/* * Copyright 2012 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkLightingImageFilter.h" #include "SkBitmap.h" #include "SkColorPriv.h" #include "SkFlattenableBuffers.h" #include "SkOrderedReadBuffer.h" #include "SkOrderedWriteBuffer.h" #include "SkTypes.h" #if SK_SUPPORT_GPU #include "effects/GrSingleTextureEffect.h" #include "gl/GrGLEffect.h" #include "GrEffect.h" #include "GrTBackendEffectFactory.h" class GrGLDiffuseLightingEffect; class GrGLSpecularLightingEffect; // For brevity typedef GrGLUniformManager::UniformHandle UniformHandle; static const UniformHandle kInvalidUniformHandle = GrGLUniformManager::kInvalidUniformHandle; #endif namespace { const SkScalar gOneThird = SkScalarInvert(SkIntToScalar(3)); const SkScalar gTwoThirds = SkScalarDiv(SkIntToScalar(2), SkIntToScalar(3)); const SkScalar gOneHalf = SkFloatToScalar(0.5f); const SkScalar gOneQuarter = SkFloatToScalar(0.25f); #if SK_SUPPORT_GPU void setUniformPoint3(const GrGLUniformManager& uman, UniformHandle uni, const SkPoint3& point) { GR_STATIC_ASSERT(sizeof(SkPoint3) == 3 * sizeof(GrGLfloat)); uman.set3fv(uni, 0, 1, &point.fX); } void setUniformNormal3(const GrGLUniformManager& uman, UniformHandle uni, const SkPoint3& point) { setUniformPoint3(uman, uni, SkPoint3(point.fX, point.fY, point.fZ)); } #endif // Shift matrix components to the left, as we advance pixels to the right. inline void shiftMatrixLeft(int m[9]) { m[0] = m[1]; m[3] = m[4]; m[6] = m[7]; m[1] = m[2]; m[4] = m[5]; m[7] = m[8]; } class DiffuseLightingType { public: DiffuseLightingType(SkScalar kd) : fKD(kd) {} SkPMColor light(const SkPoint3& normal, const SkPoint3& surfaceTolight, const SkPoint3& lightColor) const { SkScalar colorScale = SkScalarMul(fKD, normal.dot(surfaceTolight)); colorScale = SkScalarClampMax(colorScale, SK_Scalar1); SkPoint3 color(lightColor * colorScale); return SkPackARGB32(255, SkScalarFloorToInt(color.fX), SkScalarFloorToInt(color.fY), SkScalarFloorToInt(color.fZ)); } private: SkScalar fKD; }; class SpecularLightingType { public: SpecularLightingType(SkScalar ks, SkScalar shininess) : fKS(ks), fShininess(shininess) {} SkPMColor light(const SkPoint3& normal, const SkPoint3& surfaceTolight, const SkPoint3& lightColor) const { SkPoint3 halfDir(surfaceTolight); halfDir.fZ += SK_Scalar1; // eye position is always (0, 0, 1) halfDir.normalize(); SkScalar colorScale = SkScalarMul(fKS, SkScalarPow(normal.dot(halfDir), fShininess)); colorScale = SkScalarClampMax(colorScale, SK_Scalar1); SkPoint3 color(lightColor * colorScale); return SkPackARGB32(SkScalarFloorToInt(color.maxComponent()), SkScalarFloorToInt(color.fX), SkScalarFloorToInt(color.fY), SkScalarFloorToInt(color.fZ)); } private: SkScalar fKS; SkScalar fShininess; }; inline SkScalar sobel(int a, int b, int c, int d, int e, int f, SkScalar scale) { return SkScalarMul(SkIntToScalar(-a + b - 2 * c + 2 * d -e + f), scale); } inline SkPoint3 pointToNormal(SkScalar x, SkScalar y, SkScalar surfaceScale) { SkPoint3 vector(SkScalarMul(-x, surfaceScale), SkScalarMul(-y, surfaceScale), SK_Scalar1); vector.normalize(); return vector; } inline SkPoint3 topLeftNormal(int m[9], SkScalar surfaceScale) { return pointToNormal(sobel(0, 0, m[4], m[5], m[7], m[8], gTwoThirds), sobel(0, 0, m[4], m[7], m[5], m[8], gTwoThirds), surfaceScale); } inline SkPoint3 topNormal(int m[9], SkScalar surfaceScale) { return pointToNormal(sobel( 0, 0, m[3], m[5], m[6], m[8], gOneThird), sobel(m[3], m[6], m[4], m[7], m[5], m[8], gOneHalf), surfaceScale); } inline SkPoint3 topRightNormal(int m[9], SkScalar surfaceScale) { return pointToNormal(sobel( 0, 0, m[3], m[4], m[6], m[7], gTwoThirds), sobel(m[3], m[6], m[4], m[7], 0, 0, gTwoThirds), surfaceScale); } inline SkPoint3 leftNormal(int m[9], SkScalar surfaceScale) { return pointToNormal(sobel(m[1], m[2], m[4], m[5], m[7], m[8], gOneHalf), sobel( 0, 0, m[1], m[7], m[2], m[8], gOneThird), surfaceScale); } inline SkPoint3 interiorNormal(int m[9], SkScalar surfaceScale) { return pointToNormal(sobel(m[0], m[2], m[3], m[5], m[6], m[8], gOneQuarter), sobel(m[0], m[6], m[1], m[7], m[2], m[8], gOneQuarter), surfaceScale); } inline SkPoint3 rightNormal(int m[9], SkScalar surfaceScale) { return pointToNormal(sobel(m[0], m[1], m[3], m[4], m[6], m[7], gOneHalf), sobel(m[0], m[6], m[1], m[7], 0, 0, gOneThird), surfaceScale); } inline SkPoint3 bottomLeftNormal(int m[9], SkScalar surfaceScale) { return pointToNormal(sobel(m[1], m[2], m[4], m[5], 0, 0, gTwoThirds), sobel( 0, 0, m[1], m[4], m[2], m[5], gTwoThirds), surfaceScale); } inline SkPoint3 bottomNormal(int m[9], SkScalar surfaceScale) { return pointToNormal(sobel(m[0], m[2], m[3], m[5], 0, 0, gOneThird), sobel(m[0], m[3], m[1], m[4], m[2], m[5], gOneHalf), surfaceScale); } inline SkPoint3 bottomRightNormal(int m[9], SkScalar surfaceScale) { return pointToNormal(sobel(m[0], m[1], m[3], m[4], 0, 0, gTwoThirds), sobel(m[0], m[3], m[1], m[4], 0, 0, gTwoThirds), surfaceScale); } template void lightBitmap(const LightingType& lightingType, const SkLight* light, const SkBitmap& src, SkBitmap* dst, SkScalar surfaceScale) { const LightType* l = static_cast(light); int y = 0; { const SkPMColor* row1 = src.getAddr32(0, 0); const SkPMColor* row2 = src.getAddr32(0, 1); SkPMColor* dptr = dst->getAddr32(0, 0); int m[9]; int x = 0; m[4] = SkGetPackedA32(*row1++); m[5] = SkGetPackedA32(*row1++); m[7] = SkGetPackedA32(*row2++); m[8] = SkGetPackedA32(*row2++); SkPoint3 surfaceToLight = l->surfaceToLight(x, y, m[4], surfaceScale); *dptr++ = lightingType.light(topLeftNormal(m, surfaceScale), surfaceToLight, l->lightColor(surfaceToLight)); for (x = 1; x < src.width() - 1; ++x) { shiftMatrixLeft(m); m[5] = SkGetPackedA32(*row1++); m[8] = SkGetPackedA32(*row2++); surfaceToLight = l->surfaceToLight(x, 0, m[4], surfaceScale); *dptr++ = lightingType.light(topNormal(m, surfaceScale), surfaceToLight, l->lightColor(surfaceToLight)); } shiftMatrixLeft(m); surfaceToLight = l->surfaceToLight(x, y, m[4], surfaceScale); *dptr++ = lightingType.light(topRightNormal(m, surfaceScale), surfaceToLight, l->lightColor(surfaceToLight)); } for (++y; y < src.height() - 1; ++y) { const SkPMColor* row0 = src.getAddr32(0, y - 1); const SkPMColor* row1 = src.getAddr32(0, y); const SkPMColor* row2 = src.getAddr32(0, y + 1); SkPMColor* dptr = dst->getAddr32(0, y); int m[9]; int x = 0; m[1] = SkGetPackedA32(*row0++); m[2] = SkGetPackedA32(*row0++); m[4] = SkGetPackedA32(*row1++); m[5] = SkGetPackedA32(*row1++); m[7] = SkGetPackedA32(*row2++); m[8] = SkGetPackedA32(*row2++); SkPoint3 surfaceToLight = l->surfaceToLight(x, y, m[4], surfaceScale); *dptr++ = lightingType.light(leftNormal(m, surfaceScale), surfaceToLight, l->lightColor(surfaceToLight)); for (x = 1; x < src.width() - 1; ++x) { shiftMatrixLeft(m); m[2] = SkGetPackedA32(*row0++); m[5] = SkGetPackedA32(*row1++); m[8] = SkGetPackedA32(*row2++); surfaceToLight = l->surfaceToLight(x, y, m[4], surfaceScale); *dptr++ = lightingType.light(interiorNormal(m, surfaceScale), surfaceToLight, l->lightColor(surfaceToLight)); } shiftMatrixLeft(m); surfaceToLight = l->surfaceToLight(x, y, m[4], surfaceScale); *dptr++ = lightingType.light(rightNormal(m, surfaceScale), surfaceToLight, l->lightColor(surfaceToLight)); } { const SkPMColor* row0 = src.getAddr32(0, src.height() - 2); const SkPMColor* row1 = src.getAddr32(0, src.height() - 1); int x = 0; SkPMColor* dptr = dst->getAddr32(0, src.height() - 1); int m[9]; m[1] = SkGetPackedA32(*row0++); m[2] = SkGetPackedA32(*row0++); m[4] = SkGetPackedA32(*row1++); m[5] = SkGetPackedA32(*row1++); SkPoint3 surfaceToLight = l->surfaceToLight(x, y, m[4], surfaceScale); *dptr++ = lightingType.light(bottomLeftNormal(m, surfaceScale), surfaceToLight, l->lightColor(surfaceToLight)); for (x = 1; x < src.width() - 1; ++x) { shiftMatrixLeft(m); m[2] = SkGetPackedA32(*row0++); m[5] = SkGetPackedA32(*row1++); surfaceToLight = l->surfaceToLight(x, y, m[4], surfaceScale); *dptr++ = lightingType.light(bottomNormal(m, surfaceScale), surfaceToLight, l->lightColor(surfaceToLight)); } shiftMatrixLeft(m); surfaceToLight = l->surfaceToLight(x, y, m[4], surfaceScale); *dptr++ = lightingType.light(bottomRightNormal(m, surfaceScale), surfaceToLight, l->lightColor(surfaceToLight)); } } SkPoint3 readPoint3(SkFlattenableReadBuffer& buffer) { SkPoint3 point; point.fX = buffer.readScalar(); point.fY = buffer.readScalar(); point.fZ = buffer.readScalar(); return point; }; void writePoint3(const SkPoint3& point, SkFlattenableWriteBuffer& buffer) { buffer.writeScalar(point.fX); buffer.writeScalar(point.fY); buffer.writeScalar(point.fZ); }; class SkDiffuseLightingImageFilter : public SkLightingImageFilter { public: SkDiffuseLightingImageFilter(SkLight* light, SkScalar surfaceScale, SkScalar kd, SkImageFilter* input); SK_DECLARE_PUBLIC_FLATTENABLE_DESERIALIZATION_PROCS(SkDiffuseLightingImageFilter) virtual bool asNewEffect(GrEffect** effect, GrTexture*) const SK_OVERRIDE; SkScalar kd() const { return fKD; } protected: explicit SkDiffuseLightingImageFilter(SkFlattenableReadBuffer& buffer); virtual void flatten(SkFlattenableWriteBuffer& buffer) const SK_OVERRIDE; virtual bool onFilterImage(Proxy*, const SkBitmap& src, const SkMatrix&, SkBitmap* result, SkIPoint* offset) SK_OVERRIDE; private: typedef SkLightingImageFilter INHERITED; SkScalar fKD; }; class SkSpecularLightingImageFilter : public SkLightingImageFilter { public: SkSpecularLightingImageFilter(SkLight* light, SkScalar surfaceScale, SkScalar ks, SkScalar shininess, SkImageFilter* input); SK_DECLARE_PUBLIC_FLATTENABLE_DESERIALIZATION_PROCS(SkSpecularLightingImageFilter) virtual bool asNewEffect(GrEffect** effect, GrTexture*) const SK_OVERRIDE; SkScalar ks() const { return fKS; } SkScalar shininess() const { return fShininess; } protected: explicit SkSpecularLightingImageFilter(SkFlattenableReadBuffer& buffer); virtual void flatten(SkFlattenableWriteBuffer& buffer) const SK_OVERRIDE; virtual bool onFilterImage(Proxy*, const SkBitmap& src, const SkMatrix&, SkBitmap* result, SkIPoint* offset) SK_OVERRIDE; private: typedef SkLightingImageFilter INHERITED; SkScalar fKS; SkScalar fShininess; }; #if SK_SUPPORT_GPU class GrLightingEffect : public GrSingleTextureEffect { public: GrLightingEffect(GrTexture* texture, const SkLight* light, SkScalar surfaceScale); virtual ~GrLightingEffect(); virtual bool isEqual(const GrEffect&) const SK_OVERRIDE; const SkLight* light() const { return fLight; } SkScalar surfaceScale() const { return fSurfaceScale; } private: typedef GrSingleTextureEffect INHERITED; const SkLight* fLight; SkScalar fSurfaceScale; }; class GrDiffuseLightingEffect : public GrLightingEffect { public: GrDiffuseLightingEffect(GrTexture* texture, const SkLight* light, SkScalar surfaceScale, SkScalar kd); static const char* Name() { return "DiffuseLighting"; } typedef GrGLDiffuseLightingEffect GLEffect; virtual const GrBackendEffectFactory& getFactory() const SK_OVERRIDE; virtual bool isEqual(const GrEffect&) const SK_OVERRIDE; SkScalar kd() const { return fKD; } private: GR_DECLARE_EFFECT_TEST; typedef GrLightingEffect INHERITED; SkScalar fKD; }; class GrSpecularLightingEffect : public GrLightingEffect { public: GrSpecularLightingEffect(GrTexture* texture, const SkLight* light, SkScalar surfaceScale, SkScalar ks, SkScalar shininess); static const char* Name() { return "SpecularLighting"; } typedef GrGLSpecularLightingEffect GLEffect; virtual const GrBackendEffectFactory& getFactory() const SK_OVERRIDE; virtual bool isEqual(const GrEffect&) const SK_OVERRIDE; SkScalar ks() const { return fKS; } SkScalar shininess() const { return fShininess; } private: GR_DECLARE_EFFECT_TEST; typedef GrLightingEffect INHERITED; SkScalar fKS; SkScalar fShininess; }; /////////////////////////////////////////////////////////////////////////////// class GrGLLight { public: virtual ~GrGLLight() {} /** * This is called by GrGLLightingEffect::emitCode() before either of the two virtual functions * below. It adds a vec3f uniform visible in the FS that represents the constant light color. */ void emitLightColorUniform(GrGLShaderBuilder*); /** * These two functions are called from GrGLLightingEffect's emitCode() function. * emitSurfaceToLight places an expression in param out that is the vector from the surface to * the light. The expression will be used in the FS. emitLightColor writes an expression into * the FS that is the color of the light. Either function may add functions and/or uniforms to * the FS. The default of emitLightColor appends the name of the constant light color uniform * and so this function only needs to be overridden if the light color varies spatially. */ virtual void emitSurfaceToLight(GrGLShaderBuilder*, SkString* out, const char* z) = 0; virtual void emitLightColor(GrGLShaderBuilder*, const char *surfaceToLight); // This is called from GrGLLightingEffect's setData(). Subclasses of GrGLLight must call // INHERITED::setData(). virtual void setData(const GrGLUniformManager&, const SkLight* light) const; protected: /** * Gets the constant light color uniform. Subclasses can use this in their emitLightColor * function. */ UniformHandle lightColorUni() const { return fColorUni; } private: UniformHandle fColorUni; typedef SkRefCnt INHERITED; }; /////////////////////////////////////////////////////////////////////////////// class GrGLDistantLight : public GrGLLight { public: virtual ~GrGLDistantLight() {} virtual void setData(const GrGLUniformManager&, const SkLight* light) const SK_OVERRIDE; virtual void emitSurfaceToLight(GrGLShaderBuilder*, SkString* out, const char* z) SK_OVERRIDE; private: typedef GrGLLight INHERITED; UniformHandle fDirectionUni; }; /////////////////////////////////////////////////////////////////////////////// class GrGLPointLight : public GrGLLight { public: virtual ~GrGLPointLight() {} virtual void setData(const GrGLUniformManager&, const SkLight* light) const SK_OVERRIDE; virtual void emitSurfaceToLight(GrGLShaderBuilder*, SkString* out, const char* z) SK_OVERRIDE; private: typedef GrGLLight INHERITED; SkPoint3 fLocation; UniformHandle fLocationUni; }; /////////////////////////////////////////////////////////////////////////////// class GrGLSpotLight : public GrGLLight { public: virtual ~GrGLSpotLight() {} virtual void setData(const GrGLUniformManager&, const SkLight* light) const SK_OVERRIDE; virtual void emitSurfaceToLight(GrGLShaderBuilder*, SkString* out, const char* z) SK_OVERRIDE; virtual void emitLightColor(GrGLShaderBuilder*, const char *surfaceToLight) SK_OVERRIDE; private: typedef GrGLLight INHERITED; SkString fLightColorFunc; UniformHandle fLocationUni; UniformHandle fExponentUni; UniformHandle fCosOuterConeAngleUni; UniformHandle fCosInnerConeAngleUni; UniformHandle fConeScaleUni; UniformHandle fSUni; }; #else class GrGLLight; #endif }; /////////////////////////////////////////////////////////////////////////////// class SkLight : public SkFlattenable { public: SK_DECLARE_INST_COUNT(SkLight) enum LightType { kDistant_LightType, kPoint_LightType, kSpot_LightType, }; virtual LightType type() const = 0; const SkPoint3& color() const { return fColor; } virtual GrGLLight* createGLLight() const = 0; virtual bool isEqual(const SkLight& other) const { return fColor == other.fColor; } protected: SkLight(SkColor color) : fColor(SkIntToScalar(SkColorGetR(color)), SkIntToScalar(SkColorGetG(color)), SkIntToScalar(SkColorGetB(color))) {} SkLight(SkFlattenableReadBuffer& buffer) : INHERITED(buffer) { fColor = readPoint3(buffer); } virtual void flatten(SkFlattenableWriteBuffer& buffer) const SK_OVERRIDE { INHERITED::flatten(buffer); writePoint3(fColor, buffer); } private: typedef SkFlattenable INHERITED; SkPoint3 fColor; }; SK_DEFINE_INST_COUNT(SkLight) /////////////////////////////////////////////////////////////////////////////// class SkDistantLight : public SkLight { public: SkDistantLight(const SkPoint3& direction, SkColor color) : INHERITED(color), fDirection(direction) { } SkPoint3 surfaceToLight(int x, int y, int z, SkScalar surfaceScale) const { return fDirection; }; SkPoint3 lightColor(const SkPoint3&) const { return color(); } virtual LightType type() const { return kDistant_LightType; } const SkPoint3& direction() const { return fDirection; } virtual GrGLLight* createGLLight() const SK_OVERRIDE { #if SK_SUPPORT_GPU return SkNEW(GrGLDistantLight); #else SkDEBUGFAIL("Should not call in GPU-less build"); return NULL; #endif } virtual bool isEqual(const SkLight& other) const SK_OVERRIDE { if (other.type() != kDistant_LightType) { return false; } const SkDistantLight& o = static_cast(other); return INHERITED::isEqual(other) && fDirection == o.fDirection; } SK_DECLARE_PUBLIC_FLATTENABLE_DESERIALIZATION_PROCS(SkDistantLight) protected: SkDistantLight(SkFlattenableReadBuffer& buffer) : INHERITED(buffer) { fDirection = readPoint3(buffer); } virtual void flatten(SkFlattenableWriteBuffer& buffer) const { INHERITED::flatten(buffer); writePoint3(fDirection, buffer); } private: typedef SkLight INHERITED; SkPoint3 fDirection; }; /////////////////////////////////////////////////////////////////////////////// class SkPointLight : public SkLight { public: SkPointLight(const SkPoint3& location, SkColor color) : INHERITED(color), fLocation(location) {} SkPoint3 surfaceToLight(int x, int y, int z, SkScalar surfaceScale) const { SkPoint3 direction(fLocation.fX - SkIntToScalar(x), fLocation.fY - SkIntToScalar(y), fLocation.fZ - SkScalarMul(SkIntToScalar(z), surfaceScale)); direction.normalize(); return direction; }; SkPoint3 lightColor(const SkPoint3&) const { return color(); } virtual LightType type() const { return kPoint_LightType; } const SkPoint3& location() const { return fLocation; } virtual GrGLLight* createGLLight() const SK_OVERRIDE { #if SK_SUPPORT_GPU return SkNEW(GrGLPointLight); #else SkDEBUGFAIL("Should not call in GPU-less build"); return NULL; #endif } virtual bool isEqual(const SkLight& other) const SK_OVERRIDE { if (other.type() != kPoint_LightType) { return false; } const SkPointLight& o = static_cast(other); return INHERITED::isEqual(other) && fLocation == o.fLocation; } SK_DECLARE_PUBLIC_FLATTENABLE_DESERIALIZATION_PROCS(SkPointLight) protected: SkPointLight(SkFlattenableReadBuffer& buffer) : INHERITED(buffer) { fLocation = readPoint3(buffer); } virtual void flatten(SkFlattenableWriteBuffer& buffer) const { INHERITED::flatten(buffer); writePoint3(fLocation, buffer); } private: typedef SkLight INHERITED; SkPoint3 fLocation; }; /////////////////////////////////////////////////////////////////////////////// class SkSpotLight : public SkLight { public: SkSpotLight(const SkPoint3& location, const SkPoint3& target, SkScalar specularExponent, SkScalar cutoffAngle, SkColor color) : INHERITED(color), fLocation(location), fTarget(target), fSpecularExponent(specularExponent) { fS = target - location; fS.normalize(); fCosOuterConeAngle = SkScalarCos(SkDegreesToRadians(cutoffAngle)); const SkScalar antiAliasThreshold = SkFloatToScalar(0.016f); fCosInnerConeAngle = fCosOuterConeAngle + antiAliasThreshold; fConeScale = SkScalarInvert(antiAliasThreshold); } SkPoint3 surfaceToLight(int x, int y, int z, SkScalar surfaceScale) const { SkPoint3 direction(fLocation.fX - SkIntToScalar(x), fLocation.fY - SkIntToScalar(y), fLocation.fZ - SkScalarMul(SkIntToScalar(z), surfaceScale)); direction.normalize(); return direction; }; SkPoint3 lightColor(const SkPoint3& surfaceToLight) const { SkScalar cosAngle = -surfaceToLight.dot(fS); if (cosAngle < fCosOuterConeAngle) { return SkPoint3(0, 0, 0); } SkScalar scale = SkScalarPow(cosAngle, fSpecularExponent); if (cosAngle < fCosInnerConeAngle) { scale = SkScalarMul(scale, cosAngle - fCosOuterConeAngle); return color() * SkScalarMul(scale, fConeScale); } return color() * scale; } virtual GrGLLight* createGLLight() const SK_OVERRIDE { #if SK_SUPPORT_GPU return SkNEW(GrGLSpotLight); #else SkDEBUGFAIL("Should not call in GPU-less build"); return NULL; #endif } virtual LightType type() const { return kSpot_LightType; } const SkPoint3& location() const { return fLocation; } const SkPoint3& target() const { return fTarget; } SkScalar specularExponent() const { return fSpecularExponent; } SkScalar cosInnerConeAngle() const { return fCosInnerConeAngle; } SkScalar cosOuterConeAngle() const { return fCosOuterConeAngle; } SkScalar coneScale() const { return fConeScale; } const SkPoint3& s() const { return fS; } SK_DECLARE_PUBLIC_FLATTENABLE_DESERIALIZATION_PROCS(SkSpotLight) protected: SkSpotLight(SkFlattenableReadBuffer& buffer) : INHERITED(buffer) { fLocation = readPoint3(buffer); fTarget = readPoint3(buffer); fSpecularExponent = buffer.readScalar(); fCosOuterConeAngle = buffer.readScalar(); fCosInnerConeAngle = buffer.readScalar(); fConeScale = buffer.readScalar(); fS = readPoint3(buffer); } virtual void flatten(SkFlattenableWriteBuffer& buffer) const { INHERITED::flatten(buffer); writePoint3(fLocation, buffer); writePoint3(fTarget, buffer); buffer.writeScalar(fSpecularExponent); buffer.writeScalar(fCosOuterConeAngle); buffer.writeScalar(fCosInnerConeAngle); buffer.writeScalar(fConeScale); writePoint3(fS, buffer); } virtual bool isEqual(const SkLight& other) const SK_OVERRIDE { if (other.type() != kSpot_LightType) { return false; } const SkSpotLight& o = static_cast(other); return INHERITED::isEqual(other) && fLocation == o.fLocation && fTarget == o.fTarget && fSpecularExponent == o.fSpecularExponent && fCosOuterConeAngle == o.fCosOuterConeAngle; } private: typedef SkLight INHERITED; SkPoint3 fLocation; SkPoint3 fTarget; SkScalar fSpecularExponent; SkScalar fCosOuterConeAngle; SkScalar fCosInnerConeAngle; SkScalar fConeScale; SkPoint3 fS; }; /////////////////////////////////////////////////////////////////////////////// SkLightingImageFilter::SkLightingImageFilter(SkLight* light, SkScalar surfaceScale, SkImageFilter* input) : INHERITED(input), fLight(light), fSurfaceScale(SkScalarDiv(surfaceScale, SkIntToScalar(255))) { SkASSERT(fLight); // our caller knows that we take ownership of the light, so we don't // need to call ref() here. } SkImageFilter* SkLightingImageFilter::CreateDistantLitDiffuse( const SkPoint3& direction, SkColor lightColor, SkScalar surfaceScale, SkScalar kd, SkImageFilter* input) { return SkNEW_ARGS(SkDiffuseLightingImageFilter, (SkNEW_ARGS(SkDistantLight, (direction, lightColor)), surfaceScale, kd, input)); } SkImageFilter* SkLightingImageFilter::CreatePointLitDiffuse( const SkPoint3& location, SkColor lightColor, SkScalar surfaceScale, SkScalar kd, SkImageFilter* input) { return SkNEW_ARGS(SkDiffuseLightingImageFilter, (SkNEW_ARGS(SkPointLight, (location, lightColor)), surfaceScale, kd, input)); } SkImageFilter* SkLightingImageFilter::CreateSpotLitDiffuse( const SkPoint3& location, const SkPoint3& target, SkScalar specularExponent, SkScalar cutoffAngle, SkColor lightColor, SkScalar surfaceScale, SkScalar kd, SkImageFilter* input) { return SkNEW_ARGS(SkDiffuseLightingImageFilter, (SkNEW_ARGS(SkSpotLight, (location, target, specularExponent, cutoffAngle, lightColor)), surfaceScale, kd, input)); } SkImageFilter* SkLightingImageFilter::CreateDistantLitSpecular( const SkPoint3& direction, SkColor lightColor, SkScalar surfaceScale, SkScalar ks, SkScalar shininess, SkImageFilter* input) { return SkNEW_ARGS(SkSpecularLightingImageFilter, (SkNEW_ARGS(SkDistantLight, (direction, lightColor)), surfaceScale, ks, shininess, input)); } SkImageFilter* SkLightingImageFilter::CreatePointLitSpecular( const SkPoint3& location, SkColor lightColor, SkScalar surfaceScale, SkScalar ks, SkScalar shininess, SkImageFilter* input) { return SkNEW_ARGS(SkSpecularLightingImageFilter, (SkNEW_ARGS(SkPointLight, (location, lightColor)), surfaceScale, ks, shininess, input)); } SkImageFilter* SkLightingImageFilter::CreateSpotLitSpecular( const SkPoint3& location, const SkPoint3& target, SkScalar specularExponent, SkScalar cutoffAngle, SkColor lightColor, SkScalar surfaceScale, SkScalar ks, SkScalar shininess, SkImageFilter* input) { return SkNEW_ARGS(SkSpecularLightingImageFilter, (SkNEW_ARGS(SkSpotLight, (location, target, specularExponent, cutoffAngle, lightColor)), surfaceScale, ks, shininess, input)); } SkLightingImageFilter::~SkLightingImageFilter() { fLight->unref(); } SkLightingImageFilter::SkLightingImageFilter(SkFlattenableReadBuffer& buffer) : INHERITED(buffer) { fLight = buffer.readFlattenableT(); fSurfaceScale = buffer.readScalar(); } void SkLightingImageFilter::flatten(SkFlattenableWriteBuffer& buffer) const { this->INHERITED::flatten(buffer); buffer.writeFlattenable(fLight); buffer.writeScalar(fSurfaceScale); } /////////////////////////////////////////////////////////////////////////////// SkDiffuseLightingImageFilter::SkDiffuseLightingImageFilter(SkLight* light, SkScalar surfaceScale, SkScalar kd, SkImageFilter* input) : SkLightingImageFilter(light, surfaceScale, input), fKD(kd) { } SkDiffuseLightingImageFilter::SkDiffuseLightingImageFilter(SkFlattenableReadBuffer& buffer) : INHERITED(buffer) { fKD = buffer.readScalar(); } void SkDiffuseLightingImageFilter::flatten(SkFlattenableWriteBuffer& buffer) const { this->INHERITED::flatten(buffer); buffer.writeScalar(fKD); } bool SkDiffuseLightingImageFilter::onFilterImage(Proxy*, const SkBitmap& src, const SkMatrix&, SkBitmap* dst, SkIPoint*) { if (src.config() != SkBitmap::kARGB_8888_Config) { return false; } SkAutoLockPixels alp(src); if (!src.getPixels()) { return false; } if (src.width() < 2 || src.height() < 2) { return false; } dst->setConfig(src.config(), src.width(), src.height()); dst->allocPixels(); DiffuseLightingType lightingType(fKD); switch (light()->type()) { case SkLight::kDistant_LightType: lightBitmap(lightingType, light(), src, dst, surfaceScale()); break; case SkLight::kPoint_LightType: lightBitmap(lightingType, light(), src, dst, surfaceScale()); break; case SkLight::kSpot_LightType: lightBitmap(lightingType, light(), src, dst, surfaceScale()); break; } return true; } bool SkDiffuseLightingImageFilter::asNewEffect(GrEffect** effect, GrTexture* texture) const { #if SK_SUPPORT_GPU if (effect) { SkScalar scale = SkScalarMul(surfaceScale(), SkIntToScalar(255)); *effect = SkNEW_ARGS(GrDiffuseLightingEffect, (texture, light(), scale, kd())); } return true; #else SkDEBUGFAIL("Should not call in GPU-less build"); return false; #endif } /////////////////////////////////////////////////////////////////////////////// SkSpecularLightingImageFilter::SkSpecularLightingImageFilter(SkLight* light, SkScalar surfaceScale, SkScalar ks, SkScalar shininess, SkImageFilter* input) : SkLightingImageFilter(light, surfaceScale, input), fKS(ks), fShininess(shininess) { } SkSpecularLightingImageFilter::SkSpecularLightingImageFilter(SkFlattenableReadBuffer& buffer) : INHERITED(buffer) { fKS = buffer.readScalar(); fShininess = buffer.readScalar(); } void SkSpecularLightingImageFilter::flatten(SkFlattenableWriteBuffer& buffer) const { this->INHERITED::flatten(buffer); buffer.writeScalar(fKS); buffer.writeScalar(fShininess); } bool SkSpecularLightingImageFilter::onFilterImage(Proxy*, const SkBitmap& src, const SkMatrix&, SkBitmap* dst, SkIPoint*) { if (src.config() != SkBitmap::kARGB_8888_Config) { return false; } SkAutoLockPixels alp(src); if (!src.getPixels()) { return false; } if (src.width() < 2 || src.height() < 2) { return false; } dst->setConfig(src.config(), src.width(), src.height()); dst->allocPixels(); SpecularLightingType lightingType(fKS, fShininess); switch (light()->type()) { case SkLight::kDistant_LightType: lightBitmap(lightingType, light(), src, dst, surfaceScale()); break; case SkLight::kPoint_LightType: lightBitmap(lightingType, light(), src, dst, surfaceScale()); break; case SkLight::kSpot_LightType: lightBitmap(lightingType, light(), src, dst, surfaceScale()); break; } return true; } bool SkSpecularLightingImageFilter::asNewEffect(GrEffect** effect, GrTexture* texture) const { #if SK_SUPPORT_GPU if (effect) { SkScalar scale = SkScalarMul(surfaceScale(), SkIntToScalar(255)); *effect = SkNEW_ARGS(GrSpecularLightingEffect, (texture, light(), scale, ks(), shininess())); } return true; #else SkDEBUGFAIL("Should not call in GPU-less build"); return false; #endif } /////////////////////////////////////////////////////////////////////////////// #if SK_SUPPORT_GPU namespace { SkPoint3 random_point3(SkRandom* random) { return SkPoint3(SkScalarToFloat(random->nextSScalar1()), SkScalarToFloat(random->nextSScalar1()), SkScalarToFloat(random->nextSScalar1())); } SkLight* create_random_light(SkRandom* random) { int type = random->nextULessThan(3); switch (type) { case 0: { return SkNEW_ARGS(SkDistantLight, (random_point3(random), random->nextU())); } case 1: { return SkNEW_ARGS(SkPointLight, (random_point3(random), random->nextU())); } case 2: { return SkNEW_ARGS(SkSpotLight, (random_point3(random), random_point3(random), random->nextUScalar1(), random->nextUScalar1(), random->nextU())); } default: GrCrash(); return NULL; } } } class GrGLLightingEffect : public GrGLEffect { public: GrGLLightingEffect(const GrBackendEffectFactory& factory, const GrEffect& effect); virtual ~GrGLLightingEffect(); virtual void emitCode(GrGLShaderBuilder*, const GrEffectStage&, EffectKey, const char* vertexCoords, const char* outputColor, const char* inputColor, const TextureSamplerArray&) SK_OVERRIDE; static inline EffectKey GenKey(const GrEffectStage&, const GrGLCaps&); /** * Subclasses of GrGLLightingEffect must call INHERITED::setData(); */ virtual void setData(const GrGLUniformManager&, const GrEffectStage&) SK_OVERRIDE; protected: virtual void emitLightFunc(GrGLShaderBuilder*, SkString* funcName) = 0; private: typedef GrGLEffect INHERITED; UniformHandle fImageIncrementUni; UniformHandle fSurfaceScaleUni; GrGLLight* fLight; }; /////////////////////////////////////////////////////////////////////////////// class GrGLDiffuseLightingEffect : public GrGLLightingEffect { public: GrGLDiffuseLightingEffect(const GrBackendEffectFactory& factory, const GrEffect& effect); virtual void emitLightFunc(GrGLShaderBuilder*, SkString* funcName) SK_OVERRIDE; virtual void setData(const GrGLUniformManager&, const GrEffectStage&) SK_OVERRIDE; private: typedef GrGLLightingEffect INHERITED; UniformHandle fKDUni; }; /////////////////////////////////////////////////////////////////////////////// class GrGLSpecularLightingEffect : public GrGLLightingEffect { public: GrGLSpecularLightingEffect(const GrBackendEffectFactory& factory, const GrEffect& effect); virtual void emitLightFunc(GrGLShaderBuilder*, SkString* funcName) SK_OVERRIDE; virtual void setData(const GrGLUniformManager&, const GrEffectStage&) SK_OVERRIDE; private: typedef GrGLLightingEffect INHERITED; UniformHandle fKSUni; UniformHandle fShininessUni; }; /////////////////////////////////////////////////////////////////////////////// GrLightingEffect::GrLightingEffect(GrTexture* texture, const SkLight* light, SkScalar surfaceScale) : GrSingleTextureEffect(texture) , fLight(light) , fSurfaceScale(surfaceScale) { fLight->ref(); } GrLightingEffect::~GrLightingEffect() { fLight->unref(); } bool GrLightingEffect::isEqual(const GrEffect& sBase) const { const GrLightingEffect& s = static_cast(sBase); return INHERITED::isEqual(sBase) && fLight->isEqual(*s.fLight) && fSurfaceScale == s.fSurfaceScale; } /////////////////////////////////////////////////////////////////////////////// GrDiffuseLightingEffect::GrDiffuseLightingEffect(GrTexture* texture, const SkLight* light, SkScalar surfaceScale, SkScalar kd) : INHERITED(texture, light, surfaceScale), fKD(kd) { } const GrBackendEffectFactory& GrDiffuseLightingEffect::getFactory() const { return GrTBackendEffectFactory::getInstance(); } bool GrDiffuseLightingEffect::isEqual(const GrEffect& sBase) const { const GrDiffuseLightingEffect& s = static_cast(sBase); return INHERITED::isEqual(sBase) && this->kd() == s.kd(); } GR_DEFINE_EFFECT_TEST(GrDiffuseLightingEffect); GrEffect* GrDiffuseLightingEffect::TestCreate(SkRandom* random, GrContext* context, GrTexture* textures[]) { SkScalar surfaceScale = random->nextSScalar1(); SkScalar kd = random->nextUScalar1(); SkAutoTUnref light(create_random_light(random)); return SkNEW_ARGS(GrDiffuseLightingEffect, (textures[GrEffectUnitTest::kAlphaTextureIdx], light, surfaceScale, kd)); } /////////////////////////////////////////////////////////////////////////////// GrGLLightingEffect::GrGLLightingEffect(const GrBackendEffectFactory& factory, const GrEffect& effect) : INHERITED(factory) , fImageIncrementUni(kInvalidUniformHandle) , fSurfaceScaleUni(kInvalidUniformHandle) { const GrLightingEffect& m = static_cast(effect); fLight = m.light()->createGLLight(); } GrGLLightingEffect::~GrGLLightingEffect() { delete fLight; } void GrGLLightingEffect::emitCode(GrGLShaderBuilder* builder, const GrEffectStage&, EffectKey, const char* vertexCoords, const char* outputColor, const char* inputColor, const TextureSamplerArray& samplers) { fImageIncrementUni = builder->addUniform(GrGLShaderBuilder::kFragment_ShaderType, kVec2f_GrSLType, "ImageIncrement"); fSurfaceScaleUni = builder->addUniform(GrGLShaderBuilder::kFragment_ShaderType, kFloat_GrSLType, "SurfaceScale"); fLight->emitLightColorUniform(builder); SkString* code = &builder->fFSCode; SkString lightFunc; this->emitLightFunc(builder, &lightFunc); static const GrGLShaderVar gSobelArgs[] = { GrGLShaderVar("a", kFloat_GrSLType), GrGLShaderVar("b", kFloat_GrSLType), GrGLShaderVar("c", kFloat_GrSLType), GrGLShaderVar("d", kFloat_GrSLType), GrGLShaderVar("e", kFloat_GrSLType), GrGLShaderVar("f", kFloat_GrSLType), GrGLShaderVar("scale", kFloat_GrSLType), }; SkString sobelFuncName; builder->emitFunction(GrGLShaderBuilder::kFragment_ShaderType, kFloat_GrSLType, "sobel", SK_ARRAY_COUNT(gSobelArgs), gSobelArgs, "\treturn (-a + b - 2.0 * c + 2.0 * d -e + f) * scale;\n", &sobelFuncName); static const GrGLShaderVar gPointToNormalArgs[] = { GrGLShaderVar("x", kFloat_GrSLType), GrGLShaderVar("y", kFloat_GrSLType), GrGLShaderVar("scale", kFloat_GrSLType), }; SkString pointToNormalName; builder->emitFunction(GrGLShaderBuilder::kFragment_ShaderType, kVec3f_GrSLType, "pointToNormal", SK_ARRAY_COUNT(gPointToNormalArgs), gPointToNormalArgs, "\treturn normalize(vec3(-x * scale, y * scale, 1));\n", &pointToNormalName); static const GrGLShaderVar gInteriorNormalArgs[] = { GrGLShaderVar("m", kFloat_GrSLType, 9), GrGLShaderVar("surfaceScale", kFloat_GrSLType), }; SkString interiorNormalBody; interiorNormalBody.appendf("\treturn %s(%s(m[0], m[2], m[3], m[5], m[6], m[8], 0.25),\n" "\t %s(m[0], m[6], m[1], m[7], m[2], m[8], 0.25),\n" "\t surfaceScale);\n", pointToNormalName.c_str(), sobelFuncName.c_str(), sobelFuncName.c_str()); SkString interiorNormalName; builder->emitFunction(GrGLShaderBuilder::kFragment_ShaderType, kVec3f_GrSLType, "interiorNormal", SK_ARRAY_COUNT(gInteriorNormalArgs), gInteriorNormalArgs, interiorNormalBody.c_str(), &interiorNormalName); code->appendf("\t\tvec2 coord = %s;\n", builder->defaultTexCoordsName()); code->appendf("\t\tfloat m[9];\n"); const char* imgInc = builder->getUniformCStr(fImageIncrementUni); const char* surfScale = builder->getUniformCStr(fSurfaceScaleUni); int index = 0; for (int dy = -1; dy <= 1; dy++) { for (int dx = -1; dx <= 1; dx++) { SkString texCoords; texCoords.appendf("coord + vec2(%d, %d) * %s", dx, dy, imgInc); code->appendf("\t\tm[%d] = ", index++); builder->appendTextureLookup(code, samplers[0], texCoords.c_str()); code->appendf(".a;\n"); } } code->appendf("\t\tvec3 surfaceToLight = "); SkString arg; arg.appendf("%s * m[4]", surfScale); fLight->emitSurfaceToLight(builder, code, arg.c_str()); code->append(";\n"); code->appendf("\t\t%s = %s(%s(m, %s), surfaceToLight, ", outputColor, lightFunc.c_str(), interiorNormalName.c_str(), surfScale); fLight->emitLightColor(builder, "surfaceToLight"); code->append(");\n"); GrGLSLMulVarBy4f(code, 2, outputColor, inputColor); } GrGLEffect::EffectKey GrGLLightingEffect::GenKey(const GrEffectStage& s, const GrGLCaps& caps) { return static_cast(*s.getEffect()).light()->type(); } void GrGLLightingEffect::setData(const GrGLUniformManager& uman, const GrEffectStage& stage) { const GrLightingEffect& effect =static_cast(*stage.getEffect()); GrTexture* texture = effect.texture(0); float ySign = texture->origin() == GrSurface::kTopLeft_Origin ? -1.0f : 1.0f; uman.set2f(fImageIncrementUni, 1.0f / texture->width(), ySign / texture->height()); uman.set1f(fSurfaceScaleUni, effect.surfaceScale()); fLight->setData(uman, effect.light()); } /////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// GrGLDiffuseLightingEffect::GrGLDiffuseLightingEffect(const GrBackendEffectFactory& factory, const GrEffect& effect) : INHERITED(factory, effect) , fKDUni(kInvalidUniformHandle) { } void GrGLDiffuseLightingEffect::emitLightFunc(GrGLShaderBuilder* builder, SkString* funcName) { const char* kd; fKDUni = builder->addUniform(GrGLShaderBuilder::kFragment_ShaderType, kFloat_GrSLType, "KD", &kd); static const GrGLShaderVar gLightArgs[] = { GrGLShaderVar("normal", kVec3f_GrSLType), GrGLShaderVar("surfaceToLight", kVec3f_GrSLType), GrGLShaderVar("lightColor", kVec3f_GrSLType) }; SkString lightBody; lightBody.appendf("\tfloat colorScale = %s * dot(normal, surfaceToLight);\n", kd); lightBody.appendf("\treturn vec4(lightColor * clamp(colorScale, 0.0, 1.0), 1.0);\n"); builder->emitFunction(GrGLShaderBuilder::kFragment_ShaderType, kVec4f_GrSLType, "light", SK_ARRAY_COUNT(gLightArgs), gLightArgs, lightBody.c_str(), funcName); } void GrGLDiffuseLightingEffect::setData(const GrGLUniformManager& uman, const GrEffectStage& stage) { INHERITED::setData(uman, stage); const GrDiffuseLightingEffect& effect = static_cast(*stage.getEffect()); uman.set1f(fKDUni, effect.kd()); } /////////////////////////////////////////////////////////////////////////////// GrSpecularLightingEffect::GrSpecularLightingEffect(GrTexture* texture, const SkLight* light, SkScalar surfaceScale, SkScalar ks, SkScalar shininess) : INHERITED(texture, light, surfaceScale), fKS(ks), fShininess(shininess) { } const GrBackendEffectFactory& GrSpecularLightingEffect::getFactory() const { return GrTBackendEffectFactory::getInstance(); } bool GrSpecularLightingEffect::isEqual(const GrEffect& sBase) const { const GrSpecularLightingEffect& s = static_cast(sBase); return INHERITED::isEqual(sBase) && this->ks() == s.ks() && this->shininess() == s.shininess(); } GR_DEFINE_EFFECT_TEST(GrSpecularLightingEffect); GrEffect* GrSpecularLightingEffect::TestCreate(SkRandom* random, GrContext* context, GrTexture* textures[]) { SkScalar surfaceScale = random->nextSScalar1(); SkScalar ks = random->nextUScalar1(); SkScalar shininess = random->nextUScalar1(); SkAutoTUnref light(create_random_light(random)); return SkNEW_ARGS(GrSpecularLightingEffect, (textures[GrEffectUnitTest::kAlphaTextureIdx], light, surfaceScale, ks, shininess)); } /////////////////////////////////////////////////////////////////////////////// GrGLSpecularLightingEffect::GrGLSpecularLightingEffect(const GrBackendEffectFactory& factory, const GrEffect& effect) : GrGLLightingEffect(factory, effect) , fKSUni(kInvalidUniformHandle) , fShininessUni(kInvalidUniformHandle) { } void GrGLSpecularLightingEffect::emitLightFunc(GrGLShaderBuilder* builder, SkString* funcName) { const char* ks; const char* shininess; fKSUni = builder->addUniform(GrGLShaderBuilder::kFragment_ShaderType, kFloat_GrSLType, "KS", &ks); fShininessUni = builder->addUniform(GrGLShaderBuilder::kFragment_ShaderType, kFloat_GrSLType, "Shininess", &shininess); static const GrGLShaderVar gLightArgs[] = { GrGLShaderVar("normal", kVec3f_GrSLType), GrGLShaderVar("surfaceToLight", kVec3f_GrSLType), GrGLShaderVar("lightColor", kVec3f_GrSLType) }; SkString lightBody; lightBody.appendf("\tvec3 halfDir = vec3(normalize(surfaceToLight + vec3(0, 0, 1)));\n"); lightBody.appendf("\tfloat colorScale = %s * pow(dot(normal, halfDir), %s);\n", ks, shininess); lightBody.appendf("\tvec3 color = lightColor * clamp(colorScale, 0.0, 1.0);\n"); lightBody.appendf("\treturn vec4(color, max(max(color.r, color.g), color.b));\n"); builder->emitFunction(GrGLShaderBuilder::kFragment_ShaderType, kVec4f_GrSLType, "light", SK_ARRAY_COUNT(gLightArgs), gLightArgs, lightBody.c_str(), funcName); } void GrGLSpecularLightingEffect::setData(const GrGLUniformManager& uman, const GrEffectStage& stage) { INHERITED::setData(uman, stage); const GrSpecularLightingEffect& effect = static_cast(*stage.getEffect()); uman.set1f(fKSUni, effect.ks()); uman.set1f(fShininessUni, effect.shininess()); } /////////////////////////////////////////////////////////////////////////////// void GrGLLight::emitLightColorUniform(GrGLShaderBuilder* builder) { fColorUni = builder->addUniform(GrGLShaderBuilder::kFragment_ShaderType, kVec3f_GrSLType, "LightColor"); } void GrGLLight::emitLightColor(GrGLShaderBuilder* builder, const char *surfaceToLight) { builder->fFSCode.append(builder->getUniformCStr(this->lightColorUni())); } void GrGLLight::setData(const GrGLUniformManager& uman, const SkLight* light) const { setUniformPoint3(uman, fColorUni, light->color() * SkScalarInvert(SkIntToScalar(255))); } /////////////////////////////////////////////////////////////////////////////// void GrGLDistantLight::setData(const GrGLUniformManager& uman, const SkLight* light) const { INHERITED::setData(uman, light); SkASSERT(light->type() == SkLight::kDistant_LightType); const SkDistantLight* distantLight = static_cast(light); setUniformNormal3(uman, fDirectionUni, distantLight->direction()); } void GrGLDistantLight::emitSurfaceToLight(GrGLShaderBuilder* builder, SkString* out, const char* z) { const char* dir; fDirectionUni = builder->addUniform(GrGLShaderBuilder::kFragment_ShaderType, kVec3f_GrSLType, "LightDirection", &dir); out->append(dir); } /////////////////////////////////////////////////////////////////////////////// void GrGLPointLight::setData(const GrGLUniformManager& uman, const SkLight* light) const { INHERITED::setData(uman, light); SkASSERT(light->type() == SkLight::kPoint_LightType); const SkPointLight* pointLight = static_cast(light); setUniformPoint3(uman, fLocationUni, pointLight->location()); } void GrGLPointLight::emitSurfaceToLight(GrGLShaderBuilder* builder, SkString* out, const char* z) { const char* loc; fLocationUni = builder->addUniform(GrGLShaderBuilder::kFragment_ShaderType, kVec3f_GrSLType, "LightLocation", &loc); out->appendf("normalize(%s - vec3(%s.xy, %s))", loc, builder->fragmentPosition(), z); } /////////////////////////////////////////////////////////////////////////////// void GrGLSpotLight::setData(const GrGLUniformManager& uman, const SkLight* light) const { INHERITED::setData(uman, light); SkASSERT(light->type() == SkLight::kSpot_LightType); const SkSpotLight* spotLight = static_cast(light); setUniformPoint3(uman, fLocationUni, spotLight->location()); uman.set1f(fExponentUni, spotLight->specularExponent()); uman.set1f(fCosInnerConeAngleUni, spotLight->cosInnerConeAngle()); uman.set1f(fCosOuterConeAngleUni, spotLight->cosOuterConeAngle()); uman.set1f(fConeScaleUni, spotLight->coneScale()); setUniformNormal3(uman, fSUni, spotLight->s()); } void GrGLSpotLight::emitSurfaceToLight(GrGLShaderBuilder* builder, SkString* out, const char* z) { const char* location; fLocationUni = builder->addUniform(GrGLShaderBuilder::kFragment_ShaderType, kVec3f_GrSLType, "LightLocation", &location); out->appendf("normalize(%s - vec3(%s.xy, %s))", location, builder->fragmentPosition(), z); } void GrGLSpotLight::emitLightColor(GrGLShaderBuilder* builder, const char *surfaceToLight) { const char* color = builder->getUniformCStr(this->lightColorUni()); // created by parent class. const char* exponent; const char* cosInner; const char* cosOuter; const char* coneScale; const char* s; fExponentUni = builder->addUniform(GrGLShaderBuilder::kFragment_ShaderType, kFloat_GrSLType, "Exponent", &exponent); fCosInnerConeAngleUni = builder->addUniform(GrGLShaderBuilder::kFragment_ShaderType, kFloat_GrSLType, "CosInnerConeAngle", &cosInner); fCosOuterConeAngleUni = builder->addUniform(GrGLShaderBuilder::kFragment_ShaderType, kFloat_GrSLType, "CosOuterConeAngle", &cosOuter); fConeScaleUni = builder->addUniform(GrGLShaderBuilder::kFragment_ShaderType, kFloat_GrSLType, "ConeScale", &coneScale); fSUni = builder->addUniform(GrGLShaderBuilder::kFragment_ShaderType, kVec3f_GrSLType, "S", &s); static const GrGLShaderVar gLightColorArgs[] = { GrGLShaderVar("surfaceToLight", kVec3f_GrSLType) }; SkString lightColorBody; lightColorBody.appendf("\tfloat cosAngle = -dot(surfaceToLight, %s);\n", s); lightColorBody.appendf("\tif (cosAngle < %s) {\n", cosOuter); lightColorBody.appendf("\t\treturn vec3(0);\n"); lightColorBody.appendf("\t}\n"); lightColorBody.appendf("\tfloat scale = pow(cosAngle, %s);\n", exponent); lightColorBody.appendf("\tif (cosAngle < %s) {\n", cosInner); lightColorBody.appendf("\t\treturn %s * scale * (cosAngle - %s) * %s;\n", color, cosOuter, coneScale); lightColorBody.appendf("\t}\n"); lightColorBody.appendf("\treturn %s;\n", color); builder->emitFunction(GrGLShaderBuilder::kFragment_ShaderType, kVec3f_GrSLType, "lightColor", SK_ARRAY_COUNT(gLightColorArgs), gLightColorArgs, lightColorBody.c_str(), &fLightColorFunc); builder->fFSCode.appendf("%s(%s)", fLightColorFunc.c_str(), surfaceToLight); } #endif SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_START(SkLightingImageFilter) SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkDiffuseLightingImageFilter) SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkSpecularLightingImageFilter) SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkDistantLight) SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkPointLight) SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkSpotLight) SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_END