/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "Sk4fGradientBase.h" #include namespace { Sk4f pack_color(SkColor c, bool premul, const Sk4f& component_scale) { const SkColor4f c4f = SkColor4f::FromColor(c); const Sk4f pm4f = premul ? c4f.premul().to4f() : Sk4f{c4f.fR, c4f.fG, c4f.fB, c4f.fA}; return pm4f * component_scale; } class IntervalIterator { public: IntervalIterator(const SkColor* colors, const SkScalar* pos, int count, bool reverse) : fColors(colors) , fPos(pos) , fCount(count) , fFirstPos(reverse ? SK_Scalar1 : 0) , fBegin(reverse ? count - 1 : 0) , fAdvance(reverse ? -1 : 1) { SkASSERT(colors); SkASSERT(count > 0); } void iterate(std::function func) const { if (!fPos) { this->iterateImplicitPos(func); return; } const int end = fBegin + fAdvance * (fCount - 1); const SkScalar lastPos = 1 - fFirstPos; int prev = fBegin; SkScalar prevPos = fFirstPos; do { const int curr = prev + fAdvance; SkASSERT(curr >= 0 && curr < fCount); // TODO: this sanitization should be done in SkGradientShaderBase const SkScalar currPos = (fAdvance > 0) ? SkTPin(fPos[curr], prevPos, lastPos) : SkTPin(fPos[curr], lastPos, prevPos); if (currPos != prevPos) { SkASSERT((currPos - prevPos > 0) == (fAdvance > 0)); func(fColors[prev], fColors[curr], prevPos, currPos); } prev = curr; prevPos = currPos; } while (prev != end); } private: void iterateImplicitPos(std::function func) const { // When clients don't provide explicit color stop positions (fPos == nullptr), // the color stops are distributed evenly across the unit interval // (implicit positioning). const SkScalar dt = fAdvance * SK_Scalar1 / (fCount - 1); const int end = fBegin + fAdvance * (fCount - 2); int prev = fBegin; SkScalar prevPos = fFirstPos; while (prev != end) { const int curr = prev + fAdvance; SkASSERT(curr >= 0 && curr < fCount); const SkScalar currPos = prevPos + dt; func(fColors[prev], fColors[curr], prevPos, currPos); prev = curr; prevPos = currPos; } // emit the last interval with a pinned end position, to avoid precision issues func(fColors[prev], fColors[prev + fAdvance], prevPos, 1 - fFirstPos); } const SkColor* fColors; const SkScalar* fPos; const int fCount; const SkScalar fFirstPos; const int fBegin; const int fAdvance; }; void addMirrorIntervals(const SkColor colors[], const SkScalar pos[], int count, const Sk4f& componentScale, bool premulColors, bool reverse, Sk4fGradientIntervalBuffer::BufferType* buffer) { const IntervalIterator iter(colors, pos, count, reverse); iter.iterate([&] (SkColor c0, SkColor c1, SkScalar t0, SkScalar t1) { SkASSERT(buffer->empty() || buffer->back().fT1 == 2 - t0); const auto mirror_t0 = 2 - t0; const auto mirror_t1 = 2 - t1; // mirror_p1 & mirror_p1 may collapse for very small values - recheck to avoid // triggering Interval asserts. if (mirror_t0 != mirror_t1) { buffer->emplace_back(pack_color(c0, premulColors, componentScale), mirror_t0, pack_color(c1, premulColors, componentScale), mirror_t1); } }); } } // anonymous namespace Sk4fGradientInterval::Sk4fGradientInterval(const Sk4f& c0, SkScalar t0, const Sk4f& c1, SkScalar t1) : fT0(t0) , fT1(t1) , fZeroRamp((c0 == c1).allTrue()) { SkASSERT(t0 != t1); // Either p0 or p1 can be (-)inf for synthetic clamp edge intervals. SkASSERT(SkScalarIsFinite(t0) || SkScalarIsFinite(t1)); const auto dt = t1 - t0; // Clamp edge intervals are always zero-ramp. SkASSERT(SkScalarIsFinite(dt) || fZeroRamp); SkASSERT(SkScalarIsFinite(t0) || fZeroRamp); const Sk4f dc = SkScalarIsFinite(dt) ? (c1 - c0) / dt : 0; const Sk4f bias = c0 - (SkScalarIsFinite(t0) ? t0 * dc : 0); bias.store(&fCb.fVec); dc.store(&fCg.fVec); } void Sk4fGradientIntervalBuffer::init(const SkColor colors[], const SkScalar pos[], int count, SkShader::TileMode tileMode, bool premulColors, SkScalar alpha, bool reverse) { // The main job here is to build a specialized interval list: a different // representation of the color stops data, optimized for efficient scan line // access during shading. // // [{P0,C0} , {P1,C1}) [{P1,C2} , {P2,c3}) ... [{Pn,C2n} , {Pn+1,C2n+1}) // // The list may be inverted when requested (such that e.g. points are sorted // in increasing x order when dx < 0). // // Note: the current representation duplicates pos data; we could refactor to // avoid this if interval storage size becomes a concern. // // Aside from reordering, we also perform two more pre-processing steps at // this stage: // // 1) scale the color components depending on paint alpha and the requested // interpolation space (note: the interval color storage is SkPM4f, but // that doesn't necessarily mean the colors are premultiplied; that // property is tracked in fColorsArePremul) // // 2) inject synthetic intervals to support tiling. // // * for kRepeat, no extra intervals are needed - the iterator just // wraps around at the end: // // ->[P0,P1)->..[Pn-1,Pn)-> // // * for kClamp, we add two "infinite" intervals before/after: // // [-/+inf , P0)->[P0 , P1)->..[Pn-1 , Pn)->[Pn , +/-inf) // // (the iterator should never run off the end in this mode) // // * for kMirror, we extend the range to [0..2] and add a flipped // interval series - then the iterator operates just as in the // kRepeat case: // // ->[P0,P1)->..[Pn-1,Pn)->[2 - Pn,2 - Pn-1)->..[2 - P1,2 - P0)-> // // TODO: investigate collapsing intervals << 1px. SkASSERT(count > 0); SkASSERT(colors); fIntervals.reset(); const Sk4f componentScale = premulColors ? Sk4f(alpha) : Sk4f(1.0f, 1.0f, 1.0f, alpha); const int first_index = reverse ? count - 1 : 0; const int last_index = count - 1 - first_index; const SkScalar first_pos = reverse ? SK_Scalar1 : 0; const SkScalar last_pos = SK_Scalar1 - first_pos; if (tileMode == SkShader::kClamp_TileMode) { // synthetic edge interval: -/+inf .. P0 const Sk4f clamp_color = pack_color(colors[first_index], premulColors, componentScale); const SkScalar clamp_pos = reverse ? SK_ScalarInfinity : SK_ScalarNegativeInfinity; fIntervals.emplace_back(clamp_color, clamp_pos, clamp_color, first_pos); } else if (tileMode == SkShader::kMirror_TileMode && reverse) { // synthetic mirror intervals injected before main intervals: (2 .. 1] addMirrorIntervals(colors, pos, count, componentScale, premulColors, false, &fIntervals); } const IntervalIterator iter(colors, pos, count, reverse); iter.iterate([&] (SkColor c0, SkColor c1, SkScalar t0, SkScalar t1) { SkASSERT(fIntervals.empty() || fIntervals.back().fT1 == t0); fIntervals.emplace_back(pack_color(c0, premulColors, componentScale), t0, pack_color(c1, premulColors, componentScale), t1); }); if (tileMode == SkShader::kClamp_TileMode) { // synthetic edge interval: Pn .. +/-inf const Sk4f clamp_color = pack_color(colors[last_index], premulColors, componentScale); const SkScalar clamp_pos = reverse ? SK_ScalarNegativeInfinity : SK_ScalarInfinity; fIntervals.emplace_back(clamp_color, last_pos, clamp_color, clamp_pos); } else if (tileMode == SkShader::kMirror_TileMode && !reverse) { // synthetic mirror intervals injected after main intervals: [1 .. 2) addMirrorIntervals(colors, pos, count, componentScale, premulColors, true, &fIntervals); } } const Sk4fGradientInterval* Sk4fGradientIntervalBuffer::find(SkScalar t) const { // Binary search. const auto* i0 = fIntervals.begin(); const auto* i1 = fIntervals.end() - 1; while (i0 != i1) { SkASSERT(i0 < i1); SkASSERT(t >= i0->fT0 && t <= i1->fT1); const auto* i = i0 + ((i1 - i0) >> 1); if (t > i->fT1) { i0 = i + 1; } else { i1 = i; } } SkASSERT(i0->contains(t)); return i0; } const Sk4fGradientInterval* Sk4fGradientIntervalBuffer::findNext( SkScalar t, const Sk4fGradientInterval* prev, bool increasing) const { SkASSERT(!prev->contains(t)); SkASSERT(prev >= fIntervals.begin() && prev < fIntervals.end()); SkASSERT(t >= fIntervals.front().fT0 && t <= fIntervals.back().fT1); const auto* i = prev; // Use the |increasing| signal to figure which direction we should search for // the next interval, then perform a linear search. if (increasing) { do { i += 1; if (i >= fIntervals.end()) { i = fIntervals.begin(); } } while (!i->contains(t)); } else { do { i -= 1; if (i < fIntervals.begin()) { i = fIntervals.end() - 1; } } while (!i->contains(t)); } return i; } SkGradientShaderBase:: GradientShaderBase4fContext::GradientShaderBase4fContext(const SkGradientShaderBase& shader, const ContextRec& rec) : INHERITED(shader, rec) , fFlags(this->INHERITED::getFlags()) #ifdef SK_SUPPORT_LEGACY_GRADIENT_DITHERING , fDither(true) #else , fDither(rec.fPaint->isDither()) #endif { const SkMatrix& inverse = this->getTotalInverse(); fDstToPos.setConcat(shader.fPtsToUnit, inverse); fDstToPosProc = fDstToPos.getMapXYProc(); fDstToPosClass = static_cast(INHERITED::ComputeMatrixClass(fDstToPos)); if (shader.fColorsAreOpaque && this->getPaintAlpha() == SK_AlphaOPAQUE) { fFlags |= kOpaqueAlpha_Flag; } fColorsArePremul = (shader.fGradFlags & SkGradientShader::kInterpolateColorsInPremul_Flag) || shader.fColorsAreOpaque; } bool SkGradientShaderBase:: GradientShaderBase4fContext::isValid() const { return fDstToPos.isFinite(); } void SkGradientShaderBase:: GradientShaderBase4fContext::shadeSpan(int x, int y, SkPMColor dst[], int count) { if (fColorsArePremul) { this->shadePremulSpan(x, y, dst, count); } else { this->shadePremulSpan(x, y, dst, count); } } void SkGradientShaderBase:: GradientShaderBase4fContext::shadeSpan4f(int x, int y, SkPM4f dst[], int count) { if (fColorsArePremul) { this->shadePremulSpan(x, y, dst, count); } else { this->shadePremulSpan(x, y, dst, count); } } template void SkGradientShaderBase:: GradientShaderBase4fContext::shadePremulSpan(int x, int y, typename DstTraits::Type dst[], int count) const { const SkGradientShaderBase& shader = static_cast(fShader); switch (shader.fTileMode) { case kClamp_TileMode: this->shadeSpanInternal(x, y, dst, count); break; case kRepeat_TileMode: this->shadeSpanInternal(x, y, dst, count); break; case kMirror_TileMode: this->shadeSpanInternal(x, y, dst, count); break; } } template void SkGradientShaderBase:: GradientShaderBase4fContext::shadeSpanInternal(int x, int y, typename DstTraits::Type dst[], int count) const { static const int kBufSize = 128; SkScalar ts[kBufSize]; TSampler sampler(*this); SkASSERT(count > 0); do { const int n = SkTMin(kBufSize, count); this->mapTs(x, y, ts, n); for (int i = 0; i < n; ++i) { const Sk4f c = sampler.sample(ts[i]); DstTraits::store(c, dst++); } x += n; count -= n; } while (count > 0); } template class SkGradientShaderBase::GradientShaderBase4fContext::TSampler { public: TSampler(const GradientShaderBase4fContext& ctx) : fCtx(ctx) , fInterval(nullptr) { switch (tileMode) { case kClamp_TileMode: fLargestIntervalValue = SK_ScalarInfinity; break; case kRepeat_TileMode: fLargestIntervalValue = nextafterf(1, 0); break; case kMirror_TileMode: fLargestIntervalValue = nextafterf(2.0f, 0); break; } } Sk4f sample(SkScalar t) { const auto tiled_t = tileProc(t); if (!fInterval) { // Very first sample => locate the initial interval. // TODO: maybe do this in ctor to remove a branch? fInterval = fCtx.fIntervals.find(tiled_t); this->loadIntervalData(fInterval); } else if (!fInterval->contains(tiled_t)) { fInterval = fCtx.fIntervals.findNext(tiled_t, fInterval, t >= fPrevT); this->loadIntervalData(fInterval); } fPrevT = t; return lerp(tiled_t); } private: SkScalar tileProc(SkScalar t) const { switch (tileMode) { case kClamp_TileMode: // synthetic clamp-mode edge intervals allow for a free-floating t: // [-inf..0)[0..1)[1..+inf) return t; case kRepeat_TileMode: // t % 1 (intervals range: [0..1)) // Due to the extra arithmetic, we must clamp to ensure the value remains less than 1. return SkTMin(t - SkScalarFloorToScalar(t), fLargestIntervalValue); case kMirror_TileMode: // t % 2 (synthetic mirror intervals expand the range to [0..2) // Due to the extra arithmetic, we must clamp to ensure the value remains less than 2. return SkTMin(t - SkScalarFloorToScalar(t / 2) * 2, fLargestIntervalValue); } SK_ABORT("Unhandled tile mode."); return 0; } Sk4f lerp(SkScalar t) { SkASSERT(fInterval->contains(t)); return fCb + fCg * t; } void loadIntervalData(const Sk4fGradientInterval* i) { fCb = DstTraits::load(i->fCb); fCg = DstTraits::load(i->fCg); } const GradientShaderBase4fContext& fCtx; const Sk4fGradientInterval* fInterval; SkScalar fPrevT; SkScalar fLargestIntervalValue; Sk4f fCb; Sk4f fCg; };