/* * Copyright 2012 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkMatrixConvolutionImageFilter.h" #include "SkBitmap.h" #include "SkColorPriv.h" #include "SkReadBuffer.h" #include "SkSpecialImage.h" #include "SkWriteBuffer.h" #include "SkRect.h" #include "SkUnPreMultiply.h" #if SK_SUPPORT_GPU #include "GrContext.h" #include "GrTextureProxy.h" #include "effects/GrMatrixConvolutionEffect.h" #endif // We need to be able to read at most SK_MaxS32 bytes, so divide that // by the size of a scalar to know how many scalars we can read. static const int32_t gMaxKernelSize = SK_MaxS32 / sizeof(SkScalar); SkMatrixConvolutionImageFilter::SkMatrixConvolutionImageFilter(const SkISize& kernelSize, const SkScalar* kernel, SkScalar gain, SkScalar bias, const SkIPoint& kernelOffset, TileMode tileMode, bool convolveAlpha, sk_sp input, const CropRect* cropRect) : INHERITED(&input, 1, cropRect) , fKernelSize(kernelSize) , fGain(gain) , fBias(bias) , fKernelOffset(kernelOffset) , fTileMode(tileMode) , fConvolveAlpha(convolveAlpha) { size_t size = (size_t) sk_64_mul(fKernelSize.width(), fKernelSize.height()); fKernel = new SkScalar[size]; memcpy(fKernel, kernel, size * sizeof(SkScalar)); SkASSERT(kernelSize.fWidth >= 1 && kernelSize.fHeight >= 1); SkASSERT(kernelOffset.fX >= 0 && kernelOffset.fX < kernelSize.fWidth); SkASSERT(kernelOffset.fY >= 0 && kernelOffset.fY < kernelSize.fHeight); } sk_sp SkMatrixConvolutionImageFilter::Make(const SkISize& kernelSize, const SkScalar* kernel, SkScalar gain, SkScalar bias, const SkIPoint& kernelOffset, TileMode tileMode, bool convolveAlpha, sk_sp input, const CropRect* cropRect) { if (kernelSize.width() < 1 || kernelSize.height() < 1) { return nullptr; } if (gMaxKernelSize / kernelSize.fWidth < kernelSize.fHeight) { return nullptr; } if (!kernel) { return nullptr; } if ((kernelOffset.fX < 0) || (kernelOffset.fX >= kernelSize.fWidth) || (kernelOffset.fY < 0) || (kernelOffset.fY >= kernelSize.fHeight)) { return nullptr; } return sk_sp(new SkMatrixConvolutionImageFilter(kernelSize, kernel, gain, bias, kernelOffset, tileMode, convolveAlpha, std::move(input), cropRect)); } sk_sp SkMatrixConvolutionImageFilter::CreateProc(SkReadBuffer& buffer) { SK_IMAGEFILTER_UNFLATTEN_COMMON(common, 1); SkISize kernelSize; kernelSize.fWidth = buffer.readInt(); kernelSize.fHeight = buffer.readInt(); const int count = buffer.getArrayCount(); const int64_t kernelArea = sk_64_mul(kernelSize.width(), kernelSize.height()); if (!buffer.validate(kernelArea == count)) { return nullptr; } SkAutoSTArray<16, SkScalar> kernel(count); if (!buffer.readScalarArray(kernel.get(), count)) { return nullptr; } SkScalar gain = buffer.readScalar(); SkScalar bias = buffer.readScalar(); SkIPoint kernelOffset; kernelOffset.fX = buffer.readInt(); kernelOffset.fY = buffer.readInt(); TileMode tileMode = (TileMode)buffer.readInt(); bool convolveAlpha = buffer.readBool(); return Make(kernelSize, kernel.get(), gain, bias, kernelOffset, tileMode, convolveAlpha, common.getInput(0), &common.cropRect()); } void SkMatrixConvolutionImageFilter::flatten(SkWriteBuffer& buffer) const { this->INHERITED::flatten(buffer); buffer.writeInt(fKernelSize.fWidth); buffer.writeInt(fKernelSize.fHeight); buffer.writeScalarArray(fKernel, fKernelSize.fWidth * fKernelSize.fHeight); buffer.writeScalar(fGain); buffer.writeScalar(fBias); buffer.writeInt(fKernelOffset.fX); buffer.writeInt(fKernelOffset.fY); buffer.writeInt((int) fTileMode); buffer.writeBool(fConvolveAlpha); } SkMatrixConvolutionImageFilter::~SkMatrixConvolutionImageFilter() { delete[] fKernel; } class UncheckedPixelFetcher { public: static inline SkPMColor fetch(const SkBitmap& src, int x, int y, const SkIRect& bounds) { return *src.getAddr32(x, y); } }; class ClampPixelFetcher { public: static inline SkPMColor fetch(const SkBitmap& src, int x, int y, const SkIRect& bounds) { x = SkTPin(x, bounds.fLeft, bounds.fRight - 1); y = SkTPin(y, bounds.fTop, bounds.fBottom - 1); return *src.getAddr32(x, y); } }; class RepeatPixelFetcher { public: static inline SkPMColor fetch(const SkBitmap& src, int x, int y, const SkIRect& bounds) { x = (x - bounds.left()) % bounds.width() + bounds.left(); y = (y - bounds.top()) % bounds.height() + bounds.top(); if (x < bounds.left()) { x += bounds.width(); } if (y < bounds.top()) { y += bounds.height(); } return *src.getAddr32(x, y); } }; class ClampToBlackPixelFetcher { public: static inline SkPMColor fetch(const SkBitmap& src, int x, int y, const SkIRect& bounds) { if (x < bounds.fLeft || x >= bounds.fRight || y < bounds.fTop || y >= bounds.fBottom) { return 0; } else { return *src.getAddr32(x, y); } } }; template void SkMatrixConvolutionImageFilter::filterPixels(const SkBitmap& src, SkBitmap* result, const SkIRect& r, const SkIRect& bounds) const { SkIRect rect(r); if (!rect.intersect(bounds)) { return; } for (int y = rect.fTop; y < rect.fBottom; ++y) { SkPMColor* dptr = result->getAddr32(rect.fLeft - bounds.fLeft, y - bounds.fTop); for (int x = rect.fLeft; x < rect.fRight; ++x) { SkScalar sumA = 0, sumR = 0, sumG = 0, sumB = 0; for (int cy = 0; cy < fKernelSize.fHeight; cy++) { for (int cx = 0; cx < fKernelSize.fWidth; cx++) { SkPMColor s = PixelFetcher::fetch(src, x + cx - fKernelOffset.fX, y + cy - fKernelOffset.fY, bounds); SkScalar k = fKernel[cy * fKernelSize.fWidth + cx]; if (convolveAlpha) { sumA += SkGetPackedA32(s) * k; } sumR += SkGetPackedR32(s) * k; sumG += SkGetPackedG32(s) * k; sumB += SkGetPackedB32(s) * k; } } int a = convolveAlpha ? SkClampMax(SkScalarFloorToInt(sumA * fGain + fBias), 255) : 255; int r = SkClampMax(SkScalarFloorToInt(sumR * fGain + fBias), a); int g = SkClampMax(SkScalarFloorToInt(sumG * fGain + fBias), a); int b = SkClampMax(SkScalarFloorToInt(sumB * fGain + fBias), a); if (!convolveAlpha) { a = SkGetPackedA32(PixelFetcher::fetch(src, x, y, bounds)); *dptr++ = SkPreMultiplyARGB(a, r, g, b); } else { *dptr++ = SkPackARGB32(a, r, g, b); } } } } template void SkMatrixConvolutionImageFilter::filterPixels(const SkBitmap& src, SkBitmap* result, const SkIRect& rect, const SkIRect& bounds) const { if (fConvolveAlpha) { filterPixels(src, result, rect, bounds); } else { filterPixels(src, result, rect, bounds); } } void SkMatrixConvolutionImageFilter::filterInteriorPixels(const SkBitmap& src, SkBitmap* result, const SkIRect& rect, const SkIRect& bounds) const { filterPixels(src, result, rect, bounds); } void SkMatrixConvolutionImageFilter::filterBorderPixels(const SkBitmap& src, SkBitmap* result, const SkIRect& rect, const SkIRect& bounds) const { switch (fTileMode) { case kClamp_TileMode: filterPixels(src, result, rect, bounds); break; case kRepeat_TileMode: filterPixels(src, result, rect, bounds); break; case kClampToBlack_TileMode: filterPixels(src, result, rect, bounds); break; } } // FIXME: This should be refactored to SkImageFilterUtils for // use by other filters. For now, we assume the input is always // premultiplied and unpremultiply it static SkBitmap unpremultiply_bitmap(const SkBitmap& src) { if (!src.getPixels()) { return SkBitmap(); } const SkImageInfo info = SkImageInfo::MakeN32(src.width(), src.height(), src.alphaType()); SkBitmap result; if (!result.tryAllocPixels(info)) { return SkBitmap(); } for (int y = 0; y < src.height(); ++y) { const uint32_t* srcRow = src.getAddr32(0, y); uint32_t* dstRow = result.getAddr32(0, y); for (int x = 0; x < src.width(); ++x) { dstRow[x] = SkUnPreMultiply::PMColorToColor(srcRow[x]); } } return result; } #if SK_SUPPORT_GPU static GrTextureDomain::Mode convert_tilemodes(SkMatrixConvolutionImageFilter::TileMode tileMode) { switch (tileMode) { case SkMatrixConvolutionImageFilter::kClamp_TileMode: return GrTextureDomain::kClamp_Mode; case SkMatrixConvolutionImageFilter::kRepeat_TileMode: return GrTextureDomain::kRepeat_Mode; case SkMatrixConvolutionImageFilter::kClampToBlack_TileMode: return GrTextureDomain::kDecal_Mode; default: SkASSERT(false); } return GrTextureDomain::kIgnore_Mode; } #endif sk_sp SkMatrixConvolutionImageFilter::onFilterImage(SkSpecialImage* source, const Context& ctx, SkIPoint* offset) const { SkIPoint inputOffset = SkIPoint::Make(0, 0); sk_sp input(this->filterInput(0, source, ctx, &inputOffset)); if (!input) { return nullptr; } SkIRect bounds; input = this->applyCropRect(this->mapContext(ctx), input.get(), &inputOffset, &bounds); if (!input) { return nullptr; } #if SK_SUPPORT_GPU // Note: if the kernel is too big, the GPU path falls back to SW if (source->isTextureBacked() && fKernelSize.width() * fKernelSize.height() <= MAX_KERNEL_SIZE) { GrContext* context = source->getContext(); // Ensure the input is in the destination color space. Typically applyCropRect will have // called pad_image to account for our dilation of bounds, so the result will already be // moved to the destination color space. If a filter DAG avoids that, then we use this // fall-back, which saves us from having to do the xform during the filter itself. input = ImageToColorSpace(input.get(), ctx.outputProperties()); sk_sp inputProxy(input->asTextureProxyRef(context)); SkASSERT(inputProxy); offset->fX = bounds.left(); offset->fY = bounds.top(); bounds.offset(-inputOffset); sk_sp fp(GrMatrixConvolutionEffect::Make(context->resourceProvider(), std::move(inputProxy), bounds, fKernelSize, fKernel, fGain, fBias, fKernelOffset, convert_tilemodes(fTileMode), fConvolveAlpha)); if (!fp) { return nullptr; } return DrawWithFP(context, std::move(fp), bounds, ctx.outputProperties()); } #endif SkBitmap inputBM; if (!input->getROPixels(&inputBM)) { return nullptr; } if (inputBM.colorType() != kN32_SkColorType) { return nullptr; } if (!fConvolveAlpha && !inputBM.isOpaque()) { inputBM = unpremultiply_bitmap(inputBM); } if (!inputBM.getPixels()) { return nullptr; } const SkImageInfo info = SkImageInfo::MakeN32(bounds.width(), bounds.height(), inputBM.alphaType()); SkBitmap dst; if (!dst.tryAllocPixels(info)) { return nullptr; } offset->fX = bounds.fLeft; offset->fY = bounds.fTop; bounds.offset(-inputOffset); SkIRect interior = SkIRect::MakeXYWH(bounds.left() + fKernelOffset.fX, bounds.top() + fKernelOffset.fY, bounds.width() - fKernelSize.fWidth + 1, bounds.height() - fKernelSize.fHeight + 1); SkIRect top = SkIRect::MakeLTRB(bounds.left(), bounds.top(), bounds.right(), interior.top()); SkIRect bottom = SkIRect::MakeLTRB(bounds.left(), interior.bottom(), bounds.right(), bounds.bottom()); SkIRect left = SkIRect::MakeLTRB(bounds.left(), interior.top(), interior.left(), interior.bottom()); SkIRect right = SkIRect::MakeLTRB(interior.right(), interior.top(), bounds.right(), interior.bottom()); this->filterBorderPixels(inputBM, &dst, top, bounds); this->filterBorderPixels(inputBM, &dst, left, bounds); this->filterInteriorPixels(inputBM, &dst, interior, bounds); this->filterBorderPixels(inputBM, &dst, right, bounds); this->filterBorderPixels(inputBM, &dst, bottom, bounds); return SkSpecialImage::MakeFromRaster(SkIRect::MakeWH(bounds.width(), bounds.height()), dst); } sk_sp SkMatrixConvolutionImageFilter::onMakeColorSpace(SkColorSpaceXformer* xformer) const { SkASSERT(1 == this->countInputs()); if (!this->getInput(0)) { return sk_ref_sp(const_cast(this)); } sk_sp input = this->getInput(0)->makeColorSpace(xformer); return SkMatrixConvolutionImageFilter::Make(fKernelSize, fKernel, fGain, fBias, fKernelOffset, fTileMode, fConvolveAlpha, std::move(input), this->getCropRectIfSet()); } SkIRect SkMatrixConvolutionImageFilter::onFilterNodeBounds(const SkIRect& src, const SkMatrix& ctm, MapDirection direction) const { SkIRect dst = src; int w = fKernelSize.width() - 1, h = fKernelSize.height() - 1; dst.fRight += w; dst.fBottom += h; if (kReverse_MapDirection == direction) { dst.offset(-fKernelOffset); } else { dst.offset(fKernelOffset - SkIPoint::Make(w, h)); } return dst; } bool SkMatrixConvolutionImageFilter::affectsTransparentBlack() const { // Because the kernel is applied in device-space, we have no idea what // pixels it will affect in object-space. return true; } #ifndef SK_IGNORE_TO_STRING void SkMatrixConvolutionImageFilter::toString(SkString* str) const { str->appendf("SkMatrixConvolutionImageFilter: ("); str->appendf("size: (%d,%d) kernel: (", fKernelSize.width(), fKernelSize.height()); for (int y = 0; y < fKernelSize.height(); y++) { for (int x = 0; x < fKernelSize.width(); x++) { str->appendf("%f ", fKernel[y * fKernelSize.width() + x]); } } str->appendf(")"); str->appendf("gain: %f bias: %f ", fGain, fBias); str->appendf("offset: (%d, %d) ", fKernelOffset.fX, fKernelOffset.fY); str->appendf("convolveAlpha: %s", fConvolveAlpha ? "true" : "false"); str->append(")"); } #endif