/* * Copyright 2006 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkBlurMaskFilter.h" #include "SkBlurMask.h" #include "SkFlattenableBuffers.h" #include "SkMaskFilter.h" #include "SkBounder.h" #include "SkRasterClip.h" #include "SkRTConf.h" #include "SkStringUtils.h" class SkBlurMaskFilterImpl : public SkMaskFilter { public: SkBlurMaskFilterImpl(SkScalar radius, SkBlurMaskFilter::BlurStyle, uint32_t flags); // overrides from SkMaskFilter virtual SkMask::Format getFormat() const SK_OVERRIDE; virtual bool filterMask(SkMask* dst, const SkMask& src, const SkMatrix&, SkIPoint* margin) const SK_OVERRIDE; virtual BlurType asABlur(BlurInfo*) const SK_OVERRIDE; virtual void computeFastBounds(const SkRect&, SkRect*) const SK_OVERRIDE; SkDEVCODE(virtual void toString(SkString* str) const SK_OVERRIDE;) SK_DECLARE_PUBLIC_FLATTENABLE_DESERIALIZATION_PROCS(SkBlurMaskFilterImpl) protected: virtual FilterReturn filterRectsToNine(const SkRect[], int count, const SkMatrix&, const SkIRect& clipBounds, NinePatch*) const SK_OVERRIDE; bool filterRectMask(SkMask* dstM, const SkRect& r, const SkMatrix& matrix, SkIPoint* margin, SkMask::CreateMode createMode) const; private: SkScalar fRadius; SkBlurMaskFilter::BlurStyle fBlurStyle; uint32_t fBlurFlags; SkBlurMaskFilterImpl(SkFlattenableReadBuffer&); virtual void flatten(SkFlattenableWriteBuffer&) const SK_OVERRIDE; typedef SkMaskFilter INHERITED; }; SkMaskFilter* SkBlurMaskFilter::Create(SkScalar radius, SkBlurMaskFilter::BlurStyle style, uint32_t flags) { // use !(radius > 0) instead of radius <= 0 to reject NaN values if (!(radius > 0) || (unsigned)style >= SkBlurMaskFilter::kBlurStyleCount || flags > SkBlurMaskFilter::kAll_BlurFlag) { return NULL; } return SkNEW_ARGS(SkBlurMaskFilterImpl, (radius, style, flags)); } /////////////////////////////////////////////////////////////////////////////// SkBlurMaskFilterImpl::SkBlurMaskFilterImpl(SkScalar radius, SkBlurMaskFilter::BlurStyle style, uint32_t flags) : fRadius(radius), fBlurStyle(style), fBlurFlags(flags) { #if 0 fGamma = NULL; if (gammaScale) { fGamma = new U8[256]; if (gammaScale > 0) SkBlurMask::BuildSqrGamma(fGamma, gammaScale); else SkBlurMask::BuildSqrtGamma(fGamma, -gammaScale); } #endif SkASSERT(radius >= 0); SkASSERT((unsigned)style < SkBlurMaskFilter::kBlurStyleCount); SkASSERT(flags <= SkBlurMaskFilter::kAll_BlurFlag); } SkMask::Format SkBlurMaskFilterImpl::getFormat() const { return SkMask::kA8_Format; } bool SkBlurMaskFilterImpl::filterMask(SkMask* dst, const SkMask& src, const SkMatrix& matrix, SkIPoint* margin) const{ SkScalar radius; if (fBlurFlags & SkBlurMaskFilter::kIgnoreTransform_BlurFlag) { radius = fRadius; } else { radius = matrix.mapRadius(fRadius); } // To avoid unseemly allocation requests (esp. for finite platforms like // handset) we limit the radius so something manageable. (as opposed to // a request like 10,000) static const SkScalar MAX_RADIUS = SkIntToScalar(128); radius = SkMinScalar(radius, MAX_RADIUS); SkBlurMask::Quality blurQuality = (fBlurFlags & SkBlurMaskFilter::kHighQuality_BlurFlag) ? SkBlurMask::kHigh_Quality : SkBlurMask::kLow_Quality; #ifndef SK_DISABLE_SEPARABLE_MASK_BLUR return SkBlurMask::BlurSeparable(dst, src, radius, (SkBlurMask::Style)fBlurStyle, blurQuality, margin); #else return SkBlurMask::Blur(dst, src, radius, (SkBlurMask::Style)fBlurStyle, blurQuality, margin); #endif } bool SkBlurMaskFilterImpl::filterRectMask(SkMask* dst, const SkRect& r, const SkMatrix& matrix, SkIPoint* margin, SkMask::CreateMode createMode) const{ SkScalar radius; if (fBlurFlags & SkBlurMaskFilter::kIgnoreTransform_BlurFlag) { radius = fRadius; } else { radius = matrix.mapRadius(fRadius); } // To avoid unseemly allocation requests (esp. for finite platforms like // handset) we limit the radius so something manageable. (as opposed to // a request like 10,000) static const SkScalar MAX_RADIUS = SkIntToScalar(128); radius = SkMinScalar(radius, MAX_RADIUS); return SkBlurMask::BlurRect(dst, r, radius, (SkBlurMask::Style)fBlurStyle, margin, createMode); } #include "SkCanvas.h" static bool drawRectsIntoMask(const SkRect rects[], int count, SkMask* mask) { rects[0].roundOut(&mask->fBounds); mask->fRowBytes = SkAlign4(mask->fBounds.width()); mask->fFormat = SkMask::kA8_Format; size_t size = mask->computeImageSize(); mask->fImage = SkMask::AllocImage(size); if (NULL == mask->fImage) { return false; } sk_bzero(mask->fImage, size); SkBitmap bitmap; bitmap.setConfig(SkBitmap::kA8_Config, mask->fBounds.width(), mask->fBounds.height(), mask->fRowBytes); bitmap.setPixels(mask->fImage); SkCanvas canvas(bitmap); canvas.translate(-SkIntToScalar(mask->fBounds.left()), -SkIntToScalar(mask->fBounds.top())); SkPaint paint; paint.setAntiAlias(true); if (1 == count) { canvas.drawRect(rects[0], paint); } else { // todo: do I need a fast way to do this? SkPath path; path.addRect(rects[0]); path.addRect(rects[1]); path.setFillType(SkPath::kEvenOdd_FillType); canvas.drawPath(path, paint); } return true; } static bool rect_exceeds(const SkRect& r, SkScalar v) { return r.fLeft < -v || r.fTop < -v || r.fRight > v || r.fBottom > v || r.width() > v || r.height() > v; } #ifdef SK_IGNORE_FAST_RECT_BLUR SK_CONF_DECLARE( bool, c_analyticBlurNinepatch, "mask.filter.analyticNinePatch", false, "Use the faster analytic blur approach for ninepatch rects" ); #else SK_CONF_DECLARE( bool, c_analyticBlurNinepatch, "mask.filter.analyticNinePatch", true, "Use the faster analytic blur approach for ninepatch rects" ); #endif SkMaskFilter::FilterReturn SkBlurMaskFilterImpl::filterRectsToNine(const SkRect rects[], int count, const SkMatrix& matrix, const SkIRect& clipBounds, NinePatch* patch) const { if (count < 1 || count > 2) { return kUnimplemented_FilterReturn; } // TODO: report correct metrics for innerstyle, where we do not grow the // total bounds, but we do need an inset the size of our blur-radius if (SkBlurMaskFilter::kInner_BlurStyle == fBlurStyle) { return kUnimplemented_FilterReturn; } // TODO: take clipBounds into account to limit our coordinates up front // for now, just skip too-large src rects (to take the old code path). if (rect_exceeds(rects[0], SkIntToScalar(32767))) { return kUnimplemented_FilterReturn; } SkIPoint margin; SkMask srcM, dstM; rects[0].roundOut(&srcM.fBounds); srcM.fImage = NULL; srcM.fFormat = SkMask::kA8_Format; srcM.fRowBytes = 0; bool filterResult = false; if (count == 1 && c_analyticBlurNinepatch) { // special case for fast rect blur // don't actually do the blur the first time, just compute the correct size filterResult = this->filterRectMask(&dstM, rects[0], matrix, &margin, SkMask::kJustComputeBounds_CreateMode); } else { filterResult = this->filterMask(&dstM, srcM, matrix, &margin); } if (!filterResult) { return kFalse_FilterReturn; } /* * smallR is the smallest version of 'rect' that will still guarantee that * we get the same blur results on all edges, plus 1 center row/col that is * representative of the extendible/stretchable edges of the ninepatch. * Since our actual edge may be fractional we inset 1 more to be sure we * don't miss any interior blur. * x is an added pixel of blur, and { and } are the (fractional) edge * pixels from the original rect. * * x x { x x .... x x } x x * * Thus, in this case, we inset by a total of 5 (on each side) beginning * with our outer-rect (dstM.fBounds) */ SkRect smallR[2]; SkIPoint center; // +2 is from +1 for each edge (to account for possible fractional edges int smallW = dstM.fBounds.width() - srcM.fBounds.width() + 2; int smallH = dstM.fBounds.height() - srcM.fBounds.height() + 2; SkIRect innerIR; if (1 == count) { innerIR = srcM.fBounds; center.set(smallW, smallH); } else { SkASSERT(2 == count); rects[1].roundIn(&innerIR); center.set(smallW + (innerIR.left() - srcM.fBounds.left()), smallH + (innerIR.top() - srcM.fBounds.top())); } // +1 so we get a clean, stretchable, center row/col smallW += 1; smallH += 1; // we want the inset amounts to be integral, so we don't change any // fractional phase on the fRight or fBottom of our smallR. const SkScalar dx = SkIntToScalar(innerIR.width() - smallW); const SkScalar dy = SkIntToScalar(innerIR.height() - smallH); if (dx < 0 || dy < 0) { // we're too small, relative to our blur, to break into nine-patch, // so we ask to have our normal filterMask() be called. return kUnimplemented_FilterReturn; } smallR[0].set(rects[0].left(), rects[0].top(), rects[0].right() - dx, rects[0].bottom() - dy); SkASSERT(!smallR[0].isEmpty()); if (2 == count) { smallR[1].set(rects[1].left(), rects[1].top(), rects[1].right() - dx, rects[1].bottom() - dy); SkASSERT(!smallR[1].isEmpty()); } if (count > 1 || !c_analyticBlurNinepatch) { if (!drawRectsIntoMask(smallR, count, &srcM)) { return kFalse_FilterReturn; } SkAutoMaskFreeImage amf(srcM.fImage); if (!this->filterMask(&patch->fMask, srcM, matrix, &margin)) { return kFalse_FilterReturn; } } else { if (!this->filterRectMask(&patch->fMask, smallR[0], matrix, &margin, SkMask::kComputeBoundsAndRenderImage_CreateMode)) { return kFalse_FilterReturn; } } patch->fMask.fBounds.offsetTo(0, 0); patch->fOuterRect = dstM.fBounds; patch->fCenter = center; return kTrue_FilterReturn; } void SkBlurMaskFilterImpl::computeFastBounds(const SkRect& src, SkRect* dst) const { dst->set(src.fLeft - fRadius, src.fTop - fRadius, src.fRight + fRadius, src.fBottom + fRadius); } SkBlurMaskFilterImpl::SkBlurMaskFilterImpl(SkFlattenableReadBuffer& buffer) : SkMaskFilter(buffer) { fRadius = buffer.readScalar(); fBlurStyle = (SkBlurMaskFilter::BlurStyle)buffer.readInt(); fBlurFlags = buffer.readUInt() & SkBlurMaskFilter::kAll_BlurFlag; SkASSERT(fRadius >= 0); SkASSERT((unsigned)fBlurStyle < SkBlurMaskFilter::kBlurStyleCount); } void SkBlurMaskFilterImpl::flatten(SkFlattenableWriteBuffer& buffer) const { this->INHERITED::flatten(buffer); buffer.writeScalar(fRadius); buffer.writeInt(fBlurStyle); buffer.writeUInt(fBlurFlags); } static const SkMaskFilter::BlurType gBlurStyle2BlurType[] = { SkMaskFilter::kNormal_BlurType, SkMaskFilter::kSolid_BlurType, SkMaskFilter::kOuter_BlurType, SkMaskFilter::kInner_BlurType, }; SkMaskFilter::BlurType SkBlurMaskFilterImpl::asABlur(BlurInfo* info) const { if (info) { info->fRadius = fRadius; info->fIgnoreTransform = SkToBool(fBlurFlags & SkBlurMaskFilter::kIgnoreTransform_BlurFlag); info->fHighQuality = SkToBool(fBlurFlags & SkBlurMaskFilter::kHighQuality_BlurFlag); } return gBlurStyle2BlurType[fBlurStyle]; } #ifdef SK_DEVELOPER void SkBlurMaskFilterImpl::toString(SkString* str) const { str->append("SkBlurMaskFilterImpl: ("); str->append("radius: "); str->appendScalar(fRadius); str->append(" "); static const char* gStyleName[SkBlurMaskFilter::kBlurStyleCount] = { "normal", "solid", "outer", "inner" }; str->appendf("style: %s ", gStyleName[fBlurStyle]); str->append("flags: ("); if (fBlurFlags) { bool needSeparator = false; SkAddFlagToString(str, SkToBool(fBlurFlags & SkBlurMaskFilter::kIgnoreTransform_BlurFlag), "IgnoreXform", &needSeparator); SkAddFlagToString(str, SkToBool(fBlurFlags & SkBlurMaskFilter::kHighQuality_BlurFlag), "HighQuality", &needSeparator); } else { str->append("None"); } str->append("))"); } #endif SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_START(SkBlurMaskFilter) SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkBlurMaskFilterImpl) SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_END