/* * Copyright 2006 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkEmbossMaskFilter.h" #include "SkBlurMaskFilter.h" #include "SkBlurMask.h" #include "SkColorPriv.h" #include "SkEmbossMask.h" #include "SkReadBuffer.h" #include "SkWriteBuffer.h" #include "SkString.h" sk_sp SkEmbossMaskFilter::Make(SkScalar blurSigma, const Light& light) { return sk_sp(new SkEmbossMaskFilter(blurSigma, light)); } #ifdef SK_SUPPORT_LEGACY_EMBOSSMASKFILTER sk_sp SkBlurMaskFilter::MakeEmboss(SkScalar blurSigma, const SkScalar direction[3], SkScalar ambient, SkScalar specular) { if (direction == nullptr) { return nullptr; } SkEmbossMaskFilter::Light light; memcpy(light.fDirection, direction, sizeof(light.fDirection)); // ambient should be 0...1 as a scalar light.fAmbient = SkUnitScalarClampToByte(ambient); // specular should be 0..15.99 as a scalar static const SkScalar kSpecularMultiplier = SkIntToScalar(255) / 16; light.fSpecular = static_cast(SkScalarPin(specular, 0, 16) * kSpecularMultiplier + 0.5); return SkEmbossMaskFilter::Make(blurSigma, light); } #endif /////////////////////////////////////////////////////////////////////////////// static void normalize(SkScalar v[3]) { SkScalar mag = SkScalarSquare(v[0]) + SkScalarSquare(v[1]) + SkScalarSquare(v[2]); mag = SkScalarSqrt(mag); for (int i = 0; i < 3; i++) { v[i] /= mag; } } SkEmbossMaskFilter::SkEmbossMaskFilter(SkScalar blurSigma, const Light& light) : fLight(light), fBlurSigma(blurSigma) { normalize(fLight.fDirection); } SkMask::Format SkEmbossMaskFilter::getFormat() const { return SkMask::k3D_Format; } bool SkEmbossMaskFilter::filterMask(SkMask* dst, const SkMask& src, const SkMatrix& matrix, SkIPoint* margin) const { SkScalar sigma = matrix.mapRadius(fBlurSigma); if (!SkBlurMask::BoxBlur(dst, src, sigma, kInner_SkBlurStyle, kLow_SkBlurQuality)) { return false; } dst->fFormat = SkMask::k3D_Format; if (margin) { margin->set(SkScalarCeilToInt(3*sigma), SkScalarCeilToInt(3*sigma)); } if (src.fImage == nullptr) { return true; } // create a larger buffer for the other two channels (should force fBlur to do this for us) { uint8_t* alphaPlane = dst->fImage; size_t planeSize = dst->computeImageSize(); if (0 == planeSize) { return false; // too big to allocate, abort } dst->fImage = SkMask::AllocImage(planeSize * 3); memcpy(dst->fImage, alphaPlane, planeSize); SkMask::FreeImage(alphaPlane); } // run the light direction through the matrix... Light light = fLight; matrix.mapVectors((SkVector*)(void*)light.fDirection, (SkVector*)(void*)fLight.fDirection, 1); // now restore the length of the XY component // cast to SkVector so we can call setLength (this double cast silences alias warnings) SkVector* vec = (SkVector*)(void*)light.fDirection; vec->setLength(light.fDirection[0], light.fDirection[1], SkPoint::Length(fLight.fDirection[0], fLight.fDirection[1])); SkEmbossMask::Emboss(dst, light); // restore original alpha memcpy(dst->fImage, src.fImage, src.computeImageSize()); return true; } sk_sp SkEmbossMaskFilter::CreateProc(SkReadBuffer& buffer) { Light light; if (buffer.readByteArray(&light, sizeof(Light))) { light.fPad = 0; // for the font-cache lookup to be clean const SkScalar sigma = buffer.readScalar(); return Make(sigma, light); } return nullptr; } void SkEmbossMaskFilter::flatten(SkWriteBuffer& buffer) const { Light tmpLight = fLight; tmpLight.fPad = 0; // for the font-cache lookup to be clean buffer.writeByteArray(&tmpLight, sizeof(tmpLight)); buffer.writeScalar(fBlurSigma); } #ifndef SK_IGNORE_TO_STRING void SkEmbossMaskFilter::toString(SkString* str) const { str->append("SkEmbossMaskFilter: ("); str->append("direction: ("); str->appendScalar(fLight.fDirection[0]); str->append(", "); str->appendScalar(fLight.fDirection[1]); str->append(", "); str->appendScalar(fLight.fDirection[2]); str->append(") "); str->appendf("ambient: %d specular: %d ", fLight.fAmbient, fLight.fSpecular); str->append("blurSigma: "); str->appendScalar(fBlurSigma); str->append(")"); } #endif