/* * Copyright 2006 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkDashPathEffect.h" #include "SkDashImpl.h" #include "SkDashPathPriv.h" #include "SkFlattenablePriv.h" #include "SkReadBuffer.h" #include "SkStrokeRec.h" #include "SkTo.h" #include "SkWriteBuffer.h" #include SkDashImpl::SkDashImpl(const SkScalar intervals[], int count, SkScalar phase) : fPhase(0) , fInitialDashLength(-1) , fInitialDashIndex(0) , fIntervalLength(0) { SkASSERT(intervals); SkASSERT(count > 1 && SkIsAlign2(count)); fIntervals = (SkScalar*)sk_malloc_throw(sizeof(SkScalar) * count); fCount = count; for (int i = 0; i < count; i++) { fIntervals[i] = intervals[i]; } // set the internal data members SkDashPath::CalcDashParameters(phase, fIntervals, fCount, &fInitialDashLength, &fInitialDashIndex, &fIntervalLength, &fPhase); } SkDashImpl::~SkDashImpl() { sk_free(fIntervals); } bool SkDashImpl::filterPath(SkPath* dst, const SkPath& src, SkStrokeRec* rec, const SkRect* cullRect) const { return SkDashPath::InternalFilter(dst, src, rec, cullRect, fIntervals, fCount, fInitialDashLength, fInitialDashIndex, fIntervalLength); } static void outset_for_stroke(SkRect* rect, const SkStrokeRec& rec) { SkScalar radius = SkScalarHalf(rec.getWidth()); if (0 == radius) { radius = SK_Scalar1; // hairlines } if (SkPaint::kMiter_Join == rec.getJoin()) { radius *= rec.getMiter(); } rect->outset(radius, radius); } // Attempt to trim the line to minimally cover the cull rect (currently // only works for horizontal and vertical lines). // Return true if processing should continue; false otherwise. static bool cull_line(SkPoint* pts, const SkStrokeRec& rec, const SkMatrix& ctm, const SkRect* cullRect, const SkScalar intervalLength) { if (nullptr == cullRect) { SkASSERT(false); // Shouldn't ever occur in practice return false; } SkScalar dx = pts[1].x() - pts[0].x(); SkScalar dy = pts[1].y() - pts[0].y(); if ((dx && dy) || (!dx && !dy)) { return false; } SkRect bounds = *cullRect; outset_for_stroke(&bounds, rec); // cullRect is in device space while pts are in the local coordinate system // defined by the ctm. We want our answer in the local coordinate system. SkASSERT(ctm.rectStaysRect()); SkMatrix inv; if (!ctm.invert(&inv)) { return false; } inv.mapRect(&bounds); if (dx) { SkASSERT(dx && !dy); SkScalar minX = pts[0].fX; SkScalar maxX = pts[1].fX; if (dx < 0) { using std::swap; swap(minX, maxX); } SkASSERT(minX < maxX); if (maxX <= bounds.fLeft || minX >= bounds.fRight) { return false; } // Now we actually perform the chop, removing the excess to the left and // right of the bounds (keeping our new line "in phase" with the dash, // hence the (mod intervalLength). if (minX < bounds.fLeft) { minX = bounds.fLeft - SkScalarMod(bounds.fLeft - minX, intervalLength); } if (maxX > bounds.fRight) { maxX = bounds.fRight + SkScalarMod(maxX - bounds.fRight, intervalLength); } SkASSERT(maxX > minX); if (dx < 0) { using std::swap; swap(minX, maxX); } pts[0].fX = minX; pts[1].fX = maxX; } else { SkASSERT(dy && !dx); SkScalar minY = pts[0].fY; SkScalar maxY = pts[1].fY; if (dy < 0) { using std::swap; swap(minY, maxY); } SkASSERT(minY < maxY); if (maxY <= bounds.fTop || minY >= bounds.fBottom) { return false; } // Now we actually perform the chop, removing the excess to the top and // bottom of the bounds (keeping our new line "in phase" with the dash, // hence the (mod intervalLength). if (minY < bounds.fTop) { minY = bounds.fTop - SkScalarMod(bounds.fTop - minY, intervalLength); } if (maxY > bounds.fBottom) { maxY = bounds.fBottom + SkScalarMod(maxY - bounds.fBottom, intervalLength); } SkASSERT(maxY > minY); if (dy < 0) { using std::swap; swap(minY, maxY); } pts[0].fY = minY; pts[1].fY = maxY; } return true; } // Currently asPoints is more restrictive then it needs to be. In the future // we need to: // allow kRound_Cap capping (could allow rotations in the matrix with this) // allow paths to be returned bool SkDashImpl::asPoints(PointData* results, const SkPath& src, const SkStrokeRec& rec, const SkMatrix& matrix, const SkRect* cullRect) const { // width < 0 -> fill && width == 0 -> hairline so requiring width > 0 rules both out if (0 >= rec.getWidth()) { return false; } // TODO: this next test could be eased up. We could allow any number of // intervals as long as all the ons match and all the offs match. // Additionally, they do not necessarily need to be integers. // We cannot allow arbitrary intervals since we want the returned points // to be uniformly sized. if (fCount != 2 || !SkScalarNearlyEqual(fIntervals[0], fIntervals[1]) || !SkScalarIsInt(fIntervals[0]) || !SkScalarIsInt(fIntervals[1])) { return false; } SkPoint pts[2]; if (!src.isLine(pts)) { return false; } // TODO: this test could be eased up to allow circles if (SkPaint::kButt_Cap != rec.getCap()) { return false; } // TODO: this test could be eased up for circles. Rotations could be allowed. if (!matrix.rectStaysRect()) { return false; } // See if the line can be limited to something plausible. if (!cull_line(pts, rec, matrix, cullRect, fIntervalLength)) { return false; } SkScalar length = SkPoint::Distance(pts[1], pts[0]); SkVector tangent = pts[1] - pts[0]; if (tangent.isZero()) { return false; } tangent.scale(SkScalarInvert(length)); // TODO: make this test for horizontal & vertical lines more robust bool isXAxis = true; if (SkScalarNearlyEqual(SK_Scalar1, tangent.fX) || SkScalarNearlyEqual(-SK_Scalar1, tangent.fX)) { results->fSize.set(SkScalarHalf(fIntervals[0]), SkScalarHalf(rec.getWidth())); } else if (SkScalarNearlyEqual(SK_Scalar1, tangent.fY) || SkScalarNearlyEqual(-SK_Scalar1, tangent.fY)) { results->fSize.set(SkScalarHalf(rec.getWidth()), SkScalarHalf(fIntervals[0])); isXAxis = false; } else if (SkPaint::kRound_Cap != rec.getCap()) { // Angled lines don't have axis-aligned boxes. return false; } if (results) { results->fFlags = 0; SkScalar clampedInitialDashLength = SkMinScalar(length, fInitialDashLength); if (SkPaint::kRound_Cap == rec.getCap()) { results->fFlags |= PointData::kCircles_PointFlag; } results->fNumPoints = 0; SkScalar len2 = length; if (clampedInitialDashLength > 0 || 0 == fInitialDashIndex) { SkASSERT(len2 >= clampedInitialDashLength); if (0 == fInitialDashIndex) { if (clampedInitialDashLength > 0) { if (clampedInitialDashLength >= fIntervals[0]) { ++results->fNumPoints; // partial first dash } len2 -= clampedInitialDashLength; } len2 -= fIntervals[1]; // also skip first space if (len2 < 0) { len2 = 0; } } else { len2 -= clampedInitialDashLength; // skip initial partial empty } } // Too many midpoints can cause results->fNumPoints to overflow or // otherwise cause the results->fPoints allocation below to OOM. // Cap it to a sane value. SkScalar numIntervals = len2 / fIntervalLength; if (!SkScalarIsFinite(numIntervals) || numIntervals > SkDashPath::kMaxDashCount) { return false; } int numMidPoints = SkScalarFloorToInt(numIntervals); results->fNumPoints += numMidPoints; len2 -= numMidPoints * fIntervalLength; bool partialLast = false; if (len2 > 0) { if (len2 < fIntervals[0]) { partialLast = true; } else { ++numMidPoints; ++results->fNumPoints; } } results->fPoints = new SkPoint[results->fNumPoints]; SkScalar distance = 0; int curPt = 0; if (clampedInitialDashLength > 0 || 0 == fInitialDashIndex) { SkASSERT(clampedInitialDashLength <= length); if (0 == fInitialDashIndex) { if (clampedInitialDashLength > 0) { // partial first block SkASSERT(SkPaint::kRound_Cap != rec.getCap()); // can't handle partial circles SkScalar x = pts[0].fX + tangent.fX * SkScalarHalf(clampedInitialDashLength); SkScalar y = pts[0].fY + tangent.fY * SkScalarHalf(clampedInitialDashLength); SkScalar halfWidth, halfHeight; if (isXAxis) { halfWidth = SkScalarHalf(clampedInitialDashLength); halfHeight = SkScalarHalf(rec.getWidth()); } else { halfWidth = SkScalarHalf(rec.getWidth()); halfHeight = SkScalarHalf(clampedInitialDashLength); } if (clampedInitialDashLength < fIntervals[0]) { // This one will not be like the others results->fFirst.addRect(x - halfWidth, y - halfHeight, x + halfWidth, y + halfHeight); } else { SkASSERT(curPt < results->fNumPoints); results->fPoints[curPt].set(x, y); ++curPt; } distance += clampedInitialDashLength; } distance += fIntervals[1]; // skip over the next blank block too } else { distance += clampedInitialDashLength; } } if (0 != numMidPoints) { distance += SkScalarHalf(fIntervals[0]); for (int i = 0; i < numMidPoints; ++i) { SkScalar x = pts[0].fX + tangent.fX * distance; SkScalar y = pts[0].fY + tangent.fY * distance; SkASSERT(curPt < results->fNumPoints); results->fPoints[curPt].set(x, y); ++curPt; distance += fIntervalLength; } distance -= SkScalarHalf(fIntervals[0]); } if (partialLast) { // partial final block SkASSERT(SkPaint::kRound_Cap != rec.getCap()); // can't handle partial circles SkScalar temp = length - distance; SkASSERT(temp < fIntervals[0]); SkScalar x = pts[0].fX + tangent.fX * (distance + SkScalarHalf(temp)); SkScalar y = pts[0].fY + tangent.fY * (distance + SkScalarHalf(temp)); SkScalar halfWidth, halfHeight; if (isXAxis) { halfWidth = SkScalarHalf(temp); halfHeight = SkScalarHalf(rec.getWidth()); } else { halfWidth = SkScalarHalf(rec.getWidth()); halfHeight = SkScalarHalf(temp); } results->fLast.addRect(x - halfWidth, y - halfHeight, x + halfWidth, y + halfHeight); } SkASSERT(curPt == results->fNumPoints); } return true; } SkPathEffect::DashType SkDashImpl::asADash(DashInfo* info) const { if (info) { if (info->fCount >= fCount && info->fIntervals) { memcpy(info->fIntervals, fIntervals, fCount * sizeof(SkScalar)); } info->fCount = fCount; info->fPhase = fPhase; } return kDash_DashType; } void SkDashImpl::flatten(SkWriteBuffer& buffer) const { buffer.writeScalar(fPhase); buffer.writeScalarArray(fIntervals, fCount); } sk_sp SkDashImpl::CreateProc(SkReadBuffer& buffer) { const SkScalar phase = buffer.readScalar(); uint32_t count = buffer.getArrayCount(); // Don't allocate gigantic buffers if there's not data for them. if (!buffer.validateCanReadN(count)) { return nullptr; } SkAutoSTArray<32, SkScalar> intervals(count); if (buffer.readScalarArray(intervals.get(), count)) { return SkDashPathEffect::Make(intervals.get(), SkToInt(count), phase); } return nullptr; } ////////////////////////////////////////////////////////////////////////////////////////////////// sk_sp SkDashPathEffect::Make(const SkScalar intervals[], int count, SkScalar phase) { if (!SkDashPath::ValidDashPath(phase, intervals, count)) { return nullptr; } return sk_sp(new SkDashImpl(intervals, count, phase)); }