColorCount); fOrigPos[0] = SkScalarPin(desc.fPos[0], 0, 1); fOrigPos[1] = SkScalarPin(desc.fPos[1], fOrigPos[0], 1); if (0 == fOrigPos[0] && 1 == fOrigPos[1]) { fOrigPos = nullptr; } } this->initCommon(); } SkGradientShaderBase::~SkGradientShaderBase() { if (fOrigColors != fStorage) { sk_free(fOrigColors); } } void SkGradientShaderBase::initCommon() { unsigned colorAlpha = 0xFF; for (int i = 0; i < fColorCount; i++) { colorAlpha &= SkColorGetA(fOrigColors[i]); } fColorsAreOpaque = colorAlpha == 0xFF; } void SkGradientShaderBase::flatten(SkWriteBuffer& buffer) const { Descriptor desc; desc.fColors = fOrigColors4f; desc.fColorSpace = fColorSpace; desc.fPos = fOrigPos; desc.fCount = fColorCount; desc.fTileMode = fTileMode; desc.fGradFlags = fGradFlags; const SkMatrix& m = this->getLocalMatrix(); desc.fLocalMatrix = m.isIdentity() ? nullptr : &m; desc.flatten(buffer); } void SkGradientShaderBase::FlipGradientColors(SkColor* colorDst, Rec* recDst, SkColor* colorSrc, Rec* recSrc, int count) { SkAutoSTArray<8, SkColor> colorsTemp(count); for (int i = 0; i < count; ++i) { int offset = count - i - 1; colorsTemp[i] = colorSrc[offset]; } if (count > 2) { SkAutoSTArray<8, Rec> recsTemp(count); for (int i = 0; i < count; ++i) { int offset = count - i - 1; recsTemp[i].fPos = SK_Fixed1 - recSrc[offset].fPos; recsTemp[i].fScale = recSrc[offset].fScale; } memcpy(recDst, recsTemp.get(), count * sizeof(Rec)); } memcpy(colorDst, colorsTemp.get(), count * sizeof(SkColor)); } bool SkGradientShaderBase::onAppendStages( SkRasterPipeline* pipeline, SkColorSpace* dstCS, SkArenaAlloc* alloc, const SkMatrix& ctm, const SkPaint& paint, const SkMatrix* localM) const { SkMatrix matrix; if (!this->computeTotalInverse(ContextRec(paint, ctm, localM, ContextRec::kPM4f_DstType, // doesn't matter here dstCS), &matrix)) { return false; } SkRasterPipeline p; if (!this->adjustMatrixAndAppendStages(alloc, &matrix, &p)) { return false; } auto* m = alloc->makeArrayDefault(9); if (matrix.asAffine(m)) { // TODO: mapping y is not needed; split the matrix stages to save some math? pipeline->append(SkRasterPipeline::matrix_2x3, m); } else { matrix.get9(m); pipeline->append(SkRasterPipeline::matrix_perspective, m); } pipeline->extend(p); const bool premulGrad = fGradFlags & SkGradientShader::kInterpolateColorsInPremul_Flag; auto prepareColor = [premulGrad, dstCS, this](int i) { SkColor4f c = dstCS ? to_colorspace(fOrigColors4f[i], fColorSpace.get(), dstCS) : SkColor4f_from_SkColor(fOrigColors[i], nullptr); return premulGrad ? c.premul() : SkPM4f::From4f(Sk4f::Load(&c)); }; // The two-stop case with stops at 0 and 1. if (fColorCount == 2 && fOrigPos == nullptr) { const SkPM4f c_l = prepareColor(0), c_r = prepareColor(1); // See F and B below. auto* f_and_b = alloc->makeArrayDefault(2); f_and_b[0] = SkPM4f::From4f(c_r.to4f() - c_l.to4f()); f_and_b[1] = c_l; pipeline->append(SkRasterPipeline::linear_gradient_2stops, f_and_b); } else { struct Stop { float t; SkPM4f f, b; }; struct Ctx { size_t n; Stop* stops; SkPM4f start; }; auto* ctx = alloc->make(); ctx->start = prepareColor(0); // For each stop we calculate a bias B and a scale factor F, such that // for any t between stops n and n+1, the color we want is B[n] + F[n]*t. auto init_stop = [](float t_l, float t_r, SkPM4f c_l, SkPM4f c_r, Stop *stop) { auto F = SkPM4f::From4f((c_r.to4f() - c_l.to4f()) / (t_r - t_l)); auto B = SkPM4f::From4f(c_l.to4f() - (F.to4f() * t_l)); *stop = {t_l, F, B}; }; if (fOrigPos == nullptr) { // Handle evenly distributed stops. float dt = 1.0f / (fColorCount - 1); // In the evenly distributed case, fColorCount is the number of stops. There are no // dummy entries. auto* stopsArray = alloc->makeArrayDefault(fColorCount); float t_l = 0; SkPM4f c_l = ctx->start; for (int i = 0; i < fColorCount - 1; i++) { // Use multiply instead of accumulating error using repeated addition. float t_r = (i + 1) * dt; SkPM4f c_r = prepareColor(i + 1); init_stop(t_l, t_r, c_l, c_r, &stopsArray[i]); t_l = t_r; c_l = c_r; } // Force the last stop. stopsArray[fColorCount - 1].t = 1; stopsArray[fColorCount - 1].f = SkPM4f::From4f(Sk4f{0}); stopsArray[fColorCount - 1].b = prepareColor(fColorCount - 1); ctx->n = fColorCount; ctx->stops = stopsArray; } else { // Handle arbitrary stops. // Remove the dummy stops inserted by SkGradientShaderBase::SkGradientShaderBase // because they are naturally handled by the search method. int firstStop; int lastStop; if (fColorCount > 2) { firstStop = fOrigColors4f[0] != fOrigColors4f[1] ? 0 : 1; lastStop = fOrigColors4f[fColorCount - 2] != fOrigColors4f[fColorCount - 1] ? fColorCount - 1 : fColorCount - 2; } else { firstStop = 0; lastStop = 1; } int realCount = lastStop - firstStop + 1; // This is the maximum number of stops. There may be fewer stops because the duplicate // points of hard stops are removed. auto* stopsArray = alloc->makeArrayDefault(realCount); size_t stopCount = 0; float t_l = fOrigPos[firstStop]; SkPM4f c_l = prepareColor(firstStop); // N.B. lastStop is the index of the last stop, not one after. for (int i = firstStop; i < lastStop; i++) { float t_r = fOrigPos[i + 1]; SkPM4f c_r = prepareColor(i + 1); if (t_l < t_r) { init_stop(t_l, t_r, c_l, c_r, &stopsArray[stopCount]); stopCount += 1; } t_l = t_r; c_l = c_r; } stopsArray[stopCount].t = fOrigPos[lastStop]; stopsArray[stopCount].f = SkPM4f::From4f(Sk4f{0}); stopsArray[stopCount].b = prepareColor(lastStop); stopCount += 1; ctx->n = stopCount; ctx->stops = stopsArray; } pipeline->append(SkRasterPipeline::linear_gradient, ctx); } if (!premulGrad && !this->colorsAreOpaque()) { pipeline->append(SkRasterPipeline::premul); } return true; } bool SkGradientShaderBase::isOpaque() const { return fColorsAreOpaque; } static unsigned rounded_divide(unsigned numer, unsigned denom) { return (numer + (denom >> 1)) / denom; } bool SkGradientShaderBase::onAsLuminanceColor(SkColor* lum) const { // we just compute an average color. // possibly we could weight this based on the proportional width for each color // assuming they are not evenly distributed in the fPos array. int r = 0; int g = 0; int b = 0; const int n = fColorCount; for (int i = 0; i < n; ++i) { SkColor c = fOrigColors[i]; r += SkColorGetR(c); g += SkColorGetG(c); b += SkColorGetB(c); } *lum = SkColorSetRGB(rounded_divide(r, n), rounded_divide(g, n), rounded_divide(b, n)); return true; } SkGradientShaderBase::GradientShaderBaseContext::GradientShaderBaseContext( const SkGradientShaderBase& shader, const ContextRec& rec) : INHERITED(shader, rec) #ifdef SK_SUPPORT_LEGACY_GRADIENT_DITHERING , fDither(true) #else , fDither(rec.fPaint->isDither()) #endif , fCache(shader.refCache(getPaintAlpha(), fDither)) { const SkMatrix& inverse = this->getTotalInverse(); fDstToIndex.setConcat(shader.fPtsToUnit, inverse); fDstToIndexProc = fDstToIndex.getMapXYProc(); fDstToIndexClass = (uint8_t)SkShader::Context::ComputeMatrixClass(fDstToIndex); // now convert our colors in to PMColors unsigned paintAlpha = this->getPaintAlpha(); fFlags = this->INHERITED::getFlags(); if (shader.fColorsAreOpaque && paintAlpha == 0xFF) { fFlags |= kOpaqueAlpha_Flag; } } bool SkGradientShaderBase::GradientShaderBaseContext::isValid() const { return fDstToIndex.isFinite(); } SkGradientShaderBase::GradientShaderCache::GradientShaderCache( U8CPU alpha, bool dither, const SkGradientShaderBase& shader) : fCacheAlpha(alpha) , fCacheDither(dither) , fShader(shader) { // Only initialize the cache in getCache32. fCache32 = nullptr; } SkGradientShaderBase::GradientShaderCache::~GradientShaderCache() {} /* * r,g,b used to be SkFixed, but on gcc (4.2.1 mac and 4.6.3 goobuntu) in * release builds, we saw a compiler error where the 0xFF parameter in * SkPackARGB32() was being totally ignored whenever it was called with * a non-zero add (e.g. 0x8000). * * We found two work-arounds: * 1. change r,g,b to unsigned (or just one of them) * 2. change SkPackARGB32 to + its (a << SK_A32_SHIFT) value instead * of using | * * We chose #1 just because it was more localized. * See http://code.google.com/p/skia/issues/detail?id=1113 * * The type SkUFixed encapsulate this need for unsigned, but logically Fixed. */ typedef uint32_t SkUFixed; void SkGradientShaderBase::GradientShaderCache::Build32bitCache( SkPMColor cache[], SkColor c0, SkColor c1, int count, U8CPU paintAlpha, uint32_t gradFlags, bool dither) { SkASSERT(count > 1); // need to apply paintAlpha to our two endpoints uint32_t a0 = SkMulDiv255Round(SkColorGetA(c0), paintAlpha); uint32_t a1 = SkMulDiv255Round(SkColorGetA(c1), paintAlpha); const bool interpInPremul = SkToBool(gradFlags & SkGradientShader::kInterpolateColorsInPremul_Flag); uint32_t r0 = SkColorGetR(c0); uint32_t g0 = SkColorGetG(c0); uint32_t b0 = SkColorGetB(c0); uint32_t r1 = SkColorGetR(c1); uint32_t g1 = SkColorGetG(c1); uint32_t b1 = SkColorGetB(c1); if (interpInPremul) { r0 = SkMulDiv255Round(r0, a0); g0 = SkMulDiv255Round(g0, a0); b0 = SkMulDiv255Round(b0, a0); r1 = SkMulDiv255Round(r1, a1); g1 = SkMulDiv255Round(g1, a1); b1 = SkMulDiv255Round(b1, a1); } SkFixed da = SkIntToFixed(a1 - a0) / (count - 1); SkFixed dr = SkIntToFixed(r1 - r0) / (count - 1); SkFixed dg = SkIntToFixed(g1 - g0) / (count - 1); SkFixed db = SkIntToFixed(b1 - b0) / (count - 1); /* We pre-add 1/8 to avoid having to add this to our [0] value each time in the loop. Without this, the bias for each would be 0x2000 0xA000 0xE000 0x6000 With this trick, we can add 0 for the first (no-op) and just adjust the others. */ const SkUFixed bias0 = dither ? 0x2000 : 0x8000; const SkUFixed bias1 = dither ? 0x8000 : 0; const SkUFixed bias2 = dither ? 0xC000 : 0; const SkUFixed bias3 = dither ? 0x4000 : 0; SkUFixed a = SkIntToFixed(a0) + bias0; SkUFixed r = SkIntToFixed(r0) + bias0; SkUFixed g = SkIntToFixed(g0) + bias0; SkUFixed b = SkIntToFixed(b0) + bias0; /* * Our dither-cell (spatially) is * 0 2 * 3 1 * Where * [0] -> [-1/8 ... 1/8 ) values near 0 * [1] -> [ 1/8 ... 3/8 ) values near 1/4 * [2] -> [ 3/8 ... 5/8 ) values near 1/2 * [3] -> [ 5/8 ... 7/8 ) values near 3/4 */ if (0xFF == a0 && 0 == da) { do { cache[kCache32Count*0] = SkPackARGB32(0xFF, (r + 0 ) >> 16, (g + 0 ) >> 16, (b + 0 ) >> 16); cache[kCache32Count*1] = SkPackARGB32(0xFF, (r + bias1) >> 16, (g + bias1) >> 16, (b + bias1) >> 16); cache[kCache32Count*2] = SkPackARGB32(0xFF, (r + bias2) >> 16, (g + bias2) >> 16, (b + bias2) >> 16); cache[kCache32Count*3] = SkPackARGB32(0xFF, (r + bias3) >> 16, (g + bias3) >> 16, (b + bias3) >> 16); cache += 1; r += dr; g += dg; b += db; } while (--count != 0); } else if (interpInPremul) { do { cache[kCache32Count*0] = SkPackARGB32((a + 0 ) >> 16, (r + 0 ) >> 16, (g + 0 ) >> 16, (b + 0 ) >> 16); cache[kCache32Count*1] = SkPackARGB32((a + bias1) >> 16, (r + bias1) >> 16, (g + bias1) >> 16, (b + bias1) >> 16); cache[kCache32Count*2] = SkPackARGB32((a + bias2) >> 16, (r + bias2) >> 16, (g + bias2) >> 16, (b + bias2) >> 16); cache[kCache32Count*3] = SkPackARGB32((a + bias3) >> 16, (r + bias3) >> 16, (g + bias3) >> 16, (b + bias3) >> 16); cache += 1; a += da; r += dr; g += dg; b += db; } while (--count != 0); } else { // interpolate in unpreml space do { cache[kCache32Count*0] = SkPremultiplyARGBInline((a + 0 ) >> 16, (r + 0 ) >> 16, (g + 0 ) >> 16, (b + 0 ) >> 16); cache[kCache32Count*1] = SkPremultiplyARGBInline((a + bias1) >> 16, (r + bias1) >> 16, (g + bias1) >> 16, (b + bias1) >> 16); cache[kCache32Count*2] = SkPremultiplyARGBInline((a + bias2) >> 16, (r + bias2) >> 16, (g + bias2) >> 16, (b + bias2) >> 16); cache[kCache32Count*3] = SkPremultiplyARGBInline((a + bias3) >> 16, (r + bias3) >> 16, (g + bias3) >> 16, (b + bias3) >> 16); cache += 1; a += da; r += dr; g += dg; b += db; } while (--count != 0); } } static inline int SkFixedToFFFF(SkFixed x) { SkASSERT((unsigned)x <= SK_Fixed1); return x - (x >> 16); } const SkPMColor* SkGradientShaderBase::GradientShaderCache::getCache32() { fCache32InitOnce(SkGradientShaderBase::GradientShaderCache::initCache32, this); SkASSERT(fCache32); return fCache32; } void SkGradientShaderBase::GradientShaderCache::initCache32(GradientShaderCache* cache) { const int kNumberOfDitherRows = 4; const SkImageInfo info = SkImageInfo::MakeN32Premul(kCache32Count, kNumberOfDitherRows); SkASSERT(nullptr == cache->fCache32PixelRef); cache->fCache32PixelRef = SkMallocPixelRef::MakeAllocate(info, 0, nullptr); cache->fCache32 = (SkPMColor*)cache->fCache32PixelRef->pixels(); if (cache->fShader.fColorCount == 2) { Build32bitCache(cache->fCache32, cache->fShader.fOrigColors[0], cache->fShader.fOrigColors[1], kCache32Count, cache->fCacheAlpha, cache->fShader.fGradFlags, cache->fCacheDither); } else { Rec* rec = cache->fShader.fRecs; int prevIndex = 0; for (int i = 1; i < cache->fShader.fColorCount; i++) { int nextIndex = SkFixedToFFFF(rec[i].fPos) >> kCache32Shift; SkASSERT(nextIndex < kCache32Count); if (nextIndex > prevIndex) Build32bitCache(cache->fCache32 + prevIndex, cache->fShader.fOrigColors[i-1], cache->fShader.fOrigColors[i], nextIndex - prevIndex + 1, cache->fCacheAlpha, cache->fShader.fGradFlags, cache->fCacheDither); prevIndex = nextIndex; } } } void SkGradientShaderBase::initLinearBitmap(SkBitmap* bitmap) const { const bool interpInPremul = SkToBool(fGradFlags & SkGradientShader::kInterpolateColorsInPremul_Flag); SkHalf* pixelsF16 = reinterpret_cast(bitmap->getPixels()); uint32_t* pixelsS32 = reinterpret_cast(bitmap->getPixels()); typedef std::function pixelWriteFn_t; pixelWriteFn_t writeF16Pixel = [&](const Sk4f& x, int index) { Sk4h c = SkFloatToHalf_finite_ftz(x); pixelsF16[4*index+0] = c[0]; pixelsF16[4*index+1] = c[1]; pixelsF16[4*index+2] = c[2]; pixelsF16[4*index+3] = c[3]; }; pixelWriteFn_t writeS32Pixel = [&](const Sk4f& c, int index) { pixelsS32[index] = Sk4f_toS32(c); }; pixelWriteFn_t writeSizedPixel = (kRGBA_F16_SkColorType == bitmap->colorType()) ? writeF16Pixel : writeS32Pixel; pixelWriteFn_t writeUnpremulPixel = [&](const Sk4f& c, int index) { writeSizedPixel(c * Sk4f(c[3], c[3], c[3], 1.0f), index); }; pixelWriteFn_t writePixel = interpInPremul ? writeSizedPixel : writeUnpremulPixel; int prevIndex = 0; for (int i = 1; i < fColorCount; i++) { int nextIndex = (fColorCount == 2) ? (kCache32Count - 1) : SkFixedToFFFF(fRecs[i].fPos) >> kCache32Shift; SkASSERT(nextIndex < kCache32Count); if (nextIndex > prevIndex) { Sk4f c0 = Sk4f::Load(fOrigColors4f[i - 1].vec()); Sk4f c1 = Sk4f::Load(fOrigColors4f[i].vec()); if (interpInPremul) { c0 = c0 * Sk4f(c0[3], c0[3], c0[3], 1.0f); c1 = c1 * Sk4f(c1[3], c1[3], c1[3], 1.0f); } Sk4f step = Sk4f(1.0f / static_cast(nextIndex - prevIndex)); Sk4f delta = (c1 - c0) * step; for (int curIndex = prevIndex; curIndex <= nextIndex; ++curIndex) { writePixel(c0, curIndex); c0 += delta; } } prevIndex = nextIndex; } SkASSERT(prevIndex == kCache32Count - 1); } /* * The gradient holds a cache for the most recent value of alpha. Successive * callers with the same alpha value will share the same cache. */ sk_sp SkGradientShaderBase::refCache(U8CPU alpha, bool dither) const { SkAutoMutexAcquire ama(fCacheMutex); if (!fCache || fCache->getAlpha() != alpha || fCache->getDither() != dither) { fCache.reset(new GradientShaderCache(alpha, dither, *this)); } // Increment the ref counter inside the mutex to ensure the returned pointer is still valid. // Otherwise, the pointer may have been overwritten on a different thread before the object's // ref count was incremented. return fCache; } SK_DECLARE_STATIC_MUTEX(gGradientCacheMutex); /* * Because our caller might rebuild the same (logically the same) gradient * over and over, we'd like to return exactly the same "bitmap" if possible, * allowing the client to utilize a cache of our bitmap (e.g. with a GPU). * To do that, we maintain a private cache of built-bitmaps, based on our * colors and positions. Note: we don't try to flatten the fMapper, so if one * is present, we skip the cache for now. */ void SkGradientShaderBase::getGradientTableBitmap(SkBitmap* bitmap, GradientBitmapType bitmapType) const { // our caller assumes no external alpha, so we ensure that our cache is built with 0xFF sk_sp cache(this->refCache(0xFF, true)); // build our key: [numColors + colors[] + {positions[]} + flags + colorType ] int count = 1 + fColorCount + 1 + 1; if (fColorCount > 2) { count += fColorCount - 1; // fRecs[].fPos } SkAutoSTMalloc<16, int32_t> storage(count); int32_t* buffer = storage.get(); *buffer++ = fColorCount; memcpy(buffer, fOrigColors, fColorCount * sizeof(SkColor)); buffer += fColorCount; if (fColorCount > 2) { for (int i = 1; i < fColorCount; i++) { *buffer++ = fRecs[i].fPos; } } *buffer++ = fGradFlags; *buffer++ = static_cast(bitmapType); SkASSERT(buffer - storage.get() == count); /////////////////////////////////// static SkGradientBitmapCache* gCache; // each cache cost 1K or 2K of RAM, since each bitmap will be 1x256 at either 32bpp or 64bpp static const int MAX_NUM_CACHED_GRADIENT_BITMAPS = 32; SkAutoMutexAcquire ama(gGradientCacheMutex); if (nullptr == gCache) { gCache = new SkGradientBitmapCache(MAX_NUM_CACHED_GRADIENT_BITMAPS); } size_t size = count * sizeof(int32_t); if (!gCache->find(storage.get(), size, bitmap)) { if (GradientBitmapType::kLegacy == bitmapType) { // force our cache32pixelref to be built (void)cache->getCache32(); bitmap->setInfo(SkImageInfo::MakeN32Premul(kCache32Count, 1)); bitmap->setPixelRef(sk_ref_sp(cache->getCache32PixelRef()), 0, 0); } else { // For these cases we use the bitmap cache, but not the GradientShaderCache. So just // allocate and populate the bitmap's data directly. SkImageInfo info; switch (bitmapType) { case GradientBitmapType::kSRGB: info = SkImageInfo::Make(kCache32Count, 1, kRGBA_8888_SkColorType, kPremul_SkAlphaType, SkColorSpace::MakeSRGB()); break; case GradientBitmapType::kHalfFloat: info = SkImageInfo::Make( kCache32Count, 1, kRGBA_F16_SkColorType, kPremul_SkAlphaType, SkColorSpace::MakeSRGBLinear()); break; default: SkFAIL("Unexpected bitmap type"); return; } bitmap->allocPixels(info); this->initLinearBitmap(bitmap); } gCache->add(storage.get(), size, *bitmap); } } void SkGradientShaderBase::commonAsAGradient(GradientInfo* info, bool flipGrad) const { if (info) { if (info->fColorCount >= fColorCount) { SkColor* colorLoc; Rec* recLoc; SkAutoSTArray<8, SkColor> colorStorage; SkAutoSTArray<8, Rec> recStorage; if (flipGrad && (info->fColors || info->fColorOffsets)) { colorStorage.reset(fColorCount); recStorage.reset(fColorCount); colorLoc = colorStorage.get(); recLoc = recStorage.get(); FlipGradientColors(colorLoc, recLoc, fOrigColors, fRecs, fColorCount); } else { colorLoc = fOrigColors; recLoc = fRecs; } if (info->fColors) { memcpy(info->fColors, colorLoc, fColorCount * sizeof(SkColor)); } if (info->fColorOffsets) { if (fColorCount == 2) { info->fColorOffsets[0] = 0; info->fColorOffsets[1] = SK_Scalar1; } else if (fColorCount > 2) { for (int i = 0; i < fColorCount; ++i) { info->fColorOffsets[i] = SkFixedToScalar(recLoc[i].fPos); } } } } info->fColorCount = fColorCount; info->fTileMode = fTileMode; info->fGradientFlags = fGradFlags; } } #ifndef SK_IGNORE_TO_STRING void SkGradientShaderBase::toString(SkString* str) const { str->appendf("%d colors: ", fColorCount); for (int i = 0; i < fColorCount; ++i) { str->appendHex(fOrigColors[i], 8); if (i < fColorCount-1) { str->append(", "); } } if (fColorCount > 2) { str->append(" points: ("); for (int i = 0; i < fColorCount; ++i) { str->appendScalar(SkFixedToScalar(fRecs[i].fPos)); if (i < fColorCount-1) { str->append(", "); } } str->append(")"); } static const char* gTileModeName[SkShader::kTileModeCount] = { "clamp", "repeat", "mirror" }; str->append(" "); str->append(gTileModeName[fTileMode]); this->INHERITED::toString(str); } #endif /////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// // Return true if these parameters are valid/legal/safe to construct a gradient // static bool valid_grad(const SkColor4f colors[], const SkScalar pos[], int count, unsigned tileMode) { return nullptr != colors && count >= 1 && tileMode < (unsigned)SkShader::kTileModeCount; } static void desc_init(SkGradientShaderBase::Descriptor* desc, const SkColor4f colors[], sk_sp colorSpace, const SkScalar pos[], int colorCount, SkShader::TileMode mode, uint32_t flags, const SkMatrix* localMatrix) { SkASSERT(colorCount > 1); desc->fColors = colors; desc->fColorSpace = std::move(colorSpace); desc->fPos = pos; desc->fCount = colorCount; desc->fTileMode = mode; desc->fGradFlags = flags; desc->fLocalMatrix = localMatrix; } // assumes colors is SkColor4f* and pos is SkScalar* #define EXPAND_1_COLOR(count) \ SkColor4f tmp[2]; \ do { \ if (1 == count) { \ tmp[0] = tmp[1] = colors[0]; \ colors = tmp; \ pos = nullptr; \ count = 2; \ } \ } while (0) struct ColorStopOptimizer { ColorStopOptimizer(const SkColor4f* colors, const SkScalar* pos, int count, SkShader::TileMode mode) : fColors(colors) , fPos(pos) , fCount(count) { if (!pos || count != 3) { return; } if (SkScalarNearlyEqual(pos[0], 0.0f) && SkScalarNearlyEqual(pos[1], 0.0f) && SkScalarNearlyEqual(pos[2], 1.0f)) { if (SkShader::kRepeat_TileMode == mode || SkShader::kMirror_TileMode == mode || colors[0] == colors[1]) { // Ignore the leftmost color/pos. fColors += 1; fPos += 1; fCount = 2; } } else if (SkScalarNearlyEqual(pos[0], 0.0f) && SkScalarNearlyEqual(pos[1], 1.0f) && SkScalarNearlyEqual(pos[2], 1.0f)) { if (SkShader::kRepeat_TileMode == mode || SkShader::kMirror_TileMode == mode || colors[1] == colors[2]) { // Ignore the rightmost color/pos. fCount = 2; } } } const SkColor4f* fColors; const SkScalar* fPos; int fCount; }; struct ColorConverter { ColorConverter(const SkColor* colors, int count) { for (int i = 0; i < count; ++i) { fColors4f.push_back(SkColor4f::FromColor(colors[i])); } } SkSTArray<2, SkColor4f, true> fColors4f; }; sk_sp SkGradientShader::MakeLinear(const SkPoint pts[2], const SkColor colors[], const SkScalar pos[], int colorCount, SkShader::TileMode mode, uint32_t flags, const SkMatrix* localMatrix) { ColorConverter converter(colors, colorCount); return MakeLinear(pts, converter.fColors4f.begin(), nullptr, pos, colorCount, mode, flags, localMatrix); } sk_sp SkGradientShader::MakeLinear(const SkPoint pts[2], const SkColor4f colors[], sk_sp colorSpace, const SkScalar pos[], int colorCount, SkShader::TileMode mode, uint32_t flags, const SkMatrix* localMatrix) { if (!pts || !SkScalarIsFinite((pts[1] - pts[0]).length())) { return nullptr; } if (!valid_grad(colors, pos, colorCount, mode)) { return nullptr; } if (1 == colorCount) { return SkShader::MakeColorShader(colors[0], std::move(colorSpace)); } if (localMatrix && !localMatrix->invert(nullptr)) { return nullptr; } ColorStopOptimizer opt(colors, pos, colorCount, mode); SkGradientShaderBase::Descriptor desc; desc_init(&desc, opt.fColors, std::move(colorSpace), opt.fPos, opt.fCount, mode, flags, localMatrix); return sk_make_sp(pts, desc); } sk_sp SkGradientShader::MakeRadial(const SkPoint& center, SkScalar radius, const SkColor colors[], const SkScalar pos[], int colorCount, SkShader::TileMode mode, uint32_t flags, const SkMatrix* localMatrix) { ColorConverter converter(colors, colorCount); return MakeRadial(center, radius, converter.fColors4f.begin(), nullptr, pos, colorCount, mode, flags, localMatrix); } sk_sp SkGradientShader::MakeRadial(const SkPoint& center, SkScalar radius, const SkColor4f colors[], sk_sp colorSpace, const SkScalar pos[], int colorCount, SkShader::TileMode mode, uint32_t flags, const SkMatrix* localMatrix) { if (radius <= 0) { return nullptr; } if (!valid_grad(colors, pos, colorCount, mode)) { return nullptr; } if (1 == colorCount) { return SkShader::MakeColorShader(colors[0], std::move(colorSpace)); } if (localMatrix && !localMatrix->invert(nullptr)) { return nullptr; } ColorStopOptimizer opt(colors, pos, colorCount, mode); SkGradientShaderBase::Descriptor desc; desc_init(&desc, opt.fColors, std::move(colorSpace), opt.fPos, opt.fCount, mode, flags, localMatrix); return sk_make_sp(center, radius, desc); } sk_sp SkGradientShader::MakeTwoPointConical(const SkPoint& start, SkScalar startRadius, const SkPoint& end, SkScalar endRadius, const SkColor colors[], const SkScalar pos[], int colorCount, SkShader::TileMode mode, uint32_t flags, const SkMatrix* localMatrix) { ColorConverter converter(colors, colorCount); return MakeTwoPointConical(start, startRadius, end, endRadius, converter.fColors4f.begin(), nullptr, pos, colorCount, mode, flags, localMatrix); } sk_sp SkGradientShader::MakeTwoPointConical(const SkPoint& start, SkScalar startRadius, const SkPoint& end, SkScalar endRadius, const SkColor4f colors[], sk_sp colorSpace, const SkScalar pos[], int colorCount, SkShader::TileMode mode, uint32_t flags, const SkMatrix* localMatrix) { if (startRadius < 0 || endRadius < 0) { return nullptr; } if (!valid_grad(colors, pos, colorCount, mode)) { return nullptr; } if (startRadius == endRadius) { if (start == end || startRadius == 0) { return SkShader::MakeEmptyShader(); } } if (localMatrix && !localMatrix->invert(nullptr)) { return nullptr; } EXPAND_1_COLOR(colorCount); ColorStopOptimizer opt(colors, pos, colorCount, mode); bool flipGradient = startRadius > endRadius; SkGradientShaderBase::Descriptor desc; if (!flipGradient) { desc_init(&desc, opt.fColors, std::move(colorSpace), opt.fPos, opt.fCount, mode, flags, localMatrix); return sk_make_sp(start, startRadius, end, endRadius, flipGradient, desc); } else { SkAutoSTArray<8, SkColor4f> colorsNew(opt.fCount); SkAutoSTArray<8, SkScalar> posNew(opt.fCount); for (int i = 0; i < opt.fCount; ++i) { colorsNew[i] = opt.fColors[opt.fCount - i - 1]; } if (pos) { for (int i = 0; i < opt.fCount; ++i) { posNew[i] = 1 - opt.fPos[opt.fCount - i - 1]; } desc_init(&desc, colorsNew.get(), std::move(colorSpace), posNew.get(), opt.fCount, mode, flags, localMatrix); } else { desc_init(&desc, colorsNew.get(), std::move(colorSpace), nullptr, opt.fCount, mode, flags, localMatrix); } return sk_make_sp(end, endRadius, start, startRadius, flipGradient, desc); } } sk_sp SkGradientShader::MakeSweep(SkScalar cx, SkScalar cy, const SkColor colors[], const SkScalar pos[], int colorCount, uint32_t flags, const SkMatrix* localMatrix) { ColorConverter converter(colors, colorCount); return MakeSweep(cx, cy, converter.fColors4f.begin(), nullptr, pos, colorCount, flags, localMatrix); } sk_sp SkGradientShader::MakeSweep(SkScalar cx, SkScalar cy, const SkColor4f colors[], sk_sp colorSpace, const SkScalar pos[], int colorCount, uint32_t flags, const SkMatrix* localMatrix) { if (!valid_grad(colors, pos, colorCount, SkShader::kClamp_TileMode)) { return nullptr; } if (1 == colorCount) { return SkShader::MakeColorShader(colors[0], std::move(colorSpace)); } if (localMatrix && !localMatrix->invert(nullptr)) { return nullptr; } auto mode = SkShader::kClamp_TileMode; ColorStopOptimizer opt(colors, pos, colorCount, mode); SkGradientShaderBase::Descriptor desc; desc_init(&desc, opt.fColors, std::move(colorSpace), opt.fPos, opt.fCount, mode, flags, localMatrix); return sk_make_sp(cx, cy, desc); } SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_START(SkGradientShader) SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkLinearGradient) SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkRadialGradient) SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkSweepGradient) SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkTwoPointConicalGradient) SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_END /////////////////////////////////////////////////////////////////////////////// #if SK_SUPPORT_GPU #include "GrContext.h" #include "GrShaderCaps.h" #include "GrTextureStripAtlas.h" #include "gl/GrGLContext.h" #include "glsl/GrGLSLColorSpaceXformHelper.h" #include "glsl/GrGLSLFragmentShaderBuilder.h" #include "glsl/GrGLSLProgramDataManager.h" #include "glsl/GrGLSLUniformHandler.h" #include "SkGr.h" static inline bool close_to_one_half(const SkFixed& val) { return SkScalarNearlyEqual(SkFixedToScalar(val), SK_ScalarHalf); } static inline int color_type_to_color_count(GrGradientEffect::ColorType colorType) { switch (colorType) { #if GR_GL_USE_ACCURATE_HARD_STOP_GRADIENTS case GrGradientEffect::kSingleHardStop_ColorType: return 4; case GrGradientEffect::kHardStopLeftEdged_ColorType: case GrGradientEffect::kHardStopRightEdged_ColorType: return 3; #endif case GrGradientEffect::kTwo_ColorType: return 2; case GrGradientEffect::kThree_ColorType: return 3; case GrGradientEffect::kTexture_ColorType: return 0; } SkDEBUGFAIL("Unhandled ColorType in color_type_to_color_count()"); return -1; } GrGradientEffect::ColorType GrGradientEffect::determineColorType( const SkGradientShaderBase& shader) { #if GR_GL_USE_ACCURATE_HARD_STOP_GRADIENTS if (shader.fOrigPos) { if (4 == shader.fColorCount) { if (SkScalarNearlyEqual(shader.fOrigPos[0], 0.0f) && SkScalarNearlyEqual(shader.fOrigPos[1], shader.fOrigPos[2]) && SkScalarNearlyEqual(shader.fOrigPos[3], 1.0f)) { return kSingleHardStop_ColorType; } } else if (3 == shader.fColorCount) { if (SkScalarNearlyEqual(shader.fOrigPos[0], 0.0f) && SkScalarNearlyEqual(shader.fOrigPos[1], 0.0f) && SkScalarNearlyEqual(shader.fOrigPos[2], 1.0f)) { return kHardStopLeftEdged_ColorType; } else if (SkScalarNearlyEqual(shader.fOrigPos[0], 0.0f) && SkScalarNearlyEqual(shader.fOrigPos[1], 1.0f) && SkScalarNearlyEqual(shader.fOrigPos[2], 1.0f)) { return kHardStopRightEdged_ColorType; } } } #endif if (SkShader::kClamp_TileMode == shader.getTileMode()) { if (2 == shader.fColorCount) { return kTwo_ColorType; } else if (3 == shader.fColorCount && close_to_one_half(shader.getRecs()[1].fPos)) { return kThree_ColorType; } } return kTexture_ColorType; } void GrGradientEffect::GLSLProcessor::emitUniforms(GrGLSLUniformHandler* uniformHandler, const GrGradientEffect& ge) { if (int colorCount = color_type_to_color_count(ge.getColorType())) { fColorsUni = uniformHandler->addUniformArray(kFragment_GrShaderFlag, kVec4f_GrSLType, kDefault_GrSLPrecision, "Colors", colorCount); if (ge.fColorType == kSingleHardStop_ColorType) { fHardStopT = uniformHandler->addUniform(kFragment_GrShaderFlag, kFloat_GrSLType, kDefault_GrSLPrecision, "HardStopT"); } } else { fFSYUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kFloat_GrSLType, kDefault_GrSLPrecision, "GradientYCoordFS"); } } static inline void set_after_interp_color_uni_array( const GrGLSLProgramDataManager& pdman, const GrGLSLProgramDataManager::UniformHandle uni, const SkTDArray& colors, const GrColorSpaceXform* colorSpaceXform) { int count = colors.count(); if (colorSpaceXform) { constexpr int kSmallCount = 10; SkAutoSTArray<4 * kSmallCount, float> vals(4 * count); for (int i = 0; i < count; i++) { colorSpaceXform->srcToDst().mapScalars(colors[i].vec(), &vals[4 * i]); } pdman.set4fv(uni, count, vals.get()); } else { pdman.set4fv(uni, count, (float*)&colors[0]); } } static inline void set_before_interp_color_uni_array( const GrGLSLProgramDataManager& pdman, const GrGLSLProgramDataManager::UniformHandle uni, const SkTDArray& colors, const GrColorSpaceXform* colorSpaceXform) { int count = colors.count(); constexpr int kSmallCount = 10; SkAutoSTArray<4 * kSmallCount, float> vals(4 * count); for (int i = 0; i < count; i++) { float a = colors[i].fA; vals[4 * i + 0] = colors[i].fR * a; vals[4 * i + 1] = colors[i].fG * a; vals[4 * i + 2] = colors[i].fB * a; vals[4 * i + 3] = a; } if (colorSpaceXform) { for (int i = 0; i < count; i++) { colorSpaceXform->srcToDst().mapScalars(&vals[4 * i]); } } pdman.set4fv(uni, count, vals.get()); } static inline void set_after_interp_color_uni_array(const GrGLSLProgramDataManager& pdman, const GrGLSLProgramDataManager::UniformHandle uni, const SkTDArray& colors) { int count = colors.count(); constexpr int kSmallCount = 10; SkAutoSTArray<4*kSmallCount, float> vals(4*count); for (int i = 0; i < colors.count(); i++) { // RGBA vals[4*i + 0] = SkColorGetR(colors[i]) / 255.f; vals[4*i + 1] = SkColorGetG(colors[i]) / 255.f; vals[4*i + 2] = SkColorGetB(colors[i]) / 255.f; vals[4*i + 3] = SkColorGetA(colors[i]) / 255.f; } pdman.set4fv(uni, colors.count(), vals.get()); } static inline void set_before_interp_color_uni_array(const GrGLSLProgramDataManager& pdman, const GrGLSLProgramDataManager::UniformHandle uni, const SkTDArray& colors) { int count = colors.count(); constexpr int kSmallCount = 10; SkAutoSTArray<4*kSmallCount, float> vals(4*count); for (int i = 0; i < count; i++) { float a = SkColorGetA(colors[i]) / 255.f; float aDiv255 = a / 255.f; // RGBA vals[4*i + 0] = SkColorGetR(colors[i]) * aDiv255; vals[4*i + 1] = SkColorGetG(colors[i]) * aDiv255; vals[4*i + 2] = SkColorGetB(colors[i]) * aDiv255; vals[4*i + 3] = a; } pdman.set4fv(uni, count, vals.get()); } void GrGradientEffect::GLSLProcessor::onSetData(const GrGLSLProgramDataManager& pdman, const GrFragmentProcessor& processor) { const GrGradientEffect& e = processor.cast(); switch (e.getColorType()) { #if GR_GL_USE_ACCURATE_HARD_STOP_GRADIENTS case GrGradientEffect::kSingleHardStop_ColorType: pdman.set1f(fHardStopT, e.fPositions[1]); // fall through case GrGradientEffect::kHardStopLeftEdged_ColorType: case GrGradientEffect::kHardStopRightEdged_ColorType: #endif case GrGradientEffect::kTwo_ColorType: case GrGradientEffect::kThree_ColorType: { if (e.fColors4f.count() > 0) { // Gamma-correct / color-space aware if (GrGradientEffect::kBeforeInterp_PremulType == e.getPremulType()) { set_before_interp_color_uni_array(pdman, fColorsUni, e.fColors4f, e.fColorSpaceXform.get()); } else { set_after_interp_color_uni_array(pdman, fColorsUni, e.fColors4f, e.fColorSpaceXform.get()); } } else { // Legacy mode. Would be nice if we had converted the 8-bit colors to float earlier if (GrGradientEffect::kBeforeInterp_PremulType == e.getPremulType()) { set_before_interp_color_uni_array(pdman, fColorsUni, e.fColors); } else { set_after_interp_color_uni_array(pdman, fColorsUni, e.fColors); } } break; } case GrGradientEffect::kTexture_ColorType: { SkScalar yCoord = e.getYCoord(); if (yCoord != fCachedYCoord) { pdman.set1f(fFSYUni, yCoord); fCachedYCoord = yCoord; } if (SkToBool(e.fColorSpaceXform)) { fColorSpaceHelper.setData(pdman, e.fColorSpaceXform.get()); } break; } } } uint32_t GrGradientEffect::GLSLProcessor::GenBaseGradientKey(const GrProcessor& processor) { const GrGradientEffect& e = processor.cast(); uint32_t key = 0; if (GrGradientEffect::kBeforeInterp_PremulType == e.getPremulType()) { key |= kPremulBeforeInterpKey; } if (GrGradientEffect::kTwo_ColorType == e.getColorType()) { key |= kTwoColorKey; } else if (GrGradientEffect::kThree_ColorType == e.getColorType()) { key |= kThreeColorKey; } #if GR_GL_USE_ACCURATE_HARD_STOP_GRADIENTS else if (GrGradientEffect::kSingleHardStop_ColorType == e.getColorType()) { key |= kHardStopCenteredKey; } else if (GrGradientEffect::kHardStopLeftEdged_ColorType == e.getColorType()) { key |= kHardStopZeroZeroOneKey; } else if (GrGradientEffect::kHardStopRightEdged_ColorType == e.getColorType()) { key |= kHardStopZeroOneOneKey; } if (SkShader::TileMode::kClamp_TileMode == e.fTileMode) { key |= kClampTileMode; } else if (SkShader::TileMode::kRepeat_TileMode == e.fTileMode) { key |= kRepeatTileMode; } else { key |= kMirrorTileMode; } #endif key |= GrColorSpaceXform::XformKey(e.fColorSpaceXform.get()) << kReservedBits; return key; } void GrGradientEffect::GLSLProcessor::emitColor(GrGLSLFPFragmentBuilder* fragBuilder, GrGLSLUniformHandler* uniformHandler, const GrShaderCaps* shaderCaps, const GrGradientEffect& ge, const char* gradientTValue, const char* outputColor, const char* inputColor, const TextureSamplers& texSamplers) { switch (ge.getColorType()) { #if GR_GL_USE_ACCURATE_HARD_STOP_GRADIENTS case kSingleHardStop_ColorType: { const char* t = gradientTValue; const char* colors = uniformHandler->getUniformCStr(fColorsUni); const char* stopT = uniformHandler->getUniformCStr(fHardStopT); fragBuilder->codeAppendf("float clamp_t = clamp(%s, 0.0, 1.0);", t); // Account for tile mode if (SkShader::kRepeat_TileMode == ge.fTileMode) { fragBuilder->codeAppendf("clamp_t = fract(%s);", t); } else if (SkShader::kMirror_TileMode == ge.fTileMode) { fragBuilder->codeAppendf("if (%s < 0.0 || %s > 1.0) {", t, t); fragBuilder->codeAppendf(" if (mod(floor(%s), 2.0) == 0.0) {", t); fragBuilder->codeAppendf(" clamp_t = fract(%s);", t); fragBuilder->codeAppendf(" } else {"); fragBuilder->codeAppendf(" clamp_t = 1.0 - fract(%s);", t); fragBuilder->codeAppendf(" }"); fragBuilder->codeAppendf("}"); } // Calculate color fragBuilder->codeAppend ("vec4 start, end;"); fragBuilder->codeAppend ("float relative_t;"); fragBuilder->codeAppendf("if (clamp_t < %s) {", stopT); fragBuilder->codeAppendf(" start = %s[0];", colors); fragBuilder->codeAppendf(" end = %s[1];", colors); fragBuilder->codeAppendf(" relative_t = clamp_t / %s;", stopT); fragBuilder->codeAppend ("} else {"); fragBuilder->codeAppendf(" start = %s[2];", colors); fragBuilder->codeAppendf(" end = %s[3];", colors); fragBuilder->codeAppendf(" relative_t = (clamp_t - %s) / (1 - %s);", stopT, stopT); fragBuilder->codeAppend ("}"); fragBuilder->codeAppend ("vec4 colorTemp = mix(start, end, relative_t);"); if (GrGradientEffect::kAfterInterp_PremulType == ge.getPremulType()) { fragBuilder->codeAppend("colorTemp.rgb *= colorTemp.a;"); } if (ge.fColorSpaceXform) { fragBuilder->codeAppend("colorTemp.rgb = clamp(colorTemp.rgb, 0, colorTemp.a);"); } fragBuilder->codeAppendf("%s = %s;", outputColor, (GrGLSLExpr4(inputColor) * GrGLSLExpr4("colorTemp")).c_str()); break; } case kHardStopLeftEdged_ColorType: { const char* t = gradientTValue; const char* colors = uniformHandler->getUniformCStr(fColorsUni); fragBuilder->codeAppendf("float clamp_t = clamp(%s, 0.0, 1.0);", t); // Account for tile mode if (SkShader::kRepeat_TileMode == ge.fTileMode) { fragBuilder->codeAppendf("clamp_t = fract(%s);", t); } else if (SkShader::kMirror_TileMode == ge.fTileMode) { fragBuilder->codeAppendf("if (%s < 0.0 || %s > 1.0) {", t, t); fragBuilder->codeAppendf(" if (mod(floor(%s), 2.0) == 0.0) {", t); fragBuilder->codeAppendf(" clamp_t = fract(%s);", t); fragBuilder->codeAppendf(" } else {"); fragBuilder->codeAppendf(" clamp_t = 1.0 - fract(%s);", t); fragBuilder->codeAppendf(" }"); fragBuilder->codeAppendf("}"); } fragBuilder->codeAppendf("vec4 colorTemp = mix(%s[1], %s[2], clamp_t);", colors, colors); if (SkShader::kClamp_TileMode == ge.fTileMode) { fragBuilder->codeAppendf("if (%s < 0.0) {", t); fragBuilder->codeAppendf(" colorTemp = %s[0];", colors); fragBuilder->codeAppendf("}"); } if (GrGradientEffect::kAfterInterp_PremulType == ge.getPremulType()) { fragBuilder->codeAppend("colorTemp.rgb *= colorTemp.a;"); } if (ge.fColorSpaceXform) { fragBuilder->codeAppend("colorTemp.rgb = clamp(colorTemp.rgb, 0, colorTemp.a);"); } fragBuilder->codeAppendf("%s = %s;", outputColor, (GrGLSLExpr4(inputColor) * GrGLSLExpr4("colorTemp")).c_str()); break; } case kHardStopRightEdged_ColorType: { const char* t = gradientTValue; const char* colors = uniformHandler->getUniformCStr(fColorsUni); fragBuilder->codeAppendf("float clamp_t = clamp(%s, 0.0, 1.0);", t); // Account for tile mode if (SkShader::kRepeat_TileMode == ge.fTileMode) { fragBuilder->codeAppendf("clamp_t = fract(%s);", t); } else if (SkShader::kMirror_TileMode == ge.fTileMode) { fragBuilder->codeAppendf("if (%s < 0.0 || %s > 1.0) {", t, t); fragBuilder->codeAppendf(" if (mod(floor(%s), 2.0) == 0.0) {", t); fragBuilder->codeAppendf(" clamp_t = fract(%s);", t); fragBuilder->codeAppendf(" } else {"); fragBuilder->codeAppendf(" clamp_t = 1.0 - fract(%s);", t); fragBuilder->codeAppendf(" }"); fragBuilder->codeAppendf("}"); } fragBuilder->codeAppendf("vec4 colorTemp = mix(%s[0], %s[1], clamp_t);", colors, colors); if (SkShader::kClamp_TileMode == ge.fTileMode) { fragBuilder->codeAppendf("if (%s > 1.0) {", t); fragBuilder->codeAppendf(" colorTemp = %s[2];", colors); fragBuilder->codeAppendf("}"); } if (GrGradientEffect::kAfterInterp_PremulType == ge.getPremulType()) { fragBuilder->codeAppend("colorTemp.rgb *= colorTemp.a;"); } if (ge.fColorSpaceXform) { fragBuilder->codeAppend("colorTemp.rgb = clamp(colorTemp.rgb, 0, colorTemp.a);"); } fragBuilder->codeAppendf("%s = %s;", outputColor, (GrGLSLExpr4(inputColor) * GrGLSLExpr4("colorTemp")).c_str()); break; } #endif case kTwo_ColorType: { const char* t = gradientTValue; const char* colors = uniformHandler->getUniformCStr(fColorsUni); fragBuilder->codeAppendf("vec4 colorTemp = mix(%s[0], %s[1], clamp(%s, 0.0, 1.0));", colors, colors, t); // We could skip this step if both colors are known to be opaque. Two // considerations: // The gradient SkShader reporting opaque is more restrictive than necessary in the two // pt case. Make sure the key reflects this optimization (and note that it can use the // same shader as thekBeforeIterp case). This same optimization applies to the 3 color // case below. if (GrGradientEffect::kAfterInterp_PremulType == ge.getPremulType()) { fragBuilder->codeAppend("colorTemp.rgb *= colorTemp.a;"); } if (ge.fColorSpaceXform) { fragBuilder->codeAppend("colorTemp.rgb = clamp(colorTemp.rgb, 0, colorTemp.a);"); } fragBuilder->codeAppendf("%s = %s;", outputColor, (GrGLSLExpr4(inputColor) * GrGLSLExpr4("colorTemp")).c_str()); break; } case kThree_ColorType: { const char* t = gradientTValue; const char* colors = uniformHandler->getUniformCStr(fColorsUni); fragBuilder->codeAppendf("float oneMinus2t = 1.0 - (2.0 * %s);", t); fragBuilder->codeAppendf("vec4 colorTemp = clamp(oneMinus2t, 0.0, 1.0) * %s[0];", colors); if (!shaderCaps->canUseMinAndAbsTogether()) { // The Tegra3 compiler will sometimes never return if we have // min(abs(oneMinus2t), 1.0), or do the abs first in a separate expression. fragBuilder->codeAppendf("float minAbs = abs(oneMinus2t);"); fragBuilder->codeAppendf("minAbs = minAbs > 1.0 ? 1.0 : minAbs;"); fragBuilder->codeAppendf("colorTemp += (1.0 - minAbs) * %s[1];", colors); } else { fragBuilder->codeAppendf("colorTemp += (1.0 - min(abs(oneMinus2t), 1.0)) * %s[1];", colors); } fragBuilder->codeAppendf("colorTemp += clamp(-oneMinus2t, 0.0, 1.0) * %s[2];", colors); if (GrGradientEffect::kAfterInterp_PremulType == ge.getPremulType()) { fragBuilder->codeAppend("colorTemp.rgb *= colorTemp.a;"); } if (ge.fColorSpaceXform) { fragBuilder->codeAppend("colorTemp.rgb = clamp(colorTemp.rgb, 0, colorTemp.a);"); } fragBuilder->codeAppendf("%s = %s;", outputColor, (GrGLSLExpr4(inputColor) * GrGLSLExpr4("colorTemp")).c_str()); break; } case kTexture_ColorType: { fColorSpaceHelper.emitCode(uniformHandler, ge.fColorSpaceXform.get()); const char* fsyuni = uniformHandler->getUniformCStr(fFSYUni); fragBuilder->codeAppendf("vec2 coord = vec2(%s, %s);", gradientTValue, fsyuni); fragBuilder->codeAppendf("%s = ", outputColor); fragBuilder->appendTextureLookupAndModulate(inputColor, texSamplers[0], "coord", kVec2f_GrSLType, &fColorSpaceHelper); fragBuilder->codeAppend(";"); break; } } } ///////////////////////////////////////////////////////////////////// inline GrFragmentProcessor::OptimizationFlags GrGradientEffect::OptFlags(bool isOpaque) { return isOpaque ? kPreservesOpaqueInput_OptimizationFlag | kCompatibleWithCoverageAsAlpha_OptimizationFlag : kCompatibleWithCoverageAsAlpha_OptimizationFlag; } GrGradientEffect::GrGradientEffect(const CreateArgs& args, bool isOpaque) : INHERITED(OptFlags(isOpaque)) { const SkGradientShaderBase& shader(*args.fShader); fIsOpaque = shader.isOpaque(); fColorType = this->determineColorType(shader); fColorSpaceXform = std::move(args.fColorSpaceXform); if (kTexture_ColorType != fColorType) { SkASSERT(shader.fOrigColors && shader.fOrigColors4f); if (args.fGammaCorrect) { fColors4f = SkTDArray(shader.fOrigColors4f, shader.fColorCount); } else { fColors = SkTDArray(shader.fOrigColors, shader.fColorCount); } #if GR_GL_USE_ACCURATE_HARD_STOP_GRADIENTS if (shader.fOrigPos) { fPositions = SkTDArray(shader.fOrigPos, shader.fColorCount); } #endif } #if GR_GL_USE_ACCURATE_HARD_STOP_GRADIENTS fTileMode = args.fTileMode; #endif switch (fColorType) { // The two and three color specializations do not currently support tiling. case kTwo_ColorType: case kThree_ColorType: #if GR_GL_USE_ACCURATE_HARD_STOP_GRADIENTS case kHardStopLeftEdged_ColorType: case kHardStopRightEdged_ColorType: case kSingleHardStop_ColorType: #endif fRow = -1; if (SkGradientShader::kInterpolateColorsInPremul_Flag & shader.getGradFlags()) { fPremulType = kBeforeInterp_PremulType; } else { fPremulType = kAfterInterp_PremulType; } fCoordTransform.reset(*args.fMatrix); break; case kTexture_ColorType: // doesn't matter how this is set, just be consistent because it is part of the // effect key. fPremulType = kBeforeInterp_PremulType; SkGradientShaderBase::GradientBitmapType bitmapType = SkGradientShaderBase::GradientBitmapType::kLegacy; if (args.fGammaCorrect) { // Try to use F16 if we can if (args.fContext->caps()->isConfigTexturable(kRGBA_half_GrPixelConfig)) { bitmapType = SkGradientShaderBase::GradientBitmapType::kHalfFloat; } else if (args.fContext->caps()->isConfigTexturable(kSRGBA_8888_GrPixelConfig)) { bitmapType = SkGradientShaderBase::GradientBitmapType::kSRGB; } else { // This can happen, but only if someone explicitly creates an unsupported // (eg sRGB) surface. Just fall back to legacy behavior. } } SkBitmap bitmap; shader.getGradientTableBitmap(&bitmap, bitmapType); SkASSERT(1 == bitmap.height() && SkIsPow2(bitmap.width())); GrTextureStripAtlas::Desc desc; desc.fWidth = bitmap.width(); desc.fHeight = 32; desc.fRowHeight = bitmap.height(); desc.fContext = args.fContext; desc.fConfig = SkImageInfo2GrPixelConfig(bitmap.info(), *args.fContext->caps()); fAtlas = GrTextureStripAtlas::GetAtlas(desc); SkASSERT(fAtlas); // We always filter the gradient table. Each table is one row of a texture, always // y-clamp. GrSamplerParams params; params.setFilterMode(GrSamplerParams::kBilerp_FilterMode); params.setTileModeX(args.fTileMode); fRow = fAtlas->lockRow(bitmap); if (-1 != fRow) { fYCoord = fAtlas->getYOffset(fRow)+SK_ScalarHalf*fAtlas->getNormalizedTexelHeight(); // This is 1/2 places where auto-normalization is disabled fCoordTransform.reset(args.fContext->resourceProvider(), *args.fMatrix, fAtlas->asTextureProxyRef().get(), false); fTextureSampler.reset(args.fContext->resourceProvider(), fAtlas->asTextureProxyRef(), params); } else { // In this instance we know the params are: // clampY, bilerp // and the proxy is: // exact fit, power of two in both dimensions // Only the x-tileMode is unknown. However, given all the other knowns we know // that GrMakeCachedBitmapProxy is sufficient (i.e., it won't need to be // extracted to a subset or mipmapped). sk_sp proxy = GrMakeCachedBitmapProxy( args.fContext->resourceProvider(), bitmap); if (!proxy) { return; } // This is 2/2 places where auto-normalization is disabled fCoordTransform.reset(args.fContext->resourceProvider(), *args.fMatrix, proxy.get(), false); fTextureSampler.reset(args.fContext->resourceProvider(), std::move(proxy), params); fYCoord = SK_ScalarHalf; } this->addTextureSampler(&fTextureSampler); break; } this->addCoordTransform(&fCoordTransform); } GrGradientEffect::~GrGradientEffect() { if (this->useAtlas()) { fAtlas->unlockRow(fRow); } } bool GrGradientEffect::onIsEqual(const GrFragmentProcessor& processor) const { const GrGradientEffect& ge = processor.cast(); if (this->fColorType != ge.getColorType()) { return false; } SkASSERT(this->useAtlas() == ge.useAtlas()); if (kTexture_ColorType == fColorType) { if (fYCoord != ge.getYCoord()) { return false; } } else { if (kSingleHardStop_ColorType == fColorType) { if (!SkScalarNearlyEqual(ge.fPositions[1], fPositions[1])) { return false; } } if (this->getPremulType() != ge.getPremulType() || this->fColors.count() != ge.fColors.count() || this->fColors4f.count() != ge.fColors4f.count()) { return false; } for (int i = 0; i < this->fColors.count(); i++) { if (*this->getColors(i) != *ge.getColors(i)) { return false; } } for (int i = 0; i < this->fColors4f.count(); i++) { if (*this->getColors4f(i) != *ge.getColors4f(i)) { return false; } } } return GrColorSpaceXform::Equals(this->fColorSpaceXform.get(), ge.fColorSpaceXform.get()); } #if GR_TEST_UTILS GrGradientEffect::RandomGradientParams::RandomGradientParams(SkRandom* random) { // Set color count to min of 2 so that we don't trigger the const color optimization and make // a non-gradient processor. fColorCount = random->nextRangeU(2, kMaxRandomGradientColors); fUseColors4f = random->nextBool(); // if one color, omit stops, otherwise randomly decide whether or not to if (fColorCount == 1 || (fColorCount >= 2 && random->nextBool())) { fStops = nullptr; } else { fStops = fStopStorage; } // if using SkColor4f, attach a random (possibly null) color space (with linear gamma) if (fUseColors4f) { fColorSpace = GrTest::TestColorSpace(random); if (fColorSpace) { SkASSERT(SkColorSpace_Base::Type::kXYZ == as_CSB(fColorSpace)->type()); fColorSpace = static_cast(fColorSpace.get())->makeLinearGamma(); } } SkScalar stop = 0.f; for (int i = 0; i < fColorCount; ++i) { if (fUseColors4f) { fColors4f[i].fR = random->nextUScalar1(); fColors4f[i].fG = random->nextUScalar1(); fColors4f[i].fB = random->nextUScalar1(); fColors4f[i].fA = random->nextUScalar1(); } else { fColors[i] = random->nextU(); } if (fStops) { fStops[i] = stop; stop = i < fColorCount - 1 ? stop + random->nextUScalar1() * (1.f - stop) : 1.f; } } fTileMode = static_cast(random->nextULessThan(SkShader::kTileModeCount)); } #endif #endif