/* * Copyright 2017 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkHighContrastFilter.h" #include "SkPM4f.h" #include "SkArenaAlloc.h" #include "SkRasterPipeline.h" #include "SkReadBuffer.h" #include "SkString.h" #include "SkWriteBuffer.h" #include "../jumper/SkJumper.h" #if SK_SUPPORT_GPU #include "GrColorSpaceInfo.h" #include "GrContext.h" #include "glsl/GrGLSLFragmentProcessor.h" #include "glsl/GrGLSLFragmentShaderBuilder.h" #endif using InvertStyle = SkHighContrastConfig::InvertStyle; class SkHighContrast_Filter : public SkColorFilter { public: SkHighContrast_Filter(const SkHighContrastConfig& config) { fConfig = config; // Clamp contrast to just inside -1 to 1 to avoid division by zero. fConfig.fContrast = SkScalarPin(fConfig.fContrast, -1.0f + FLT_EPSILON, 1.0f - FLT_EPSILON); } ~SkHighContrast_Filter() override {} #if SK_SUPPORT_GPU std::unique_ptr asFragmentProcessor( GrContext*, const GrColorSpaceInfo&) const override; #endif void onAppendStages(SkRasterPipeline* p, SkColorSpace* dst, SkArenaAlloc* scratch, bool shaderIsOpaque) const override; SK_DECLARE_PUBLIC_FLATTENABLE_DESERIALIZATION_PROCS(SkHighContrast_Filter) protected: void flatten(SkWriteBuffer&) const override; private: SkHighContrastConfig fConfig; friend class SkHighContrastFilter; typedef SkColorFilter INHERITED; }; void SkHighContrast_Filter::onAppendStages(SkRasterPipeline* p, SkColorSpace* dstCS, SkArenaAlloc* alloc, bool shaderIsOpaque) const { if (!shaderIsOpaque) { p->append(SkRasterPipeline::unpremul); } if (!dstCS) { // In legacy draws this effect approximately linearizes by squaring. // When non-legacy, we're already (better) linearized. auto square = alloc->make(); square->G = 2.0f; square->A = 1.0f; square->B = square->C = square->D = square->E = square->F = 0; p->append(SkRasterPipeline::parametric, square); } if (fConfig.fGrayscale) { float r = SK_LUM_COEFF_R; float g = SK_LUM_COEFF_G; float b = SK_LUM_COEFF_B; float* matrix = alloc->makeArray(12); matrix[0] = matrix[1] = matrix[2] = r; matrix[3] = matrix[4] = matrix[5] = g; matrix[6] = matrix[7] = matrix[8] = b; p->append(SkRasterPipeline::matrix_3x4, matrix); } if (fConfig.fInvertStyle == InvertStyle::kInvertBrightness) { float* matrix = alloc->makeArray(12); matrix[0] = matrix[4] = matrix[8] = -1; matrix[9] = matrix[10] = matrix[11] = 1; p->append(SkRasterPipeline::matrix_3x4, matrix); } else if (fConfig.fInvertStyle == InvertStyle::kInvertLightness) { p->append(SkRasterPipeline::rgb_to_hsl); float* matrix = alloc->makeArray(12); matrix[0] = matrix[4] = matrix[11] = 1; matrix[8] = -1; p->append(SkRasterPipeline::matrix_3x4, matrix); p->append(SkRasterPipeline::hsl_to_rgb); } if (fConfig.fContrast != 0.0) { float* matrix = alloc->makeArray(12); float c = fConfig.fContrast; float m = (1 + c) / (1 - c); float b = (-0.5f * m + 0.5f); matrix[0] = matrix[4] = matrix[8] = m; matrix[9] = matrix[10] = matrix[11] = b; p->append(SkRasterPipeline::matrix_3x4, matrix); } p->append(SkRasterPipeline::clamp_0); p->append(SkRasterPipeline::clamp_1); if (!dstCS) { // See the previous if(!dstCS) { ... } auto sqrt = alloc->make(); sqrt->G = 0.5f; sqrt->A = 1.0f; sqrt->B = sqrt->C = sqrt->D = sqrt->E = sqrt->F = 0; p->append(SkRasterPipeline::parametric, sqrt); } if (!shaderIsOpaque) { p->append(SkRasterPipeline::premul); } } void SkHighContrast_Filter::flatten(SkWriteBuffer& buffer) const { buffer.writeBool(fConfig.fGrayscale); buffer.writeInt(static_cast(fConfig.fInvertStyle)); buffer.writeScalar(fConfig.fContrast); } sk_sp SkHighContrast_Filter::CreateProc(SkReadBuffer& buffer) { SkHighContrastConfig config; config.fGrayscale = buffer.readBool(); config.fInvertStyle = buffer.read32LE(InvertStyle::kLast); config.fContrast = buffer.readScalar(); return SkHighContrastFilter::Make(config); } sk_sp SkHighContrastFilter::Make( const SkHighContrastConfig& config) { if (!config.isValid()) { return nullptr; } return sk_make_sp(config); } SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_START(SkHighContrastFilter) SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkHighContrast_Filter) SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_END #if SK_SUPPORT_GPU class HighContrastFilterEffect : public GrFragmentProcessor { public: static std::unique_ptr Make(const SkHighContrastConfig& config, bool linearize) { return std::unique_ptr(new HighContrastFilterEffect(config, linearize)); } const char* name() const override { return "HighContrastFilter"; } const SkHighContrastConfig& config() const { return fConfig; } bool linearize() const { return fLinearize; } std::unique_ptr clone() const override { return Make(fConfig, fLinearize); } private: HighContrastFilterEffect(const SkHighContrastConfig& config, bool linearize) : INHERITED(kHighContrastFilterEffect_ClassID, kNone_OptimizationFlags) , fConfig(config) , fLinearize(linearize) {} GrGLSLFragmentProcessor* onCreateGLSLInstance() const override; virtual void onGetGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const override; bool onIsEqual(const GrFragmentProcessor& other) const override { const HighContrastFilterEffect& that = other.cast(); return fConfig.fGrayscale == that.fConfig.fGrayscale && fConfig.fInvertStyle == that.fConfig.fInvertStyle && fConfig.fContrast == that.fConfig.fContrast && fLinearize == that.fLinearize; } SkHighContrastConfig fConfig; bool fLinearize; typedef GrFragmentProcessor INHERITED; }; class GLHighContrastFilterEffect : public GrGLSLFragmentProcessor { public: static void GenKey(const GrProcessor&, const GrShaderCaps&, GrProcessorKeyBuilder*); protected: void onSetData(const GrGLSLProgramDataManager&, const GrFragmentProcessor&) override; void emitCode(EmitArgs& args) override; private: UniformHandle fContrastUni; typedef GrGLSLFragmentProcessor INHERITED; }; GrGLSLFragmentProcessor* HighContrastFilterEffect::onCreateGLSLInstance() const { return new GLHighContrastFilterEffect(); } void HighContrastFilterEffect::onGetGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const { GLHighContrastFilterEffect::GenKey(*this, caps, b); } void GLHighContrastFilterEffect::onSetData(const GrGLSLProgramDataManager& pdm, const GrFragmentProcessor& proc) { const HighContrastFilterEffect& hcfe = proc.cast(); pdm.set1f(fContrastUni, hcfe.config().fContrast); } void GLHighContrastFilterEffect::GenKey( const GrProcessor& proc, const GrShaderCaps&, GrProcessorKeyBuilder* b) { const HighContrastFilterEffect& hcfe = proc.cast(); b->add32(static_cast(hcfe.config().fGrayscale)); b->add32(static_cast(hcfe.config().fInvertStyle)); b->add32(hcfe.linearize() ? 1 : 0); } void GLHighContrastFilterEffect::emitCode(EmitArgs& args) { const HighContrastFilterEffect& hcfe = args.fFp.cast(); const SkHighContrastConfig& config = hcfe.config(); const char* contrast; fContrastUni = args.fUniformHandler->addUniform(kFragment_GrShaderFlag, kHalf_GrSLType, "contrast", &contrast); if (nullptr == args.fInputColor) { args.fInputColor = "half4(1)"; } GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; fragBuilder->codeAppendf("half4 color = %s;", args.fInputColor); // Unpremultiply. The max() is to guard against 0 / 0. fragBuilder->codeAppendf("half nonZeroAlpha = max(color.a, 0.00001);"); fragBuilder->codeAppendf("color = half4(color.rgb / nonZeroAlpha, nonZeroAlpha);"); if (hcfe.linearize()) { fragBuilder->codeAppend("color.rgb = color.rgb * color.rgb;"); } // Grayscale. if (config.fGrayscale) { fragBuilder->codeAppendf("half luma = dot(color, half4(%f, %f, %f, 0));", SK_LUM_COEFF_R, SK_LUM_COEFF_G, SK_LUM_COEFF_B); fragBuilder->codeAppendf("color = half4(luma, luma, luma, 0);"); } if (config.fInvertStyle == InvertStyle::kInvertBrightness) { fragBuilder->codeAppendf("color = half4(1, 1, 1, 1) - color;"); } if (config.fInvertStyle == InvertStyle::kInvertLightness) { // Convert from RGB to HSL. fragBuilder->codeAppendf("half fmax = max(color.r, max(color.g, color.b));"); fragBuilder->codeAppendf("half fmin = min(color.r, min(color.g, color.b));"); fragBuilder->codeAppendf("half l = (fmax + fmin) / 2;"); fragBuilder->codeAppendf("half h;"); fragBuilder->codeAppendf("half s;"); fragBuilder->codeAppendf("if (fmax == fmin) {"); fragBuilder->codeAppendf(" h = 0;"); fragBuilder->codeAppendf(" s = 0;"); fragBuilder->codeAppendf("} else {"); fragBuilder->codeAppendf(" half d = fmax - fmin;"); fragBuilder->codeAppendf(" s = l > 0.5 ?"); fragBuilder->codeAppendf(" d / (2 - fmax - fmin) :"); fragBuilder->codeAppendf(" d / (fmax + fmin);"); // We'd like to just write "if (color.r == fmax) { ... }". On many GPUs, running the // angle_d3d9_es2 config, that failed. It seems that max(x, y) is not necessarily equal // to either x or y. Tried several ways to fix it, but this was the only reasonable fix. fragBuilder->codeAppendf(" if (color.r >= color.g && color.r >= color.b) {"); fragBuilder->codeAppendf(" h = (color.g - color.b) / d + "); fragBuilder->codeAppendf(" (color.g < color.b ? 6 : 0);"); fragBuilder->codeAppendf(" } else if (color.g >= color.b) {"); fragBuilder->codeAppendf(" h = (color.b - color.r) / d + 2;"); fragBuilder->codeAppendf(" } else {"); fragBuilder->codeAppendf(" h = (color.r - color.g) / d + 4;"); fragBuilder->codeAppendf(" }"); fragBuilder->codeAppendf("}"); fragBuilder->codeAppendf("h /= 6;"); fragBuilder->codeAppendf("l = 1.0 - l;"); // Convert back from HSL to RGB. SkString hue2rgbFuncName; static const GrShaderVar gHue2rgbArgs[] = { GrShaderVar("p", kHalf_GrSLType), GrShaderVar("q", kHalf_GrSLType), GrShaderVar("t", kHalf_GrSLType), }; fragBuilder->emitFunction(kHalf_GrSLType, "hue2rgb", SK_ARRAY_COUNT(gHue2rgbArgs), gHue2rgbArgs, "if (t < 0)" " t += 1;" "if (t > 1)" " t -= 1;" "if (t < 1/6.)" " return p + (q - p) * 6 * t;" "if (t < 1/2.)" " return q;" "if (t < 2/3.)" " return p + (q - p) * (2/3. - t) * 6;" "return p;", &hue2rgbFuncName); fragBuilder->codeAppendf("if (s == 0) {"); fragBuilder->codeAppendf(" color = half4(l, l, l, 0);"); fragBuilder->codeAppendf("} else {"); fragBuilder->codeAppendf(" half q = l < 0.5 ? l * (1 + s) : l + s - l * s;"); fragBuilder->codeAppendf(" half p = 2 * l - q;"); fragBuilder->codeAppendf(" color.r = %s(p, q, h + 1/3.);", hue2rgbFuncName.c_str()); fragBuilder->codeAppendf(" color.g = %s(p, q, h);", hue2rgbFuncName.c_str()); fragBuilder->codeAppendf(" color.b = %s(p, q, h - 1/3.);", hue2rgbFuncName.c_str()); fragBuilder->codeAppendf("}"); } // Contrast. fragBuilder->codeAppendf("if (%s != 0) {", contrast); fragBuilder->codeAppendf(" half m = (1 + %s) / (1 - %s);", contrast, contrast); fragBuilder->codeAppendf(" half off = (-0.5 * m + 0.5);"); fragBuilder->codeAppendf(" color = m * color + off;"); fragBuilder->codeAppendf("}"); // Clamp. fragBuilder->codeAppendf("color = clamp(color, 0, 1);"); if (hcfe.linearize()) { fragBuilder->codeAppend("color.rgb = sqrt(color.rgb);"); } // Restore the original alpha and premultiply. fragBuilder->codeAppendf("color.a = %s.a;", args.fInputColor); fragBuilder->codeAppendf("color.rgb *= color.a;"); // Copy to the output color. fragBuilder->codeAppendf("%s = color;", args.fOutputColor); } std::unique_ptr SkHighContrast_Filter::asFragmentProcessor( GrContext*, const GrColorSpaceInfo& csi) const { bool linearize = !csi.isLinearlyBlended(); return HighContrastFilterEffect::Make(fConfig, linearize); } #endif