/* * Copyright 2006 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkDashPathEffect.h" #include "SkReadBuffer.h" #include "SkWriteBuffer.h" #include "SkPathMeasure.h" static inline int is_even(int x) { return (~x) << 31; } static SkScalar FindFirstInterval(const SkScalar intervals[], SkScalar phase, int32_t* index, int count) { for (int i = 0; i < count; ++i) { if (phase > intervals[i]) { phase -= intervals[i]; } else { *index = i; return intervals[i] - phase; } } // If we get here, phase "appears" to be larger than our length. This // shouldn't happen with perfect precision, but we can accumulate errors // during the initial length computation (rounding can make our sum be too // big or too small. In that event, we just have to eat the error here. *index = 0; return intervals[0]; } SkDashPathEffect::SkDashPathEffect(const SkScalar intervals[], int count, SkScalar phase, bool scaleToFit) : fScaleToFit(scaleToFit) { SkASSERT(intervals); SkASSERT(count > 1 && SkAlign2(count) == count); fIntervals = (SkScalar*)sk_malloc_throw(sizeof(SkScalar) * count); fCount = count; SkScalar len = 0; for (int i = 0; i < count; i++) { SkASSERT(intervals[i] >= 0); fIntervals[i] = intervals[i]; len += intervals[i]; } fIntervalLength = len; // watch out for values that might make us go out of bounds if ((len > 0) && SkScalarIsFinite(phase) && SkScalarIsFinite(len)) { // Adjust phase to be between 0 and len, "flipping" phase if negative. // e.g., if len is 100, then phase of -20 (or -120) is equivalent to 80 if (phase < 0) { phase = -phase; if (phase > len) { phase = SkScalarMod(phase, len); } phase = len - phase; // Due to finite precision, it's possible that phase == len, // even after the subtract (if len >>> phase), so fix that here. // This fixes http://crbug.com/124652 . SkASSERT(phase <= len); if (phase == len) { phase = 0; } } else if (phase >= len) { phase = SkScalarMod(phase, len); } SkASSERT(phase >= 0 && phase < len); fInitialDashLength = FindFirstInterval(intervals, phase, &fInitialDashIndex, count); SkASSERT(fInitialDashLength >= 0); SkASSERT(fInitialDashIndex >= 0 && fInitialDashIndex < fCount); } else { fInitialDashLength = -1; // signal bad dash intervals } } SkDashPathEffect::~SkDashPathEffect() { sk_free(fIntervals); } static void outset_for_stroke(SkRect* rect, const SkStrokeRec& rec) { SkScalar radius = SkScalarHalf(rec.getWidth()); if (0 == radius) { radius = SK_Scalar1; // hairlines } if (SkPaint::kMiter_Join == rec.getJoin()) { radius = SkScalarMul(radius, rec.getMiter()); } rect->outset(radius, radius); } // Only handles lines for now. If returns true, dstPath is the new (smaller) // path. If returns false, then dstPath parameter is ignored. static bool cull_path(const SkPath& srcPath, const SkStrokeRec& rec, const SkRect* cullRect, SkScalar intervalLength, SkPath* dstPath) { if (NULL == cullRect) { return false; } SkPoint pts[2]; if (!srcPath.isLine(pts)) { return false; } SkRect bounds = *cullRect; outset_for_stroke(&bounds, rec); SkScalar dx = pts[1].x() - pts[0].x(); SkScalar dy = pts[1].y() - pts[0].y(); // just do horizontal lines for now (lazy) if (dy) { return false; } SkScalar minX = pts[0].fX; SkScalar maxX = pts[1].fX; if (maxX < bounds.fLeft || minX > bounds.fRight) { return false; } if (dx < 0) { SkTSwap(minX, maxX); } // Now we actually perform the chop, removing the excess to the left and // right of the bounds (keeping our new line "in phase" with the dash, // hence the (mod intervalLength). if (minX < bounds.fLeft) { minX = bounds.fLeft - SkScalarMod(bounds.fLeft - minX, intervalLength); } if (maxX > bounds.fRight) { maxX = bounds.fRight + SkScalarMod(maxX - bounds.fRight, intervalLength); } SkASSERT(maxX >= minX); if (dx < 0) { SkTSwap(minX, maxX); } pts[0].fX = minX; pts[1].fX = maxX; dstPath->moveTo(pts[0]); dstPath->lineTo(pts[1]); return true; } class SpecialLineRec { public: bool init(const SkPath& src, SkPath* dst, SkStrokeRec* rec, int intervalCount, SkScalar intervalLength) { if (rec->isHairlineStyle() || !src.isLine(fPts)) { return false; } // can relax this in the future, if we handle square and round caps if (SkPaint::kButt_Cap != rec->getCap()) { return false; } SkScalar pathLength = SkPoint::Distance(fPts[0], fPts[1]); fTangent = fPts[1] - fPts[0]; if (fTangent.isZero()) { return false; } fPathLength = pathLength; fTangent.scale(SkScalarInvert(pathLength)); fTangent.rotateCCW(&fNormal); fNormal.scale(SkScalarHalf(rec->getWidth())); // now estimate how many quads will be added to the path // resulting segments = pathLen * intervalCount / intervalLen // resulting points = 4 * segments SkScalar ptCount = SkScalarMulDiv(pathLength, SkIntToScalar(intervalCount), intervalLength); int n = SkScalarCeilToInt(ptCount) << 2; dst->incReserve(n); // we will take care of the stroking rec->setFillStyle(); return true; } void addSegment(SkScalar d0, SkScalar d1, SkPath* path) const { SkASSERT(d0 < fPathLength); // clamp the segment to our length if (d1 > fPathLength) { d1 = fPathLength; } SkScalar x0 = fPts[0].fX + SkScalarMul(fTangent.fX, d0); SkScalar x1 = fPts[0].fX + SkScalarMul(fTangent.fX, d1); SkScalar y0 = fPts[0].fY + SkScalarMul(fTangent.fY, d0); SkScalar y1 = fPts[0].fY + SkScalarMul(fTangent.fY, d1); SkPoint pts[4]; pts[0].set(x0 + fNormal.fX, y0 + fNormal.fY); // moveTo pts[1].set(x1 + fNormal.fX, y1 + fNormal.fY); // lineTo pts[2].set(x1 - fNormal.fX, y1 - fNormal.fY); // lineTo pts[3].set(x0 - fNormal.fX, y0 - fNormal.fY); // lineTo path->addPoly(pts, SK_ARRAY_COUNT(pts), false); } private: SkPoint fPts[2]; SkVector fTangent; SkVector fNormal; SkScalar fPathLength; }; bool SkDashPathEffect::filterPath(SkPath* dst, const SkPath& src, SkStrokeRec* rec, const SkRect* cullRect) const { // we do nothing if the src wants to be filled, or if our dashlength is 0 if (rec->isFillStyle() || fInitialDashLength < 0) { return false; } const SkScalar* intervals = fIntervals; SkScalar dashCount = 0; int segCount = 0; SkPath cullPathStorage; const SkPath* srcPtr = &src; if (cull_path(src, *rec, cullRect, fIntervalLength, &cullPathStorage)) { srcPtr = &cullPathStorage; } SpecialLineRec lineRec; bool specialLine = lineRec.init(*srcPtr, dst, rec, fCount >> 1, fIntervalLength); SkPathMeasure meas(*srcPtr, false); do { bool skipFirstSegment = meas.isClosed(); bool addedSegment = false; SkScalar length = meas.getLength(); int index = fInitialDashIndex; SkScalar scale = SK_Scalar1; // Since the path length / dash length ratio may be arbitrarily large, we can exert // significant memory pressure while attempting to build the filtered path. To avoid this, // we simply give up dashing beyond a certain threshold. // // The original bug report (http://crbug.com/165432) is based on a path yielding more than // 90 million dash segments and crashing the memory allocator. A limit of 1 million // segments seems reasonable: at 2 verbs per segment * 9 bytes per verb, this caps the // maximum dash memory overhead at roughly 17MB per path. static const SkScalar kMaxDashCount = 1000000; dashCount += length * (fCount >> 1) / fIntervalLength; if (dashCount > kMaxDashCount) { dst->reset(); return false; } if (fScaleToFit) { if (fIntervalLength >= length) { scale = SkScalarDiv(length, fIntervalLength); } else { SkScalar div = SkScalarDiv(length, fIntervalLength); int n = SkScalarFloorToInt(div); scale = SkScalarDiv(length, n * fIntervalLength); } } // Using double precision to avoid looping indefinitely due to single precision rounding // (for extreme path_length/dash_length ratios). See test_infinite_dash() unittest. double distance = 0; double dlen = SkScalarMul(fInitialDashLength, scale); while (distance < length) { SkASSERT(dlen >= 0); addedSegment = false; if (is_even(index) && dlen > 0 && !skipFirstSegment) { addedSegment = true; ++segCount; if (specialLine) { lineRec.addSegment(SkDoubleToScalar(distance), SkDoubleToScalar(distance + dlen), dst); } else { meas.getSegment(SkDoubleToScalar(distance), SkDoubleToScalar(distance + dlen), dst, true); } } distance += dlen; // clear this so we only respect it the first time around skipFirstSegment = false; // wrap around our intervals array if necessary index += 1; SkASSERT(index <= fCount); if (index == fCount) { index = 0; } // fetch our next dlen dlen = SkScalarMul(intervals[index], scale); } // extend if we ended on a segment and we need to join up with the (skipped) initial segment if (meas.isClosed() && is_even(fInitialDashIndex) && fInitialDashLength > 0) { meas.getSegment(0, SkScalarMul(fInitialDashLength, scale), dst, !addedSegment); ++segCount; } } while (meas.nextContour()); if (segCount > 1) { dst->setConvexity(SkPath::kConcave_Convexity); } return true; } // Currently asPoints is more restrictive then it needs to be. In the future // we need to: // allow kRound_Cap capping (could allow rotations in the matrix with this) // allow paths to be returned bool SkDashPathEffect::asPoints(PointData* results, const SkPath& src, const SkStrokeRec& rec, const SkMatrix& matrix, const SkRect* cullRect) const { // width < 0 -> fill && width == 0 -> hairline so requiring width > 0 rules both out if (fInitialDashLength < 0 || 0 >= rec.getWidth()) { return false; } // TODO: this next test could be eased up. We could allow any number of // intervals as long as all the ons match and all the offs match. // Additionally, they do not necessarily need to be integers. // We cannot allow arbitrary intervals since we want the returned points // to be uniformly sized. if (fCount != 2 || !SkScalarNearlyEqual(fIntervals[0], fIntervals[1]) || !SkScalarIsInt(fIntervals[0]) || !SkScalarIsInt(fIntervals[1])) { return false; } // TODO: this next test could be eased up. The rescaling should not impact // the equality of the ons & offs. However, we would need to remove the // integer intervals restriction first if (fScaleToFit) { return false; } SkPoint pts[2]; if (!src.isLine(pts)) { return false; } // TODO: this test could be eased up to allow circles if (SkPaint::kButt_Cap != rec.getCap()) { return false; } // TODO: this test could be eased up for circles. Rotations could be allowed. if (!matrix.rectStaysRect()) { return false; } SkScalar length = SkPoint::Distance(pts[1], pts[0]); SkVector tangent = pts[1] - pts[0]; if (tangent.isZero()) { return false; } tangent.scale(SkScalarInvert(length)); // TODO: make this test for horizontal & vertical lines more robust bool isXAxis = true; if (SK_Scalar1 == tangent.fX || -SK_Scalar1 == tangent.fX) { results->fSize.set(SkScalarHalf(fIntervals[0]), SkScalarHalf(rec.getWidth())); } else if (SK_Scalar1 == tangent.fY || -SK_Scalar1 == tangent.fY) { results->fSize.set(SkScalarHalf(rec.getWidth()), SkScalarHalf(fIntervals[0])); isXAxis = false; } else if (SkPaint::kRound_Cap != rec.getCap()) { // Angled lines don't have axis-aligned boxes. return false; } if (NULL != results) { results->fFlags = 0; SkScalar clampedInitialDashLength = SkMinScalar(length, fInitialDashLength); if (SkPaint::kRound_Cap == rec.getCap()) { results->fFlags |= PointData::kCircles_PointFlag; } results->fNumPoints = 0; SkScalar len2 = length; if (clampedInitialDashLength > 0 || 0 == fInitialDashIndex) { SkASSERT(len2 >= clampedInitialDashLength); if (0 == fInitialDashIndex) { if (clampedInitialDashLength > 0) { if (clampedInitialDashLength >= fIntervals[0]) { ++results->fNumPoints; // partial first dash } len2 -= clampedInitialDashLength; } len2 -= fIntervals[1]; // also skip first space if (len2 < 0) { len2 = 0; } } else { len2 -= clampedInitialDashLength; // skip initial partial empty } } int numMidPoints = SkScalarFloorToInt(SkScalarDiv(len2, fIntervalLength)); results->fNumPoints += numMidPoints; len2 -= numMidPoints * fIntervalLength; bool partialLast = false; if (len2 > 0) { if (len2 < fIntervals[0]) { partialLast = true; } else { ++numMidPoints; ++results->fNumPoints; } } results->fPoints = new SkPoint[results->fNumPoints]; SkScalar distance = 0; int curPt = 0; if (clampedInitialDashLength > 0 || 0 == fInitialDashIndex) { SkASSERT(clampedInitialDashLength <= length); if (0 == fInitialDashIndex) { if (clampedInitialDashLength > 0) { // partial first block SkASSERT(SkPaint::kRound_Cap != rec.getCap()); // can't handle partial circles SkScalar x = pts[0].fX + SkScalarMul(tangent.fX, SkScalarHalf(clampedInitialDashLength)); SkScalar y = pts[0].fY + SkScalarMul(tangent.fY, SkScalarHalf(clampedInitialDashLength)); SkScalar halfWidth, halfHeight; if (isXAxis) { halfWidth = SkScalarHalf(clampedInitialDashLength); halfHeight = SkScalarHalf(rec.getWidth()); } else { halfWidth = SkScalarHalf(rec.getWidth()); halfHeight = SkScalarHalf(clampedInitialDashLength); } if (clampedInitialDashLength < fIntervals[0]) { // This one will not be like the others results->fFirst.addRect(x - halfWidth, y - halfHeight, x + halfWidth, y + halfHeight); } else { SkASSERT(curPt < results->fNumPoints); results->fPoints[curPt].set(x, y); ++curPt; } distance += clampedInitialDashLength; } distance += fIntervals[1]; // skip over the next blank block too } else { distance += clampedInitialDashLength; } } if (0 != numMidPoints) { distance += SkScalarHalf(fIntervals[0]); for (int i = 0; i < numMidPoints; ++i) { SkScalar x = pts[0].fX + SkScalarMul(tangent.fX, distance); SkScalar y = pts[0].fY + SkScalarMul(tangent.fY, distance); SkASSERT(curPt < results->fNumPoints); results->fPoints[curPt].set(x, y); ++curPt; distance += fIntervalLength; } distance -= SkScalarHalf(fIntervals[0]); } if (partialLast) { // partial final block SkASSERT(SkPaint::kRound_Cap != rec.getCap()); // can't handle partial circles SkScalar temp = length - distance; SkASSERT(temp < fIntervals[0]); SkScalar x = pts[0].fX + SkScalarMul(tangent.fX, distance + SkScalarHalf(temp)); SkScalar y = pts[0].fY + SkScalarMul(tangent.fY, distance + SkScalarHalf(temp)); SkScalar halfWidth, halfHeight; if (isXAxis) { halfWidth = SkScalarHalf(temp); halfHeight = SkScalarHalf(rec.getWidth()); } else { halfWidth = SkScalarHalf(rec.getWidth()); halfHeight = SkScalarHalf(temp); } results->fLast.addRect(x - halfWidth, y - halfHeight, x + halfWidth, y + halfHeight); } SkASSERT(curPt == results->fNumPoints); } return true; } SkFlattenable::Factory SkDashPathEffect::getFactory() const { return fInitialDashLength < 0 ? NULL : CreateProc; } void SkDashPathEffect::flatten(SkWriteBuffer& buffer) const { SkASSERT(fInitialDashLength >= 0); this->INHERITED::flatten(buffer); buffer.writeInt(fInitialDashIndex); buffer.writeScalar(fInitialDashLength); buffer.writeScalar(fIntervalLength); buffer.writeBool(fScaleToFit); buffer.writeScalarArray(fIntervals, fCount); } SkFlattenable* SkDashPathEffect::CreateProc(SkReadBuffer& buffer) { return SkNEW_ARGS(SkDashPathEffect, (buffer)); } SkDashPathEffect::SkDashPathEffect(SkReadBuffer& buffer) : INHERITED(buffer) { fInitialDashIndex = buffer.readInt(); fInitialDashLength = buffer.readScalar(); fIntervalLength = buffer.readScalar(); fScaleToFit = buffer.readBool(); fCount = buffer.getArrayCount(); size_t allocSize = sizeof(SkScalar) * fCount; if (buffer.validateAvailable(allocSize)) { fIntervals = (SkScalar*)sk_malloc_throw(allocSize); buffer.readScalarArray(fIntervals, fCount); } else { fIntervals = NULL; } }