/* * Copyright 2012 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkMatrixConvolutionImageFilter.h" #include "SkBitmap.h" #include "SkColorPriv.h" #include "SkReadBuffer.h" #include "SkWriteBuffer.h" #include "SkRect.h" #include "SkUnPreMultiply.h" #if SK_SUPPORT_GPU #include "effects/GrMatrixConvolutionEffect.h" #endif static bool tile_mode_is_valid(SkMatrixConvolutionImageFilter::TileMode tileMode) { switch (tileMode) { case SkMatrixConvolutionImageFilter::kClamp_TileMode: case SkMatrixConvolutionImageFilter::kRepeat_TileMode: case SkMatrixConvolutionImageFilter::kClampToBlack_TileMode: return true; default: break; } return false; } SkMatrixConvolutionImageFilter::SkMatrixConvolutionImageFilter( const SkISize& kernelSize, const SkScalar* kernel, SkScalar gain, SkScalar bias, const SkIPoint& kernelOffset, TileMode tileMode, bool convolveAlpha, SkImageFilter* input, const CropRect* cropRect) : INHERITED(1, &input, cropRect), fKernelSize(kernelSize), fGain(gain), fBias(bias), fKernelOffset(kernelOffset), fTileMode(tileMode), fConvolveAlpha(convolveAlpha) { uint32_t size = fKernelSize.fWidth * fKernelSize.fHeight; fKernel = SkNEW_ARRAY(SkScalar, size); memcpy(fKernel, kernel, size * sizeof(SkScalar)); SkASSERT(kernelSize.fWidth >= 1 && kernelSize.fHeight >= 1); SkASSERT(kernelOffset.fX >= 0 && kernelOffset.fX < kernelSize.fWidth); SkASSERT(kernelOffset.fY >= 0 && kernelOffset.fY < kernelSize.fHeight); } SkMatrixConvolutionImageFilter::SkMatrixConvolutionImageFilter(SkReadBuffer& buffer) : INHERITED(1, buffer) { // We need to be able to read at most SK_MaxS32 bytes, so divide that // by the size of a scalar to know how many scalars we can read. static const int32_t kMaxSize = SK_MaxS32 / sizeof(SkScalar); fKernelSize.fWidth = buffer.readInt(); fKernelSize.fHeight = buffer.readInt(); if ((fKernelSize.fWidth >= 1) && (fKernelSize.fHeight >= 1) && // Make sure size won't be larger than a signed int, // which would still be extremely large for a kernel, // but we don't impose a hard limit for kernel size (kMaxSize / fKernelSize.fWidth >= fKernelSize.fHeight)) { size_t size = fKernelSize.fWidth * fKernelSize.fHeight; fKernel = SkNEW_ARRAY(SkScalar, size); SkDEBUGCODE(bool success =) buffer.readScalarArray(fKernel, size); SkASSERT(success); } else { fKernel = 0; } fGain = buffer.readScalar(); fBias = buffer.readScalar(); fKernelOffset.fX = buffer.readInt(); fKernelOffset.fY = buffer.readInt(); fTileMode = (TileMode) buffer.readInt(); fConvolveAlpha = buffer.readBool(); buffer.validate((fKernel != 0) && SkScalarIsFinite(fGain) && SkScalarIsFinite(fBias) && tile_mode_is_valid(fTileMode) && (fKernelOffset.fX >= 0) && (fKernelOffset.fX < fKernelSize.fWidth) && (fKernelOffset.fY >= 0) && (fKernelOffset.fY < fKernelSize.fHeight)); } void SkMatrixConvolutionImageFilter::flatten(SkWriteBuffer& buffer) const { this->INHERITED::flatten(buffer); buffer.writeInt(fKernelSize.fWidth); buffer.writeInt(fKernelSize.fHeight); buffer.writeScalarArray(fKernel, fKernelSize.fWidth * fKernelSize.fHeight); buffer.writeScalar(fGain); buffer.writeScalar(fBias); buffer.writeInt(fKernelOffset.fX); buffer.writeInt(fKernelOffset.fY); buffer.writeInt((int) fTileMode); buffer.writeBool(fConvolveAlpha); } SkMatrixConvolutionImageFilter::~SkMatrixConvolutionImageFilter() { delete[] fKernel; } class UncheckedPixelFetcher { public: static inline SkPMColor fetch(const SkBitmap& src, int x, int y, const SkIRect& bounds) { return *src.getAddr32(x, y); } }; class ClampPixelFetcher { public: static inline SkPMColor fetch(const SkBitmap& src, int x, int y, const SkIRect& bounds) { x = SkPin32(x, bounds.fLeft, bounds.fRight - 1); y = SkPin32(y, bounds.fTop, bounds.fBottom - 1); return *src.getAddr32(x, y); } }; class RepeatPixelFetcher { public: static inline SkPMColor fetch(const SkBitmap& src, int x, int y, const SkIRect& bounds) { x = (x - bounds.left()) % bounds.width() + bounds.left(); y = (y - bounds.top()) % bounds.height() + bounds.top(); if (x < bounds.left()) { x += bounds.width(); } if (y < bounds.top()) { y += bounds.height(); } return *src.getAddr32(x, y); } }; class ClampToBlackPixelFetcher { public: static inline SkPMColor fetch(const SkBitmap& src, int x, int y, const SkIRect& bounds) { if (x < bounds.fLeft || x >= bounds.fRight || y < bounds.fTop || y >= bounds.fBottom) { return 0; } else { return *src.getAddr32(x, y); } } }; template void SkMatrixConvolutionImageFilter::filterPixels(const SkBitmap& src, SkBitmap* result, const SkIRect& r, const SkIRect& bounds) const { SkIRect rect(r); if (!rect.intersect(bounds)) { return; } for (int y = rect.fTop; y < rect.fBottom; ++y) { SkPMColor* dptr = result->getAddr32(rect.fLeft - bounds.fLeft, y - bounds.fTop); for (int x = rect.fLeft; x < rect.fRight; ++x) { SkScalar sumA = 0, sumR = 0, sumG = 0, sumB = 0; for (int cy = 0; cy < fKernelSize.fHeight; cy++) { for (int cx = 0; cx < fKernelSize.fWidth; cx++) { SkPMColor s = PixelFetcher::fetch(src, x + cx - fKernelOffset.fX, y + cy - fKernelOffset.fY, bounds); SkScalar k = fKernel[cy * fKernelSize.fWidth + cx]; if (convolveAlpha) { sumA += SkScalarMul(SkIntToScalar(SkGetPackedA32(s)), k); } sumR += SkScalarMul(SkIntToScalar(SkGetPackedR32(s)), k); sumG += SkScalarMul(SkIntToScalar(SkGetPackedG32(s)), k); sumB += SkScalarMul(SkIntToScalar(SkGetPackedB32(s)), k); } } int a = convolveAlpha ? SkClampMax(SkScalarFloorToInt(SkScalarMul(sumA, fGain) + fBias), 255) : 255; int r = SkClampMax(SkScalarFloorToInt(SkScalarMul(sumR, fGain) + fBias), a); int g = SkClampMax(SkScalarFloorToInt(SkScalarMul(sumG, fGain) + fBias), a); int b = SkClampMax(SkScalarFloorToInt(SkScalarMul(sumB, fGain) + fBias), a); if (!convolveAlpha) { a = SkGetPackedA32(PixelFetcher::fetch(src, x, y, bounds)); *dptr++ = SkPreMultiplyARGB(a, r, g, b); } else { *dptr++ = SkPackARGB32(a, r, g, b); } } } } template void SkMatrixConvolutionImageFilter::filterPixels(const SkBitmap& src, SkBitmap* result, const SkIRect& rect, const SkIRect& bounds) const { if (fConvolveAlpha) { filterPixels(src, result, rect, bounds); } else { filterPixels(src, result, rect, bounds); } } void SkMatrixConvolutionImageFilter::filterInteriorPixels(const SkBitmap& src, SkBitmap* result, const SkIRect& rect, const SkIRect& bounds) const { filterPixels(src, result, rect, bounds); } void SkMatrixConvolutionImageFilter::filterBorderPixels(const SkBitmap& src, SkBitmap* result, const SkIRect& rect, const SkIRect& bounds) const { switch (fTileMode) { case kClamp_TileMode: filterPixels(src, result, rect, bounds); break; case kRepeat_TileMode: filterPixels(src, result, rect, bounds); break; case kClampToBlack_TileMode: filterPixels(src, result, rect, bounds); break; } } // FIXME: This should be refactored to SkImageFilterUtils for // use by other filters. For now, we assume the input is always // premultiplied and unpremultiply it static SkBitmap unpremultiplyBitmap(const SkBitmap& src) { SkAutoLockPixels alp(src); if (!src.getPixels()) { return SkBitmap(); } SkBitmap result; if (!result.allocPixels(src.info())) { return SkBitmap(); } for (int y = 0; y < src.height(); ++y) { const uint32_t* srcRow = src.getAddr32(0, y); uint32_t* dstRow = result.getAddr32(0, y); for (int x = 0; x < src.width(); ++x) { dstRow[x] = SkUnPreMultiply::PMColorToColor(srcRow[x]); } } return result; } bool SkMatrixConvolutionImageFilter::onFilterImage(Proxy* proxy, const SkBitmap& source, const Context& ctx, SkBitmap* result, SkIPoint* offset) const { SkBitmap src = source; SkIPoint srcOffset = SkIPoint::Make(0, 0); if (getInput(0) && !getInput(0)->filterImage(proxy, source, ctx, &src, &srcOffset)) { return false; } if (src.colorType() != kN32_SkColorType) { return false; } SkIRect bounds; if (!this->applyCropRect(ctx, proxy, src, &srcOffset, &bounds, &src)) { return false; } if (!fConvolveAlpha && !src.isOpaque()) { src = unpremultiplyBitmap(src); } SkAutoLockPixels alp(src); if (!src.getPixels()) { return false; } if (!result->allocPixels(src.info().makeWH(bounds.width(), bounds.height()))) { return false; } offset->fX = bounds.fLeft; offset->fY = bounds.fTop; bounds.offset(-srcOffset); SkIRect interior = SkIRect::MakeXYWH(bounds.left() + fKernelOffset.fX, bounds.top() + fKernelOffset.fY, bounds.width() - fKernelSize.fWidth + 1, bounds.height() - fKernelSize.fHeight + 1); SkIRect top = SkIRect::MakeLTRB(bounds.left(), bounds.top(), bounds.right(), interior.top()); SkIRect bottom = SkIRect::MakeLTRB(bounds.left(), interior.bottom(), bounds.right(), bounds.bottom()); SkIRect left = SkIRect::MakeLTRB(bounds.left(), interior.top(), interior.left(), interior.bottom()); SkIRect right = SkIRect::MakeLTRB(interior.right(), interior.top(), bounds.right(), interior.bottom()); filterBorderPixels(src, result, top, bounds); filterBorderPixels(src, result, left, bounds); filterInteriorPixels(src, result, interior, bounds); filterBorderPixels(src, result, right, bounds); filterBorderPixels(src, result, bottom, bounds); return true; } bool SkMatrixConvolutionImageFilter::onFilterBounds(const SkIRect& src, const SkMatrix& ctm, SkIRect* dst) const { SkIRect bounds = src; bounds.fRight += fKernelSize.width() - 1; bounds.fBottom += fKernelSize.height() - 1; bounds.offset(-fKernelOffset); if (getInput(0) && !getInput(0)->filterBounds(bounds, ctm, &bounds)) { return false; } *dst = bounds; return true; } #if SK_SUPPORT_GPU static GrTextureDomain::Mode convert_tilemodes( SkMatrixConvolutionImageFilter::TileMode tileMode) { switch (tileMode) { case SkMatrixConvolutionImageFilter::kClamp_TileMode: return GrTextureDomain::kClamp_Mode; case SkMatrixConvolutionImageFilter::kRepeat_TileMode: return GrTextureDomain::kRepeat_Mode; case SkMatrixConvolutionImageFilter::kClampToBlack_TileMode: return GrTextureDomain::kDecal_Mode; default: SkASSERT(false); } return GrTextureDomain::kIgnore_Mode; } bool SkMatrixConvolutionImageFilter::asNewEffect(GrEffect** effect, GrTexture* texture, const SkMatrix&, const SkIRect& bounds) const { if (!effect) { return fKernelSize.width() * fKernelSize.height() <= MAX_KERNEL_SIZE; } SkASSERT(fKernelSize.width() * fKernelSize.height() <= MAX_KERNEL_SIZE); *effect = GrMatrixConvolutionEffect::Create(texture, bounds, fKernelSize, fKernel, fGain, fBias, fKernelOffset, convert_tilemodes(fTileMode), fConvolveAlpha); return true; } #endif