/* * Copyright 2006 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkBlurMaskFilter.h" #include "SkBlurMask.h" #include "SkGpuBlurUtils.h" #include "SkFlattenableBuffers.h" #include "SkMaskFilter.h" #include "SkRTConf.h" #include "SkStringUtils.h" #include "SkStrokeRec.h" #if SK_SUPPORT_GPU #include "GrContext.h" #include "GrTexture.h" #include "effects/GrSimpleTextureEffect.h" #include "SkGrPixelRef.h" #endif class SkBlurMaskFilterImpl : public SkMaskFilter { public: SkBlurMaskFilterImpl(SkScalar sigma, SkBlurMaskFilter::BlurStyle, uint32_t flags); // overrides from SkMaskFilter virtual SkMask::Format getFormat() const SK_OVERRIDE; virtual bool filterMask(SkMask* dst, const SkMask& src, const SkMatrix&, SkIPoint* margin) const SK_OVERRIDE; #if SK_SUPPORT_GPU virtual bool canFilterMaskGPU(const SkRect& devBounds, const SkIRect& clipBounds, const SkMatrix& ctm, SkRect* maskRect) const SK_OVERRIDE; virtual bool filterMaskGPU(GrTexture* src, const SkRect& maskRect, GrTexture** result, bool canOverwriteSrc) const; #endif virtual void computeFastBounds(const SkRect&, SkRect*) const SK_OVERRIDE; SkDEVCODE(virtual void toString(SkString* str) const SK_OVERRIDE;) SK_DECLARE_PUBLIC_FLATTENABLE_DESERIALIZATION_PROCS(SkBlurMaskFilterImpl) protected: virtual FilterReturn filterRectsToNine(const SkRect[], int count, const SkMatrix&, const SkIRect& clipBounds, NinePatch*) const SK_OVERRIDE; bool filterRectMask(SkMask* dstM, const SkRect& r, const SkMatrix& matrix, SkIPoint* margin, SkMask::CreateMode createMode) const; private: // To avoid unseemly allocation requests (esp. for finite platforms like // handset) we limit the radius so something manageable. (as opposed to // a request like 10,000) static const SkScalar kMAX_BLUR_SIGMA; SkScalar fSigma; SkBlurMaskFilter::BlurStyle fBlurStyle; uint32_t fBlurFlags; SkBlurMaskFilterImpl(SkFlattenableReadBuffer&); virtual void flatten(SkFlattenableWriteBuffer&) const SK_OVERRIDE; SkScalar computeXformedSigma(const SkMatrix& ctm) const { bool ignoreTransform = SkToBool(fBlurFlags & SkBlurMaskFilter::kIgnoreTransform_BlurFlag); SkScalar xformedSigma = ignoreTransform ? fSigma : ctm.mapRadius(fSigma); return SkMinScalar(xformedSigma, kMAX_BLUR_SIGMA); } typedef SkMaskFilter INHERITED; }; const SkScalar SkBlurMaskFilterImpl::kMAX_BLUR_SIGMA = SkIntToScalar(128); SkMaskFilter* SkBlurMaskFilter::Create(SkScalar radius, SkBlurMaskFilter::BlurStyle style, uint32_t flags) { // use !(radius > 0) instead of radius <= 0 to reject NaN values if (!(radius > 0) || (unsigned)style >= SkBlurMaskFilter::kBlurStyleCount || flags > SkBlurMaskFilter::kAll_BlurFlag) { return NULL; } SkScalar sigma = SkBlurMask::ConvertRadiusToSigma(radius); return SkNEW_ARGS(SkBlurMaskFilterImpl, (sigma, style, flags)); } SkMaskFilter* SkBlurMaskFilter::Create(SkBlurMaskFilter::BlurStyle style, SkScalar sigma, uint32_t flags) { // use !(sigma > 0) instead of sigma <= 0 to reject NaN values if (!(sigma > 0) || (unsigned)style >= SkBlurMaskFilter::kBlurStyleCount || flags > SkBlurMaskFilter::kAll_BlurFlag) { return NULL; } return SkNEW_ARGS(SkBlurMaskFilterImpl, (sigma, style, flags)); } /////////////////////////////////////////////////////////////////////////////// SkBlurMaskFilterImpl::SkBlurMaskFilterImpl(SkScalar sigma, SkBlurMaskFilter::BlurStyle style, uint32_t flags) : fSigma(sigma), fBlurStyle(style), fBlurFlags(flags) { #if 0 fGamma = NULL; if (gammaScale) { fGamma = new U8[256]; if (gammaScale > 0) SkBlurMask::BuildSqrGamma(fGamma, gammaScale); else SkBlurMask::BuildSqrtGamma(fGamma, -gammaScale); } #endif SkASSERT(fSigma >= 0); SkASSERT((unsigned)style < SkBlurMaskFilter::kBlurStyleCount); SkASSERT(flags <= SkBlurMaskFilter::kAll_BlurFlag); } SkMask::Format SkBlurMaskFilterImpl::getFormat() const { return SkMask::kA8_Format; } bool SkBlurMaskFilterImpl::filterMask(SkMask* dst, const SkMask& src, const SkMatrix& matrix, SkIPoint* margin) const{ SkScalar sigma = this->computeXformedSigma(matrix); SkBlurMask::Quality blurQuality = (fBlurFlags & SkBlurMaskFilter::kHighQuality_BlurFlag) ? SkBlurMask::kHigh_Quality : SkBlurMask::kLow_Quality; return SkBlurMask::BoxBlur(dst, src, sigma, (SkBlurMask::Style)fBlurStyle, blurQuality, margin); } bool SkBlurMaskFilterImpl::filterRectMask(SkMask* dst, const SkRect& r, const SkMatrix& matrix, SkIPoint* margin, SkMask::CreateMode createMode) const{ SkScalar sigma = computeXformedSigma(matrix); return SkBlurMask::BlurRect(sigma, dst, r, (SkBlurMask::Style)fBlurStyle, margin, createMode); } #include "SkCanvas.h" static bool drawRectsIntoMask(const SkRect rects[], int count, SkMask* mask) { rects[0].roundOut(&mask->fBounds); mask->fRowBytes = SkAlign4(mask->fBounds.width()); mask->fFormat = SkMask::kA8_Format; size_t size = mask->computeImageSize(); mask->fImage = SkMask::AllocImage(size); if (NULL == mask->fImage) { return false; } sk_bzero(mask->fImage, size); SkBitmap bitmap; bitmap.setConfig(SkBitmap::kA8_Config, mask->fBounds.width(), mask->fBounds.height(), mask->fRowBytes); bitmap.setPixels(mask->fImage); SkCanvas canvas(bitmap); canvas.translate(-SkIntToScalar(mask->fBounds.left()), -SkIntToScalar(mask->fBounds.top())); SkPaint paint; paint.setAntiAlias(true); if (1 == count) { canvas.drawRect(rects[0], paint); } else { // todo: do I need a fast way to do this? SkPath path; path.addRect(rects[0]); path.addRect(rects[1]); path.setFillType(SkPath::kEvenOdd_FillType); canvas.drawPath(path, paint); } return true; } static bool rect_exceeds(const SkRect& r, SkScalar v) { return r.fLeft < -v || r.fTop < -v || r.fRight > v || r.fBottom > v || r.width() > v || r.height() > v; } #ifdef SK_IGNORE_FAST_RECT_BLUR SK_CONF_DECLARE( bool, c_analyticBlurNinepatch, "mask.filter.analyticNinePatch", false, "Use the faster analytic blur approach for ninepatch rects" ); #else SK_CONF_DECLARE( bool, c_analyticBlurNinepatch, "mask.filter.analyticNinePatch", true, "Use the faster analytic blur approach for ninepatch rects" ); #endif SkMaskFilter::FilterReturn SkBlurMaskFilterImpl::filterRectsToNine(const SkRect rects[], int count, const SkMatrix& matrix, const SkIRect& clipBounds, NinePatch* patch) const { if (count < 1 || count > 2) { return kUnimplemented_FilterReturn; } // TODO: report correct metrics for innerstyle, where we do not grow the // total bounds, but we do need an inset the size of our blur-radius if (SkBlurMaskFilter::kInner_BlurStyle == fBlurStyle) { return kUnimplemented_FilterReturn; } // TODO: take clipBounds into account to limit our coordinates up front // for now, just skip too-large src rects (to take the old code path). if (rect_exceeds(rects[0], SkIntToScalar(32767))) { return kUnimplemented_FilterReturn; } SkIPoint margin; SkMask srcM, dstM; rects[0].roundOut(&srcM.fBounds); srcM.fImage = NULL; srcM.fFormat = SkMask::kA8_Format; srcM.fRowBytes = 0; bool filterResult = false; if (count == 1 && c_analyticBlurNinepatch) { // special case for fast rect blur // don't actually do the blur the first time, just compute the correct size filterResult = this->filterRectMask(&dstM, rects[0], matrix, &margin, SkMask::kJustComputeBounds_CreateMode); } else { filterResult = this->filterMask(&dstM, srcM, matrix, &margin); } if (!filterResult) { return kFalse_FilterReturn; } /* * smallR is the smallest version of 'rect' that will still guarantee that * we get the same blur results on all edges, plus 1 center row/col that is * representative of the extendible/stretchable edges of the ninepatch. * Since our actual edge may be fractional we inset 1 more to be sure we * don't miss any interior blur. * x is an added pixel of blur, and { and } are the (fractional) edge * pixels from the original rect. * * x x { x x .... x x } x x * * Thus, in this case, we inset by a total of 5 (on each side) beginning * with our outer-rect (dstM.fBounds) */ SkRect smallR[2]; SkIPoint center; // +2 is from +1 for each edge (to account for possible fractional edges int smallW = dstM.fBounds.width() - srcM.fBounds.width() + 2; int smallH = dstM.fBounds.height() - srcM.fBounds.height() + 2; SkIRect innerIR; if (1 == count) { innerIR = srcM.fBounds; center.set(smallW, smallH); } else { SkASSERT(2 == count); rects[1].roundIn(&innerIR); center.set(smallW + (innerIR.left() - srcM.fBounds.left()), smallH + (innerIR.top() - srcM.fBounds.top())); } // +1 so we get a clean, stretchable, center row/col smallW += 1; smallH += 1; // we want the inset amounts to be integral, so we don't change any // fractional phase on the fRight or fBottom of our smallR. const SkScalar dx = SkIntToScalar(innerIR.width() - smallW); const SkScalar dy = SkIntToScalar(innerIR.height() - smallH); if (dx < 0 || dy < 0) { // we're too small, relative to our blur, to break into nine-patch, // so we ask to have our normal filterMask() be called. return kUnimplemented_FilterReturn; } smallR[0].set(rects[0].left(), rects[0].top(), rects[0].right() - dx, rects[0].bottom() - dy); if (smallR[0].width() < 2 || smallR[0].height() < 2) { return kUnimplemented_FilterReturn; } if (2 == count) { smallR[1].set(rects[1].left(), rects[1].top(), rects[1].right() - dx, rects[1].bottom() - dy); SkASSERT(!smallR[1].isEmpty()); } if (count > 1 || !c_analyticBlurNinepatch) { if (!drawRectsIntoMask(smallR, count, &srcM)) { return kFalse_FilterReturn; } SkAutoMaskFreeImage amf(srcM.fImage); if (!this->filterMask(&patch->fMask, srcM, matrix, &margin)) { return kFalse_FilterReturn; } } else { if (!this->filterRectMask(&patch->fMask, smallR[0], matrix, &margin, SkMask::kComputeBoundsAndRenderImage_CreateMode)) { return kFalse_FilterReturn; } } patch->fMask.fBounds.offsetTo(0, 0); patch->fOuterRect = dstM.fBounds; patch->fCenter = center; return kTrue_FilterReturn; } void SkBlurMaskFilterImpl::computeFastBounds(const SkRect& src, SkRect* dst) const { SkScalar pad = 3.0f * fSigma; dst->set(src.fLeft - pad, src.fTop - pad, src.fRight + pad, src.fBottom + pad); } SkBlurMaskFilterImpl::SkBlurMaskFilterImpl(SkFlattenableReadBuffer& buffer) : SkMaskFilter(buffer) { fSigma = buffer.readScalar(); #ifndef DELETE_THIS_CODE_WHEN_SKPS_ARE_REBUILT_AT_V13_AND_ALL_OTHER_INSTANCES_TOO // Fixing this must be done in two stages. When the skps are recaptured in V13, // remove the ConvertRadiusToSigma but retain the absolute value. // At the same time, switch the code in flatten to write a positive value. // When the skps are captured in V14 the absolute value can be removed. if (fSigma > 0) { fSigma = SkBlurMask::ConvertRadiusToSigma(fSigma); } else { fSigma = -fSigma; } #endif fBlurStyle = (SkBlurMaskFilter::BlurStyle)buffer.readInt(); fBlurFlags = buffer.readUInt() & SkBlurMaskFilter::kAll_BlurFlag; SkASSERT(fSigma >= 0); SkASSERT((unsigned)fBlurStyle < SkBlurMaskFilter::kBlurStyleCount); } void SkBlurMaskFilterImpl::flatten(SkFlattenableWriteBuffer& buffer) const { this->INHERITED::flatten(buffer); buffer.writeScalar(-fSigma); buffer.writeInt(fBlurStyle); buffer.writeUInt(fBlurFlags); } #if SK_SUPPORT_GPU bool SkBlurMaskFilterImpl::canFilterMaskGPU(const SkRect& srcBounds, const SkIRect& clipBounds, const SkMatrix& ctm, SkRect* maskRect) const { SkScalar xformedSigma = this->computeXformedSigma(ctm); if (xformedSigma <= 0) { return false; } static const SkScalar kMIN_GPU_BLUR_SIZE = SkIntToScalar(64); static const SkScalar kMIN_GPU_BLUR_SIGMA = SkIntToScalar(32); if (srcBounds.width() <= kMIN_GPU_BLUR_SIZE && srcBounds.height() <= kMIN_GPU_BLUR_SIZE && xformedSigma <= kMIN_GPU_BLUR_SIGMA) { // We prefer to blur small rect with small radius via CPU. return false; } if (NULL == maskRect) { // don't need to compute maskRect return true; } float sigma3 = 3 * SkScalarToFloat(xformedSigma); SkRect clipRect = SkRect::MakeFromIRect(clipBounds); SkRect srcRect(srcBounds); // Outset srcRect and clipRect by 3 * sigma, to compute affected blur area. srcRect.outset(SkFloatToScalar(sigma3), SkFloatToScalar(sigma3)); clipRect.outset(SkFloatToScalar(sigma3), SkFloatToScalar(sigma3)); srcRect.intersect(clipRect); *maskRect = srcRect; return true; } bool SkBlurMaskFilterImpl::filterMaskGPU(GrTexture* src, const SkRect& maskRect, GrTexture** result, bool canOverwriteSrc) const { SkRect clipRect = SkRect::MakeWH(maskRect.width(), maskRect.height()); GrContext* context = src->getContext(); GrContext::AutoWideOpenIdentityDraw awo(context, NULL); SkScalar xformedSigma = this->computeXformedSigma(context->getMatrix()); SkASSERT(xformedSigma > 0); // If we're doing a normal blur, we can clobber the pathTexture in the // gaussianBlur. Otherwise, we need to save it for later compositing. bool isNormalBlur = (SkBlurMaskFilter::kNormal_BlurStyle == fBlurStyle); *result = SkGpuBlurUtils::GaussianBlur(context, src, isNormalBlur && canOverwriteSrc, clipRect, false, xformedSigma, xformedSigma); if (NULL == *result) { return false; } if (!isNormalBlur) { context->setIdentityMatrix(); GrPaint paint; SkMatrix matrix; matrix.setIDiv(src->width(), src->height()); // Blend pathTexture over blurTexture. GrContext::AutoRenderTarget art(context, (*result)->asRenderTarget()); paint.addColorEffect(GrSimpleTextureEffect::Create(src, matrix))->unref(); if (SkBlurMaskFilter::kInner_BlurStyle == fBlurStyle) { // inner: dst = dst * src paint.setBlendFunc(kDC_GrBlendCoeff, kZero_GrBlendCoeff); } else if (SkBlurMaskFilter::kSolid_BlurStyle == fBlurStyle) { // solid: dst = src + dst - src * dst // = (1 - dst) * src + 1 * dst paint.setBlendFunc(kIDC_GrBlendCoeff, kOne_GrBlendCoeff); } else if (SkBlurMaskFilter::kOuter_BlurStyle == fBlurStyle) { // outer: dst = dst * (1 - src) // = 0 * src + (1 - src) * dst paint.setBlendFunc(kZero_GrBlendCoeff, kISC_GrBlendCoeff); } context->drawRect(paint, clipRect); } return true; } #endif // SK_SUPPORT_GPU #ifdef SK_DEVELOPER void SkBlurMaskFilterImpl::toString(SkString* str) const { str->append("SkBlurMaskFilterImpl: ("); str->append("sigma: "); str->appendScalar(fSigma); str->append(" "); static const char* gStyleName[SkBlurMaskFilter::kBlurStyleCount] = { "normal", "solid", "outer", "inner" }; str->appendf("style: %s ", gStyleName[fBlurStyle]); str->append("flags: ("); if (fBlurFlags) { bool needSeparator = false; SkAddFlagToString(str, SkToBool(fBlurFlags & SkBlurMaskFilter::kIgnoreTransform_BlurFlag), "IgnoreXform", &needSeparator); SkAddFlagToString(str, SkToBool(fBlurFlags & SkBlurMaskFilter::kHighQuality_BlurFlag), "HighQuality", &needSeparator); } else { str->append("None"); } str->append("))"); } #endif SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_START(SkBlurMaskFilter) SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkBlurMaskFilterImpl) SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_END