/* * Copyright 2012 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkMatrixConvolutionImageFilter.h" #include "SkBitmap.h" #include "SkColorPriv.h" #include "SkFlattenableBuffers.h" #include "SkRect.h" #include "SkUnPreMultiply.h" #if SK_SUPPORT_GPU #include "gl/GrGLEffect.h" #include "effects/GrSingleTextureEffect.h" #include "GrTBackendEffectFactory.h" #include "GrTexture.h" #include "SkMatrix.h" #endif static bool tile_mode_is_valid(SkMatrixConvolutionImageFilter::TileMode tileMode) { switch (tileMode) { case SkMatrixConvolutionImageFilter::kClamp_TileMode: case SkMatrixConvolutionImageFilter::kRepeat_TileMode: case SkMatrixConvolutionImageFilter::kClampToBlack_TileMode: return true; default: break; } return false; } SkMatrixConvolutionImageFilter::SkMatrixConvolutionImageFilter( const SkISize& kernelSize, const SkScalar* kernel, SkScalar gain, SkScalar bias, const SkIPoint& target, TileMode tileMode, bool convolveAlpha, SkImageFilter* input, const CropRect* cropRect) : INHERITED(input, cropRect), fKernelSize(kernelSize), fGain(gain), fBias(bias), fTarget(target), fTileMode(tileMode), fConvolveAlpha(convolveAlpha) { uint32_t size = fKernelSize.fWidth * fKernelSize.fHeight; fKernel = SkNEW_ARRAY(SkScalar, size); memcpy(fKernel, kernel, size * sizeof(SkScalar)); SkASSERT(kernelSize.fWidth >= 1 && kernelSize.fHeight >= 1); SkASSERT(target.fX >= 0 && target.fX < kernelSize.fWidth); SkASSERT(target.fY >= 0 && target.fY < kernelSize.fHeight); } SkMatrixConvolutionImageFilter::SkMatrixConvolutionImageFilter(SkFlattenableReadBuffer& buffer) : INHERITED(buffer) { // We need to be able to read at most SK_MaxS32 bytes, so divide that // by the size of a scalar to know how many scalars we can read. static const int32_t kMaxSize = SK_MaxS32 / sizeof(SkScalar); fKernelSize.fWidth = buffer.readInt(); fKernelSize.fHeight = buffer.readInt(); if ((fKernelSize.fWidth >= 1) && (fKernelSize.fHeight >= 1) && // Make sure size won't be larger than a signed int, // which would still be extremely large for a kernel, // but we don't impose a hard limit for kernel size (kMaxSize / fKernelSize.fWidth >= fKernelSize.fHeight)) { size_t size = fKernelSize.fWidth * fKernelSize.fHeight; fKernel = SkNEW_ARRAY(SkScalar, size); SkDEBUGCODE(bool success =) buffer.readScalarArray(fKernel, size); SkASSERT(success); } else { fKernel = 0; } fGain = buffer.readScalar(); fBias = buffer.readScalar(); fTarget.fX = buffer.readInt(); fTarget.fY = buffer.readInt(); fTileMode = (TileMode) buffer.readInt(); fConvolveAlpha = buffer.readBool(); buffer.validate((fKernel != 0) && SkScalarIsFinite(fGain) && SkScalarIsFinite(fBias) && tile_mode_is_valid(fTileMode)); } void SkMatrixConvolutionImageFilter::flatten(SkFlattenableWriteBuffer& buffer) const { this->INHERITED::flatten(buffer); buffer.writeInt(fKernelSize.fWidth); buffer.writeInt(fKernelSize.fHeight); buffer.writeScalarArray(fKernel, fKernelSize.fWidth * fKernelSize.fHeight); buffer.writeScalar(fGain); buffer.writeScalar(fBias); buffer.writeInt(fTarget.fX); buffer.writeInt(fTarget.fY); buffer.writeInt((int) fTileMode); buffer.writeBool(fConvolveAlpha); } SkMatrixConvolutionImageFilter::~SkMatrixConvolutionImageFilter() { delete[] fKernel; } class UncheckedPixelFetcher { public: static inline SkPMColor fetch(const SkBitmap& src, int x, int y, const SkIRect& bounds) { return *src.getAddr32(x, y); } }; class ClampPixelFetcher { public: static inline SkPMColor fetch(const SkBitmap& src, int x, int y, const SkIRect& bounds) { x = SkPin32(x, bounds.fLeft, bounds.fRight - 1); y = SkPin32(y, bounds.fTop, bounds.fBottom - 1); return *src.getAddr32(x, y); } }; class RepeatPixelFetcher { public: static inline SkPMColor fetch(const SkBitmap& src, int x, int y, const SkIRect& bounds) { x = (x - bounds.left()) % bounds.width() + bounds.left(); y = (y - bounds.top()) % bounds.height() + bounds.top(); if (x < bounds.left()) { x += bounds.width(); } if (y < bounds.top()) { y += bounds.height(); } return *src.getAddr32(x, y); } }; class ClampToBlackPixelFetcher { public: static inline SkPMColor fetch(const SkBitmap& src, int x, int y, const SkIRect& bounds) { if (x < bounds.fLeft || x >= bounds.fRight || y < bounds.fTop || y >= bounds.fBottom) { return 0; } else { return *src.getAddr32(x, y); } } }; template void SkMatrixConvolutionImageFilter::filterPixels(const SkBitmap& src, SkBitmap* result, const SkIRect& rect, const SkIRect& bounds) { for (int y = rect.fTop; y < rect.fBottom; ++y) { SkPMColor* dptr = result->getAddr32(rect.fLeft - bounds.fLeft, y - bounds.fTop); for (int x = rect.fLeft; x < rect.fRight; ++x) { SkScalar sumA = 0, sumR = 0, sumG = 0, sumB = 0; for (int cy = 0; cy < fKernelSize.fHeight; cy++) { for (int cx = 0; cx < fKernelSize.fWidth; cx++) { SkPMColor s = PixelFetcher::fetch(src, x + cx - fTarget.fX, y + cy - fTarget.fY, bounds); SkScalar k = fKernel[cy * fKernelSize.fWidth + cx]; if (convolveAlpha) { sumA += SkScalarMul(SkIntToScalar(SkGetPackedA32(s)), k); } sumR += SkScalarMul(SkIntToScalar(SkGetPackedR32(s)), k); sumG += SkScalarMul(SkIntToScalar(SkGetPackedG32(s)), k); sumB += SkScalarMul(SkIntToScalar(SkGetPackedB32(s)), k); } } int a = convolveAlpha ? SkClampMax(SkScalarFloorToInt(SkScalarMul(sumA, fGain) + fBias), 255) : 255; int r = SkClampMax(SkScalarFloorToInt(SkScalarMul(sumR, fGain) + fBias), a); int g = SkClampMax(SkScalarFloorToInt(SkScalarMul(sumG, fGain) + fBias), a); int b = SkClampMax(SkScalarFloorToInt(SkScalarMul(sumB, fGain) + fBias), a); if (!convolveAlpha) { a = SkGetPackedA32(PixelFetcher::fetch(src, x, y, bounds)); *dptr++ = SkPreMultiplyARGB(a, r, g, b); } else { *dptr++ = SkPackARGB32(a, r, g, b); } } } } template void SkMatrixConvolutionImageFilter::filterPixels(const SkBitmap& src, SkBitmap* result, const SkIRect& rect, const SkIRect& bounds) { if (fConvolveAlpha) { filterPixels(src, result, rect, bounds); } else { filterPixels(src, result, rect, bounds); } } void SkMatrixConvolutionImageFilter::filterInteriorPixels(const SkBitmap& src, SkBitmap* result, const SkIRect& rect, const SkIRect& bounds) { filterPixels(src, result, rect, bounds); } void SkMatrixConvolutionImageFilter::filterBorderPixels(const SkBitmap& src, SkBitmap* result, const SkIRect& rect, const SkIRect& bounds) { switch (fTileMode) { case kClamp_TileMode: filterPixels(src, result, rect, bounds); break; case kRepeat_TileMode: filterPixels(src, result, rect, bounds); break; case kClampToBlack_TileMode: filterPixels(src, result, rect, bounds); break; } } // FIXME: This should be refactored to SkImageFilterUtils for // use by other filters. For now, we assume the input is always // premultiplied and unpremultiply it static SkBitmap unpremultiplyBitmap(const SkBitmap& src) { SkAutoLockPixels alp(src); if (!src.getPixels()) { return SkBitmap(); } SkBitmap result; result.setConfig(src.config(), src.width(), src.height()); result.allocPixels(); if (!result.getPixels()) { return SkBitmap(); } for (int y = 0; y < src.height(); ++y) { const uint32_t* srcRow = src.getAddr32(0, y); uint32_t* dstRow = result.getAddr32(0, y); for (int x = 0; x < src.width(); ++x) { dstRow[x] = SkUnPreMultiply::PMColorToColor(srcRow[x]); } } return result; } bool SkMatrixConvolutionImageFilter::onFilterImage(Proxy* proxy, const SkBitmap& source, const SkMatrix& matrix, SkBitmap* result, SkIPoint* loc) { SkBitmap src = source; if (getInput(0) && !getInput(0)->filterImage(proxy, source, matrix, &src, loc)) { return false; } if (src.config() != SkBitmap::kARGB_8888_Config) { return false; } SkIRect bounds; src.getBounds(&bounds); if (!this->applyCropRect(&bounds, matrix)) { return false; } if (!fConvolveAlpha && !src.isOpaque()) { src = unpremultiplyBitmap(src); } SkAutoLockPixels alp(src); if (!src.getPixels()) { return false; } result->setConfig(src.config(), bounds.width(), bounds.height()); result->allocPixels(); SkIRect interior = SkIRect::MakeXYWH(bounds.left() + fTarget.fX, bounds.top() + fTarget.fY, bounds.width() - fKernelSize.fWidth + 1, bounds.height() - fKernelSize.fHeight + 1); SkIRect top = SkIRect::MakeLTRB(bounds.left(), bounds.top(), bounds.right(), interior.top()); SkIRect bottom = SkIRect::MakeLTRB(bounds.left(), interior.bottom(), bounds.right(), bounds.bottom()); SkIRect left = SkIRect::MakeLTRB(bounds.left(), interior.top(), interior.left(), interior.bottom()); SkIRect right = SkIRect::MakeLTRB(interior.right(), interior.top(), bounds.right(), interior.bottom()); filterBorderPixels(src, result, top, bounds); filterBorderPixels(src, result, left, bounds); filterInteriorPixels(src, result, interior, bounds); filterBorderPixels(src, result, right, bounds); filterBorderPixels(src, result, bottom, bounds); loc->fX += bounds.fLeft; loc->fY += bounds.fTop; return true; } #if SK_SUPPORT_GPU /////////////////////////////////////////////////////////////////////////////// class GrGLMatrixConvolutionEffect; class GrMatrixConvolutionEffect : public GrSingleTextureEffect { public: typedef SkMatrixConvolutionImageFilter::TileMode TileMode; static GrEffectRef* Create(GrTexture* texture, const SkIRect& bounds, const SkISize& kernelSize, const SkScalar* kernel, SkScalar gain, SkScalar bias, const SkIPoint& target, TileMode tileMode, bool convolveAlpha) { AutoEffectUnref effect(SkNEW_ARGS(GrMatrixConvolutionEffect, (texture, bounds, kernelSize, kernel, gain, bias, target, tileMode, convolveAlpha))); return CreateEffectRef(effect); } virtual ~GrMatrixConvolutionEffect(); virtual void getConstantColorComponents(GrColor* color, uint32_t* validFlags) const SK_OVERRIDE { // TODO: Try to do better? *validFlags = 0; } static const char* Name() { return "MatrixConvolution"; } const SkIRect& bounds() const { return fBounds; } const SkISize& kernelSize() const { return fKernelSize; } const float* target() const { return fTarget; } const float* kernel() const { return fKernel; } float gain() const { return fGain; } float bias() const { return fBias; } TileMode tileMode() const { return fTileMode; } bool convolveAlpha() const { return fConvolveAlpha; } typedef GrGLMatrixConvolutionEffect GLEffect; virtual const GrBackendEffectFactory& getFactory() const SK_OVERRIDE; private: GrMatrixConvolutionEffect(GrTexture*, const SkIRect& bounds, const SkISize& kernelSize, const SkScalar* kernel, SkScalar gain, SkScalar bias, const SkIPoint& target, TileMode tileMode, bool convolveAlpha); virtual bool onIsEqual(const GrEffect&) const SK_OVERRIDE; SkIRect fBounds; SkISize fKernelSize; float *fKernel; float fGain; float fBias; float fTarget[2]; TileMode fTileMode; bool fConvolveAlpha; GR_DECLARE_EFFECT_TEST; typedef GrSingleTextureEffect INHERITED; }; class GrGLMatrixConvolutionEffect : public GrGLEffect { public: GrGLMatrixConvolutionEffect(const GrBackendEffectFactory& factory, const GrDrawEffect& effect); virtual void emitCode(GrGLShaderBuilder*, const GrDrawEffect&, EffectKey, const char* outputColor, const char* inputColor, const TransformedCoordsArray&, const TextureSamplerArray&) SK_OVERRIDE; static inline EffectKey GenKey(const GrDrawEffect&, const GrGLCaps&); virtual void setData(const GrGLUniformManager&, const GrDrawEffect&) SK_OVERRIDE; private: typedef GrGLUniformManager::UniformHandle UniformHandle; typedef SkMatrixConvolutionImageFilter::TileMode TileMode; SkISize fKernelSize; TileMode fTileMode; bool fConvolveAlpha; UniformHandle fBoundsUni; UniformHandle fKernelUni; UniformHandle fImageIncrementUni; UniformHandle fTargetUni; UniformHandle fGainUni; UniformHandle fBiasUni; typedef GrGLEffect INHERITED; }; GrGLMatrixConvolutionEffect::GrGLMatrixConvolutionEffect(const GrBackendEffectFactory& factory, const GrDrawEffect& drawEffect) : INHERITED(factory) { const GrMatrixConvolutionEffect& m = drawEffect.castEffect(); fKernelSize = m.kernelSize(); fTileMode = m.tileMode(); fConvolveAlpha = m.convolveAlpha(); } static void appendTextureLookup(GrGLShaderBuilder* builder, const GrGLShaderBuilder::TextureSampler& sampler, const char* coord, const char* bounds, SkMatrixConvolutionImageFilter::TileMode tileMode) { SkString clampedCoord; switch (tileMode) { case SkMatrixConvolutionImageFilter::kClamp_TileMode: clampedCoord.printf("clamp(%s, %s.xy, %s.zw)", coord, bounds, bounds); coord = clampedCoord.c_str(); break; case SkMatrixConvolutionImageFilter::kRepeat_TileMode: clampedCoord.printf("mod(%s - %s.xy, %s.zw - %s.xy) + %s.xy", coord, bounds, bounds, bounds, bounds); coord = clampedCoord.c_str(); break; case SkMatrixConvolutionImageFilter::kClampToBlack_TileMode: builder->fsCodeAppendf("clamp(%s, %s.xy, %s.zw) != %s ? vec4(0, 0, 0, 0) : ", coord, bounds, bounds, coord); break; } builder->fsAppendTextureLookup(sampler, coord); } void GrGLMatrixConvolutionEffect::emitCode(GrGLShaderBuilder* builder, const GrDrawEffect&, EffectKey key, const char* outputColor, const char* inputColor, const TransformedCoordsArray& coords, const TextureSamplerArray& samplers) { sk_ignore_unused_variable(inputColor); SkString coords2D = builder->ensureFSCoords2D(coords, 0); fBoundsUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility, kVec4f_GrSLType, "Bounds"); fImageIncrementUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility, kVec2f_GrSLType, "ImageIncrement"); fKernelUni = builder->addUniformArray(GrGLShaderBuilder::kFragment_Visibility, kFloat_GrSLType, "Kernel", fKernelSize.width() * fKernelSize.height()); fTargetUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility, kVec2f_GrSLType, "Target"); fGainUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility, kFloat_GrSLType, "Gain"); fBiasUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility, kFloat_GrSLType, "Bias"); const char* bounds = builder->getUniformCStr(fBoundsUni); const char* target = builder->getUniformCStr(fTargetUni); const char* imgInc = builder->getUniformCStr(fImageIncrementUni); const char* kernel = builder->getUniformCStr(fKernelUni); const char* gain = builder->getUniformCStr(fGainUni); const char* bias = builder->getUniformCStr(fBiasUni); int kWidth = fKernelSize.width(); int kHeight = fKernelSize.height(); builder->fsCodeAppend("\t\tvec4 sum = vec4(0, 0, 0, 0);\n"); builder->fsCodeAppendf("\t\tvec2 coord = %s - %s * %s;\n", coords2D.c_str(), target, imgInc); builder->fsCodeAppendf("\t\tfor (int y = 0; y < %d; y++) {\n", kHeight); builder->fsCodeAppendf("\t\t\tfor (int x = 0; x < %d; x++) {\n", kWidth); builder->fsCodeAppendf("\t\t\t\tfloat k = %s[y * %d + x];\n", kernel, kWidth); builder->fsCodeAppendf("\t\t\t\tvec2 coord2 = coord + vec2(x, y) * %s;\n", imgInc); builder->fsCodeAppend("\t\t\t\tvec4 c = "); appendTextureLookup(builder, samplers[0], "coord2", bounds, fTileMode); builder->fsCodeAppend(";\n"); if (!fConvolveAlpha) { builder->fsCodeAppend("\t\t\t\tc.rgb /= c.a;\n"); } builder->fsCodeAppend("\t\t\t\tsum += c * k;\n"); builder->fsCodeAppend("\t\t\t}\n"); builder->fsCodeAppend("\t\t}\n"); if (fConvolveAlpha) { builder->fsCodeAppendf("\t\t%s = sum * %s + %s;\n", outputColor, gain, bias); builder->fsCodeAppendf("\t\t%s.rgb = clamp(%s.rgb, 0.0, %s.a);\n", outputColor, outputColor, outputColor); } else { builder->fsCodeAppend("\t\tvec4 c = "); appendTextureLookup(builder, samplers[0], coords2D.c_str(), bounds, fTileMode); builder->fsCodeAppend(";\n"); builder->fsCodeAppendf("\t\t%s.a = c.a;\n", outputColor); builder->fsCodeAppendf("\t\t%s.rgb = sum.rgb * %s + %s;\n", outputColor, gain, bias); builder->fsCodeAppendf("\t\t%s.rgb *= %s.a;\n", outputColor, outputColor); } } namespace { int encodeXY(int x, int y) { SkASSERT(x >= 1 && y >= 1 && x * y <= 32); if (y < x) return 0x40 | encodeXY(y, x); else return (0x40 >> x) | (y - x); } }; GrGLEffect::EffectKey GrGLMatrixConvolutionEffect::GenKey(const GrDrawEffect& drawEffect, const GrGLCaps&) { const GrMatrixConvolutionEffect& m = drawEffect.castEffect(); EffectKey key = encodeXY(m.kernelSize().width(), m.kernelSize().height()); key |= m.tileMode() << 7; key |= m.convolveAlpha() ? 1 << 9 : 0; return key; } void GrGLMatrixConvolutionEffect::setData(const GrGLUniformManager& uman, const GrDrawEffect& drawEffect) { const GrMatrixConvolutionEffect& conv = drawEffect.castEffect(); GrTexture& texture = *conv.texture(0); // the code we generated was for a specific kernel size SkASSERT(conv.kernelSize() == fKernelSize); SkASSERT(conv.tileMode() == fTileMode); float imageIncrement[2]; float ySign = texture.origin() == kTopLeft_GrSurfaceOrigin ? 1.0f : -1.0f; imageIncrement[0] = 1.0f / texture.width(); imageIncrement[1] = ySign / texture.height(); uman.set2fv(fImageIncrementUni, 1, imageIncrement); uman.set2fv(fTargetUni, 1, conv.target()); uman.set1fv(fKernelUni, fKernelSize.width() * fKernelSize.height(), conv.kernel()); uman.set1f(fGainUni, conv.gain()); uman.set1f(fBiasUni, conv.bias()); const SkIRect& bounds = conv.bounds(); float left = (float) bounds.left() / texture.width(); float top = (float) bounds.top() / texture.height(); float right = (float) bounds.right() / texture.width(); float bottom = (float) bounds.bottom() / texture.height(); if (texture.origin() == kBottomLeft_GrSurfaceOrigin) { uman.set4f(fBoundsUni, left, 1.0f - bottom, right, 1.0f - top); } else { uman.set4f(fBoundsUni, left, top, right, bottom); } } GrMatrixConvolutionEffect::GrMatrixConvolutionEffect(GrTexture* texture, const SkIRect& bounds, const SkISize& kernelSize, const SkScalar* kernel, SkScalar gain, SkScalar bias, const SkIPoint& target, TileMode tileMode, bool convolveAlpha) : INHERITED(texture, MakeDivByTextureWHMatrix(texture)), fBounds(bounds), fKernelSize(kernelSize), fGain(SkScalarToFloat(gain)), fBias(SkScalarToFloat(bias) / 255.0f), fTileMode(tileMode), fConvolveAlpha(convolveAlpha) { fKernel = new float[kernelSize.width() * kernelSize.height()]; for (int i = 0; i < kernelSize.width() * kernelSize.height(); i++) { fKernel[i] = SkScalarToFloat(kernel[i]); } fTarget[0] = static_cast(target.x()); fTarget[1] = static_cast(target.y()); this->setWillNotUseInputColor(); } GrMatrixConvolutionEffect::~GrMatrixConvolutionEffect() { delete[] fKernel; } const GrBackendEffectFactory& GrMatrixConvolutionEffect::getFactory() const { return GrTBackendEffectFactory::getInstance(); } bool GrMatrixConvolutionEffect::onIsEqual(const GrEffect& sBase) const { const GrMatrixConvolutionEffect& s = CastEffect(sBase); return this->texture(0) == s.texture(0) && fKernelSize == s.kernelSize() && !memcmp(fKernel, s.kernel(), fKernelSize.width() * fKernelSize.height() * sizeof(float)) && fGain == s.gain() && fBias == s.bias() && fTarget == s.target() && fTileMode == s.tileMode() && fConvolveAlpha == s.convolveAlpha(); } GR_DEFINE_EFFECT_TEST(GrMatrixConvolutionEffect); // A little bit less than the minimum # uniforms required by DX9SM2 (32). // Allows for a 5x5 kernel (or 25x1, for that matter). #define MAX_KERNEL_SIZE 25 GrEffectRef* GrMatrixConvolutionEffect::TestCreate(SkRandom* random, GrContext* context, const GrDrawTargetCaps&, GrTexture* textures[]) { int texIdx = random->nextBool() ? GrEffectUnitTest::kSkiaPMTextureIdx : GrEffectUnitTest::kAlphaTextureIdx; int width = random->nextRangeU(1, MAX_KERNEL_SIZE); int height = random->nextRangeU(1, MAX_KERNEL_SIZE / width); SkISize kernelSize = SkISize::Make(width, height); SkAutoTDeleteArray kernel(new SkScalar[width * height]); for (int i = 0; i < width * height; i++) { kernel.get()[i] = random->nextSScalar1(); } SkScalar gain = random->nextSScalar1(); SkScalar bias = random->nextSScalar1(); SkIPoint target = SkIPoint::Make(random->nextRangeU(0, kernelSize.width()), random->nextRangeU(0, kernelSize.height())); SkIRect bounds = SkIRect::MakeXYWH(random->nextRangeU(0, textures[texIdx]->width()), random->nextRangeU(0, textures[texIdx]->height()), random->nextRangeU(0, textures[texIdx]->width()), random->nextRangeU(0, textures[texIdx]->height())); TileMode tileMode = static_cast(random->nextRangeU(0, 2)); bool convolveAlpha = random->nextBool(); return GrMatrixConvolutionEffect::Create(textures[texIdx], bounds, kernelSize, kernel.get(), gain, bias, target, tileMode, convolveAlpha); } bool SkMatrixConvolutionImageFilter::asNewEffect(GrEffectRef** effect, GrTexture* texture, const SkMatrix&, const SkIRect& bounds ) const { if (!effect) { return fKernelSize.width() * fKernelSize.height() <= MAX_KERNEL_SIZE; } SkASSERT(fKernelSize.width() * fKernelSize.height() <= MAX_KERNEL_SIZE); *effect = GrMatrixConvolutionEffect::Create(texture, bounds, fKernelSize, fKernel, fGain, fBias, fTarget, fTileMode, fConvolveAlpha); return true; } /////////////////////////////////////////////////////////////////////////////// #endif