/* * Copyright 2012 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkBitmap.h" #include "SkMagnifierImageFilter.h" #include "SkColorPriv.h" #include "SkReadBuffer.h" #include "SkWriteBuffer.h" #include "SkValidationUtils.h" //////////////////////////////////////////////////////////////////////////////// #if SK_SUPPORT_GPU #include "GrInvariantOutput.h" #include "effects/GrSingleTextureEffect.h" #include "gl/GrGLProcessor.h" #include "gl/GrGLSL.h" #include "gl/GrGLTexture.h" #include "gl/builders/GrGLProgramBuilder.h" class GrMagnifierEffect : public GrSingleTextureEffect { public: static GrFragmentProcessor* Create(GrTexture* texture, const SkRect& bounds, float xOffset, float yOffset, float xInvZoom, float yInvZoom, float xInvInset, float yInvInset) { return SkNEW_ARGS(GrMagnifierEffect, (texture, bounds, xOffset, yOffset, xInvZoom, yInvZoom, xInvInset, yInvInset)); } virtual ~GrMagnifierEffect() {}; const char* name() const override { return "Magnifier"; } void getGLProcessorKey(const GrGLSLCaps&, GrProcessorKeyBuilder*) const override; GrGLFragmentProcessor* createGLInstance() const override; const SkRect& bounds() const { return fBounds; } // Bounds of source image. // Offset to apply to zoomed pixels, (srcRect position / texture size). float x_offset() const { return fXOffset; } float y_offset() const { return fYOffset; } // Scale to apply to zoomed pixels (srcRect size / bounds size). float x_inv_zoom() const { return fXInvZoom; } float y_inv_zoom() const { return fYInvZoom; } // 1/radius over which to transition from unzoomed to zoomed pixels (bounds size / inset). float x_inv_inset() const { return fXInvInset; } float y_inv_inset() const { return fYInvInset; } private: GrMagnifierEffect(GrTexture* texture, const SkRect& bounds, float xOffset, float yOffset, float xInvZoom, float yInvZoom, float xInvInset, float yInvInset) : GrSingleTextureEffect(texture, GrCoordTransform::MakeDivByTextureWHMatrix(texture)) , fBounds(bounds) , fXOffset(xOffset) , fYOffset(yOffset) , fXInvZoom(xInvZoom) , fYInvZoom(yInvZoom) , fXInvInset(xInvInset) , fYInvInset(yInvInset) { this->initClassID(); } bool onIsEqual(const GrFragmentProcessor&) const override; void onComputeInvariantOutput(GrInvariantOutput* inout) const override; GR_DECLARE_FRAGMENT_PROCESSOR_TEST; SkRect fBounds; float fXOffset; float fYOffset; float fXInvZoom; float fYInvZoom; float fXInvInset; float fYInvInset; typedef GrSingleTextureEffect INHERITED; }; // For brevity typedef GrGLProgramDataManager::UniformHandle UniformHandle; class GrGLMagnifierEffect : public GrGLFragmentProcessor { public: GrGLMagnifierEffect(const GrProcessor&); virtual void emitCode(GrGLFPBuilder*, const GrFragmentProcessor&, const char* outputColor, const char* inputColor, const TransformedCoordsArray&, const TextureSamplerArray&) override; void setData(const GrGLProgramDataManager&, const GrProcessor&) override; private: UniformHandle fOffsetVar; UniformHandle fInvZoomVar; UniformHandle fInvInsetVar; UniformHandle fBoundsVar; typedef GrGLFragmentProcessor INHERITED; }; GrGLMagnifierEffect::GrGLMagnifierEffect(const GrProcessor&) { } void GrGLMagnifierEffect::emitCode(GrGLFPBuilder* builder, const GrFragmentProcessor&, const char* outputColor, const char* inputColor, const TransformedCoordsArray& coords, const TextureSamplerArray& samplers) { fOffsetVar = builder->addUniform( GrGLProgramBuilder::kFragment_Visibility | GrGLProgramBuilder::kVertex_Visibility, kVec2f_GrSLType, kDefault_GrSLPrecision, "Offset"); fInvZoomVar = builder->addUniform( GrGLProgramBuilder::kFragment_Visibility | GrGLProgramBuilder::kVertex_Visibility, kVec2f_GrSLType, kDefault_GrSLPrecision, "InvZoom"); fInvInsetVar = builder->addUniform( GrGLProgramBuilder::kFragment_Visibility | GrGLProgramBuilder::kVertex_Visibility, kVec2f_GrSLType, kDefault_GrSLPrecision, "InvInset"); fBoundsVar = builder->addUniform( GrGLProgramBuilder::kFragment_Visibility | GrGLProgramBuilder::kVertex_Visibility, kVec4f_GrSLType, kDefault_GrSLPrecision, "Bounds"); GrGLFragmentBuilder* fsBuilder = builder->getFragmentShaderBuilder(); SkString coords2D = fsBuilder->ensureFSCoords2D(coords, 0); fsBuilder->codeAppendf("\t\tvec2 coord = %s;\n", coords2D.c_str()); fsBuilder->codeAppendf("\t\tvec2 zoom_coord = %s + %s * %s;\n", builder->getUniformCStr(fOffsetVar), coords2D.c_str(), builder->getUniformCStr(fInvZoomVar)); const char* bounds = builder->getUniformCStr(fBoundsVar); fsBuilder->codeAppendf("\t\tvec2 delta = (coord - %s.xy) * %s.zw;\n", bounds, bounds); fsBuilder->codeAppendf("\t\tdelta = min(delta, vec2(1.0, 1.0) - delta);\n"); fsBuilder->codeAppendf("\t\tdelta = delta * %s;\n", builder->getUniformCStr(fInvInsetVar)); fsBuilder->codeAppend("\t\tfloat weight = 0.0;\n"); fsBuilder->codeAppend("\t\tif (delta.s < 2.0 && delta.t < 2.0) {\n"); fsBuilder->codeAppend("\t\t\tdelta = vec2(2.0, 2.0) - delta;\n"); fsBuilder->codeAppend("\t\t\tfloat dist = length(delta);\n"); fsBuilder->codeAppend("\t\t\tdist = max(2.0 - dist, 0.0);\n"); fsBuilder->codeAppend("\t\t\tweight = min(dist * dist, 1.0);\n"); fsBuilder->codeAppend("\t\t} else {\n"); fsBuilder->codeAppend("\t\t\tvec2 delta_squared = delta * delta;\n"); fsBuilder->codeAppend("\t\t\tweight = min(min(delta_squared.x, delta_squared.y), 1.0);\n"); fsBuilder->codeAppend("\t\t}\n"); fsBuilder->codeAppend("\t\tvec2 mix_coord = mix(coord, zoom_coord, weight);\n"); fsBuilder->codeAppend("\t\tvec4 output_color = "); fsBuilder->appendTextureLookup(samplers[0], "mix_coord"); fsBuilder->codeAppend(";\n"); fsBuilder->codeAppendf("\t\t%s = output_color;", outputColor); SkString modulate; GrGLSLMulVarBy4f(&modulate, outputColor, inputColor); fsBuilder->codeAppend(modulate.c_str()); } void GrGLMagnifierEffect::setData(const GrGLProgramDataManager& pdman, const GrProcessor& effect) { const GrMagnifierEffect& zoom = effect.cast(); pdman.set2f(fOffsetVar, zoom.x_offset(), zoom.y_offset()); pdman.set2f(fInvZoomVar, zoom.x_inv_zoom(), zoom.y_inv_zoom()); pdman.set2f(fInvInsetVar, zoom.x_inv_inset(), zoom.y_inv_inset()); pdman.set4f(fBoundsVar, zoom.bounds().x(), zoom.bounds().y(), zoom.bounds().width(), zoom.bounds().height()); } ///////////////////////////////////////////////////////////////////// void GrMagnifierEffect::getGLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) const { GrGLMagnifierEffect::GenKey(*this, caps, b); } GrGLFragmentProcessor* GrMagnifierEffect::createGLInstance() const { return SkNEW_ARGS(GrGLMagnifierEffect, (*this)); } GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrMagnifierEffect); GrFragmentProcessor* GrMagnifierEffect::TestCreate(SkRandom* random, GrContext* context, const GrCaps&, GrTexture** textures) { GrTexture* texture = textures[0]; const int kMaxWidth = 200; const int kMaxHeight = 200; const int kMaxInset = 20; uint32_t width = random->nextULessThan(kMaxWidth); uint32_t height = random->nextULessThan(kMaxHeight); uint32_t x = random->nextULessThan(kMaxWidth - width); uint32_t y = random->nextULessThan(kMaxHeight - height); uint32_t inset = random->nextULessThan(kMaxInset); GrFragmentProcessor* effect = GrMagnifierEffect::Create( texture, SkRect::MakeWH(SkIntToScalar(kMaxWidth), SkIntToScalar(kMaxHeight)), (float) width / texture->width(), (float) height / texture->height(), texture->width() / (float) x, texture->height() / (float) y, (float) inset / texture->width(), (float) inset / texture->height()); SkASSERT(effect); return effect; } /////////////////////////////////////////////////////////////////////////////// bool GrMagnifierEffect::onIsEqual(const GrFragmentProcessor& sBase) const { const GrMagnifierEffect& s = sBase.cast(); return (this->fBounds == s.fBounds && this->fXOffset == s.fXOffset && this->fYOffset == s.fYOffset && this->fXInvZoom == s.fXInvZoom && this->fYInvZoom == s.fYInvZoom && this->fXInvInset == s.fXInvInset && this->fYInvInset == s.fYInvInset); } void GrMagnifierEffect::onComputeInvariantOutput(GrInvariantOutput* inout) const { this->updateInvariantOutputForModulation(inout); } #endif //////////////////////////////////////////////////////////////////////////////// SkImageFilter* SkMagnifierImageFilter::Create(const SkRect& srcRect, SkScalar inset, SkImageFilter* input) { if (!SkScalarIsFinite(inset) || !SkIsValidRect(srcRect)) { return NULL; } // Negative numbers in src rect are not supported if (srcRect.fLeft < 0 || srcRect.fTop < 0) { return NULL; } return SkNEW_ARGS(SkMagnifierImageFilter, (srcRect, inset, input)); } SkMagnifierImageFilter::SkMagnifierImageFilter(const SkRect& srcRect, SkScalar inset, SkImageFilter* input) : INHERITED(1, &input), fSrcRect(srcRect), fInset(inset) { SkASSERT(srcRect.x() >= 0 && srcRect.y() >= 0 && inset >= 0); } #if SK_SUPPORT_GPU bool SkMagnifierImageFilter::asFragmentProcessor(GrFragmentProcessor** fp, GrTexture* texture, const SkMatrix&, const SkIRect&bounds) const { if (fp) { SkScalar yOffset = texture->origin() == kTopLeft_GrSurfaceOrigin ? fSrcRect.y() : texture->height() - fSrcRect.height() * texture->height() / bounds.height() - fSrcRect.y(); int boundsY = (texture->origin() == kTopLeft_GrSurfaceOrigin) ? bounds.y() : (texture->height() - bounds.height()); SkRect effectBounds = SkRect::MakeXYWH( SkIntToScalar(bounds.x()) / texture->width(), SkIntToScalar(boundsY) / texture->height(), SkIntToScalar(texture->width()) / bounds.width(), SkIntToScalar(texture->height()) / bounds.height()); SkScalar invInset = fInset > 0 ? SkScalarInvert(fInset) : SK_Scalar1; *fp = GrMagnifierEffect::Create(texture, effectBounds, fSrcRect.x() / texture->width(), yOffset / texture->height(), fSrcRect.width() / bounds.width(), fSrcRect.height() / bounds.height(), bounds.width() * invInset, bounds.height() * invInset); } return true; } #endif SkFlattenable* SkMagnifierImageFilter::CreateProc(SkReadBuffer& buffer) { SK_IMAGEFILTER_UNFLATTEN_COMMON(common, 1); SkRect src; buffer.readRect(&src); return Create(src, buffer.readScalar(), common.getInput(0)); } void SkMagnifierImageFilter::flatten(SkWriteBuffer& buffer) const { this->INHERITED::flatten(buffer); buffer.writeRect(fSrcRect); buffer.writeScalar(fInset); } bool SkMagnifierImageFilter::onFilterImage(Proxy*, const SkBitmap& src, const Context&, SkBitmap* dst, SkIPoint* offset) const { if ((src.colorType() != kN32_SkColorType) || (fSrcRect.width() >= src.width()) || (fSrcRect.height() >= src.height())) { return false; } SkAutoLockPixels alp(src); SkASSERT(src.getPixels()); if (!src.getPixels() || src.width() <= 0 || src.height() <= 0) { return false; } if (!dst->tryAllocPixels(src.info())) { return false; } SkScalar inv_inset = fInset > 0 ? SkScalarInvert(fInset) : SK_Scalar1; SkScalar inv_x_zoom = fSrcRect.width() / src.width(); SkScalar inv_y_zoom = fSrcRect.height() / src.height(); SkColor* sptr = src.getAddr32(0, 0); SkColor* dptr = dst->getAddr32(0, 0); int width = src.width(), height = src.height(); for (int y = 0; y < height; ++y) { for (int x = 0; x < width; ++x) { SkScalar x_dist = SkMin32(x, width - x - 1) * inv_inset; SkScalar y_dist = SkMin32(y, height - y - 1) * inv_inset; SkScalar weight = 0; static const SkScalar kScalar2 = SkScalar(2); // To create a smooth curve at the corners, we need to work on // a square twice the size of the inset. if (x_dist < kScalar2 && y_dist < kScalar2) { x_dist = kScalar2 - x_dist; y_dist = kScalar2 - y_dist; SkScalar dist = SkScalarSqrt(SkScalarSquare(x_dist) + SkScalarSquare(y_dist)); dist = SkMaxScalar(kScalar2 - dist, 0); weight = SkMinScalar(SkScalarSquare(dist), SK_Scalar1); } else { SkScalar sqDist = SkMinScalar(SkScalarSquare(x_dist), SkScalarSquare(y_dist)); weight = SkMinScalar(sqDist, SK_Scalar1); } SkScalar x_interp = SkScalarMul(weight, (fSrcRect.x() + x * inv_x_zoom)) + (SK_Scalar1 - weight) * x; SkScalar y_interp = SkScalarMul(weight, (fSrcRect.y() + y * inv_y_zoom)) + (SK_Scalar1 - weight) * y; int x_val = SkPin32(SkScalarFloorToInt(x_interp), 0, width - 1); int y_val = SkPin32(SkScalarFloorToInt(y_interp), 0, height - 1); *dptr = sptr[y_val * width + x_val]; dptr++; } } return true; } #ifndef SK_IGNORE_TO_STRING void SkMagnifierImageFilter::toString(SkString* str) const { str->appendf("SkMagnifierImageFilter: ("); str->appendf("src: (%f,%f,%f,%f) ", fSrcRect.fLeft, fSrcRect.fTop, fSrcRect.fRight, fSrcRect.fBottom); str->appendf("inset: %f", fInset); str->append(")"); } #endif