/* * Copyright 2006 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkBlurMaskFilter.h" #include "SkBlurMask.h" #include "SkGpuBlurUtils.h" #include "SkReadBuffer.h" #include "SkWriteBuffer.h" #include "SkMaskFilter.h" #include "SkRRect.h" #include "SkRTConf.h" #include "SkStringUtils.h" #include "SkStrokeRec.h" #if SK_SUPPORT_GPU #include "GrContext.h" #include "GrTexture.h" #include "GrEffect.h" #include "gl/GrGLEffect.h" #include "effects/GrSimpleTextureEffect.h" #include "GrTBackendEffectFactory.h" #include "SkGrPixelRef.h" #endif class SkBlurMaskFilterImpl : public SkMaskFilter { public: SkBlurMaskFilterImpl(SkScalar sigma, SkBlurMaskFilter::BlurStyle, uint32_t flags); // overrides from SkMaskFilter virtual SkMask::Format getFormat() const SK_OVERRIDE; virtual bool filterMask(SkMask* dst, const SkMask& src, const SkMatrix&, SkIPoint* margin) const SK_OVERRIDE; #if SK_SUPPORT_GPU virtual bool canFilterMaskGPU(const SkRect& devBounds, const SkIRect& clipBounds, const SkMatrix& ctm, SkRect* maskRect) const SK_OVERRIDE; virtual bool directFilterMaskGPU(GrContext* context, GrPaint* grp, const SkStrokeRec& strokeRec, const SkPath& path) const SK_OVERRIDE; virtual bool filterMaskGPU(GrTexture* src, const SkMatrix& ctm, const SkRect& maskRect, GrTexture** result, bool canOverwriteSrc) const SK_OVERRIDE; #endif virtual void computeFastBounds(const SkRect&, SkRect*) const SK_OVERRIDE; SkDEVCODE(virtual void toString(SkString* str) const SK_OVERRIDE;) SK_DECLARE_PUBLIC_FLATTENABLE_DESERIALIZATION_PROCS(SkBlurMaskFilterImpl) protected: virtual FilterReturn filterRectsToNine(const SkRect[], int count, const SkMatrix&, const SkIRect& clipBounds, NinePatch*) const SK_OVERRIDE; virtual FilterReturn filterRRectToNine(const SkRRect&, const SkMatrix&, const SkIRect& clipBounds, NinePatch*) const SK_OVERRIDE; bool filterRectMask(SkMask* dstM, const SkRect& r, const SkMatrix& matrix, SkIPoint* margin, SkMask::CreateMode createMode) const; private: // To avoid unseemly allocation requests (esp. for finite platforms like // handset) we limit the radius so something manageable. (as opposed to // a request like 10,000) static const SkScalar kMAX_BLUR_SIGMA; SkScalar fSigma; SkBlurMaskFilter::BlurStyle fBlurStyle; uint32_t fBlurFlags; SkBlurMaskFilterImpl(SkReadBuffer&); virtual void flatten(SkWriteBuffer&) const SK_OVERRIDE; SkScalar computeXformedSigma(const SkMatrix& ctm) const { bool ignoreTransform = SkToBool(fBlurFlags & SkBlurMaskFilter::kIgnoreTransform_BlurFlag); SkScalar xformedSigma = ignoreTransform ? fSigma : ctm.mapRadius(fSigma); return SkMinScalar(xformedSigma, kMAX_BLUR_SIGMA); } typedef SkMaskFilter INHERITED; }; const SkScalar SkBlurMaskFilterImpl::kMAX_BLUR_SIGMA = SkIntToScalar(128); SkMaskFilter* SkBlurMaskFilter::Create(SkScalar radius, SkBlurMaskFilter::BlurStyle style, uint32_t flags) { // use !(radius > 0) instead of radius <= 0 to reject NaN values if (!(radius > 0) || (unsigned)style >= SkBlurMaskFilter::kBlurStyleCount || flags > SkBlurMaskFilter::kAll_BlurFlag) { return NULL; } SkScalar sigma = SkBlurMask::ConvertRadiusToSigma(radius); return SkNEW_ARGS(SkBlurMaskFilterImpl, (sigma, style, flags)); } SkMaskFilter* SkBlurMaskFilter::Create(SkBlurMaskFilter::BlurStyle style, SkScalar sigma, uint32_t flags) { // use !(sigma > 0) instead of sigma <= 0 to reject NaN values if (!(sigma > 0) || (unsigned)style >= SkBlurMaskFilter::kBlurStyleCount || flags > SkBlurMaskFilter::kAll_BlurFlag) { return NULL; } return SkNEW_ARGS(SkBlurMaskFilterImpl, (sigma, style, flags)); } /////////////////////////////////////////////////////////////////////////////// SkBlurMaskFilterImpl::SkBlurMaskFilterImpl(SkScalar sigma, SkBlurMaskFilter::BlurStyle style, uint32_t flags) : fSigma(sigma), fBlurStyle(style), fBlurFlags(flags) { #if 0 fGamma = NULL; if (gammaScale) { fGamma = new U8[256]; if (gammaScale > 0) SkBlurMask::BuildSqrGamma(fGamma, gammaScale); else SkBlurMask::BuildSqrtGamma(fGamma, -gammaScale); } #endif SkASSERT(fSigma >= 0); SkASSERT((unsigned)style < SkBlurMaskFilter::kBlurStyleCount); SkASSERT(flags <= SkBlurMaskFilter::kAll_BlurFlag); } SkMask::Format SkBlurMaskFilterImpl::getFormat() const { return SkMask::kA8_Format; } bool SkBlurMaskFilterImpl::filterMask(SkMask* dst, const SkMask& src, const SkMatrix& matrix, SkIPoint* margin) const{ SkScalar sigma = this->computeXformedSigma(matrix); SkBlurMask::Quality blurQuality = (fBlurFlags & SkBlurMaskFilter::kHighQuality_BlurFlag) ? SkBlurMask::kHigh_Quality : SkBlurMask::kLow_Quality; return SkBlurMask::BoxBlur(dst, src, sigma, (SkBlurMask::Style)fBlurStyle, blurQuality, margin); } bool SkBlurMaskFilterImpl::filterRectMask(SkMask* dst, const SkRect& r, const SkMatrix& matrix, SkIPoint* margin, SkMask::CreateMode createMode) const{ SkScalar sigma = computeXformedSigma(matrix); return SkBlurMask::BlurRect(sigma, dst, r, (SkBlurMask::Style)fBlurStyle, margin, createMode); } #include "SkCanvas.h" static bool prepare_to_draw_into_mask(const SkRect& bounds, SkMask* mask) { SkASSERT(mask != NULL); bounds.roundOut(&mask->fBounds); mask->fRowBytes = SkAlign4(mask->fBounds.width()); mask->fFormat = SkMask::kA8_Format; const size_t size = mask->computeImageSize(); mask->fImage = SkMask::AllocImage(size); if (NULL == mask->fImage) { return false; } // FIXME: use sk_calloc in AllocImage? sk_bzero(mask->fImage, size); return true; } static bool draw_rrect_into_mask(const SkRRect rrect, SkMask* mask) { if (!prepare_to_draw_into_mask(rrect.rect(), mask)) { return false; } // FIXME: This code duplicates code in draw_rects_into_mask, below. Is there a // clean way to share more code? SkBitmap bitmap; bitmap.installMaskPixels(*mask); SkCanvas canvas(bitmap); canvas.translate(-SkIntToScalar(mask->fBounds.left()), -SkIntToScalar(mask->fBounds.top())); SkPaint paint; paint.setAntiAlias(true); canvas.drawRRect(rrect, paint); return true; } static bool draw_rects_into_mask(const SkRect rects[], int count, SkMask* mask) { if (!prepare_to_draw_into_mask(rects[0], mask)) { return false; } SkBitmap bitmap; bitmap.installPixels(SkImageInfo::Make(mask->fBounds.width(), mask->fBounds.height(), kAlpha_8_SkColorType, kPremul_SkAlphaType), mask->fImage, mask->fRowBytes, NULL, NULL); SkCanvas canvas(bitmap); canvas.translate(-SkIntToScalar(mask->fBounds.left()), -SkIntToScalar(mask->fBounds.top())); SkPaint paint; paint.setAntiAlias(true); if (1 == count) { canvas.drawRect(rects[0], paint); } else { // todo: do I need a fast way to do this? SkPath path; path.addRect(rects[0]); path.addRect(rects[1]); path.setFillType(SkPath::kEvenOdd_FillType); canvas.drawPath(path, paint); } return true; } static bool rect_exceeds(const SkRect& r, SkScalar v) { return r.fLeft < -v || r.fTop < -v || r.fRight > v || r.fBottom > v || r.width() > v || r.height() > v; } SkMaskFilter::FilterReturn SkBlurMaskFilterImpl::filterRRectToNine(const SkRRect& rrect, const SkMatrix& matrix, const SkIRect& clipBounds, NinePatch* patch) const { SkASSERT(patch != NULL); switch (rrect.getType()) { case SkRRect::kUnknown_Type: // Unknown should never be returned. SkASSERT(false); // Fall through. case SkRRect::kEmpty_Type: // Nothing to draw. return kFalse_FilterReturn; case SkRRect::kRect_Type: // We should have caught this earlier. SkASSERT(false); // Fall through. case SkRRect::kOval_Type: // The nine patch special case does not handle ovals, and we // already have code for rectangles. return kUnimplemented_FilterReturn; case SkRRect::kSimple_Type: // Fall through. case SkRRect::kComplex_Type: // These can take advantage of this fast path. break; } // TODO: report correct metrics for innerstyle, where we do not grow the // total bounds, but we do need an inset the size of our blur-radius if (SkBlurMaskFilter::kInner_BlurStyle == fBlurStyle) { return kUnimplemented_FilterReturn; } // TODO: take clipBounds into account to limit our coordinates up front // for now, just skip too-large src rects (to take the old code path). if (rect_exceeds(rrect.rect(), SkIntToScalar(32767))) { return kUnimplemented_FilterReturn; } SkIPoint margin; SkMask srcM, dstM; rrect.rect().roundOut(&srcM.fBounds); srcM.fImage = NULL; srcM.fFormat = SkMask::kA8_Format; srcM.fRowBytes = 0; if (!this->filterMask(&dstM, srcM, matrix, &margin)) { return kFalse_FilterReturn; } // Now figure out the appropriate width and height of the smaller round rectangle // to stretch. It will take into account the larger radius per side as well as double // the margin, to account for inner and outer blur. const SkVector& UL = rrect.radii(SkRRect::kUpperLeft_Corner); const SkVector& UR = rrect.radii(SkRRect::kUpperRight_Corner); const SkVector& LR = rrect.radii(SkRRect::kLowerRight_Corner); const SkVector& LL = rrect.radii(SkRRect::kLowerLeft_Corner); const SkScalar leftUnstretched = SkTMax(UL.fX, LL.fX) + SkIntToScalar(2 * margin.fX); const SkScalar rightUnstretched = SkTMax(UR.fX, LR.fX) + SkIntToScalar(2 * margin.fX); // Extra space in the middle to ensure an unchanging piece for stretching. Use 3 to cover // any fractional space on either side plus 1 for the part to stretch. const SkScalar stretchSize = SkIntToScalar(3); const SkScalar totalSmallWidth = leftUnstretched + rightUnstretched + stretchSize; if (totalSmallWidth >= rrect.rect().width()) { // There is no valid piece to stretch. return kUnimplemented_FilterReturn; } const SkScalar topUnstretched = SkTMax(UL.fY, UR.fY) + SkIntToScalar(2 * margin.fY); const SkScalar bottomUnstretched = SkTMax(LL.fY, LR.fY) + SkIntToScalar(2 * margin.fY); const SkScalar totalSmallHeight = topUnstretched + bottomUnstretched + stretchSize; if (totalSmallHeight >= rrect.rect().height()) { // There is no valid piece to stretch. return kUnimplemented_FilterReturn; } SkRect smallR = SkRect::MakeWH(totalSmallWidth, totalSmallHeight); SkRRect smallRR; SkVector radii[4]; radii[SkRRect::kUpperLeft_Corner] = UL; radii[SkRRect::kUpperRight_Corner] = UR; radii[SkRRect::kLowerRight_Corner] = LR; radii[SkRRect::kLowerLeft_Corner] = LL; smallRR.setRectRadii(smallR, radii); if (!draw_rrect_into_mask(smallRR, &srcM)) { return kFalse_FilterReturn; } SkAutoMaskFreeImage amf(srcM.fImage); if (!this->filterMask(&patch->fMask, srcM, matrix, &margin)) { return kFalse_FilterReturn; } patch->fMask.fBounds.offsetTo(0, 0); patch->fOuterRect = dstM.fBounds; patch->fCenter.fX = SkScalarCeilToInt(leftUnstretched) + 1; patch->fCenter.fY = SkScalarCeilToInt(topUnstretched) + 1; return kTrue_FilterReturn; } #ifdef SK_IGNORE_FAST_RECT_BLUR SK_CONF_DECLARE( bool, c_analyticBlurNinepatch, "mask.filter.analyticNinePatch", false, "Use the faster analytic blur approach for ninepatch rects" ); #else SK_CONF_DECLARE( bool, c_analyticBlurNinepatch, "mask.filter.analyticNinePatch", true, "Use the faster analytic blur approach for ninepatch rects" ); #endif SkMaskFilter::FilterReturn SkBlurMaskFilterImpl::filterRectsToNine(const SkRect rects[], int count, const SkMatrix& matrix, const SkIRect& clipBounds, NinePatch* patch) const { if (count < 1 || count > 2) { return kUnimplemented_FilterReturn; } // TODO: report correct metrics for innerstyle, where we do not grow the // total bounds, but we do need an inset the size of our blur-radius if (SkBlurMaskFilter::kInner_BlurStyle == fBlurStyle || SkBlurMaskFilter::kOuter_BlurStyle == fBlurStyle) { return kUnimplemented_FilterReturn; } // TODO: take clipBounds into account to limit our coordinates up front // for now, just skip too-large src rects (to take the old code path). if (rect_exceeds(rects[0], SkIntToScalar(32767))) { return kUnimplemented_FilterReturn; } SkIPoint margin; SkMask srcM, dstM; rects[0].roundOut(&srcM.fBounds); srcM.fImage = NULL; srcM.fFormat = SkMask::kA8_Format; srcM.fRowBytes = 0; bool filterResult = false; if (count == 1 && c_analyticBlurNinepatch) { // special case for fast rect blur // don't actually do the blur the first time, just compute the correct size filterResult = this->filterRectMask(&dstM, rects[0], matrix, &margin, SkMask::kJustComputeBounds_CreateMode); } else { filterResult = this->filterMask(&dstM, srcM, matrix, &margin); } if (!filterResult) { return kFalse_FilterReturn; } /* * smallR is the smallest version of 'rect' that will still guarantee that * we get the same blur results on all edges, plus 1 center row/col that is * representative of the extendible/stretchable edges of the ninepatch. * Since our actual edge may be fractional we inset 1 more to be sure we * don't miss any interior blur. * x is an added pixel of blur, and { and } are the (fractional) edge * pixels from the original rect. * * x x { x x .... x x } x x * * Thus, in this case, we inset by a total of 5 (on each side) beginning * with our outer-rect (dstM.fBounds) */ SkRect smallR[2]; SkIPoint center; // +2 is from +1 for each edge (to account for possible fractional edges int smallW = dstM.fBounds.width() - srcM.fBounds.width() + 2; int smallH = dstM.fBounds.height() - srcM.fBounds.height() + 2; SkIRect innerIR; if (1 == count) { innerIR = srcM.fBounds; center.set(smallW, smallH); } else { SkASSERT(2 == count); rects[1].roundIn(&innerIR); center.set(smallW + (innerIR.left() - srcM.fBounds.left()), smallH + (innerIR.top() - srcM.fBounds.top())); } // +1 so we get a clean, stretchable, center row/col smallW += 1; smallH += 1; // we want the inset amounts to be integral, so we don't change any // fractional phase on the fRight or fBottom of our smallR. const SkScalar dx = SkIntToScalar(innerIR.width() - smallW); const SkScalar dy = SkIntToScalar(innerIR.height() - smallH); if (dx < 0 || dy < 0) { // we're too small, relative to our blur, to break into nine-patch, // so we ask to have our normal filterMask() be called. return kUnimplemented_FilterReturn; } smallR[0].set(rects[0].left(), rects[0].top(), rects[0].right() - dx, rects[0].bottom() - dy); if (smallR[0].width() < 2 || smallR[0].height() < 2) { return kUnimplemented_FilterReturn; } if (2 == count) { smallR[1].set(rects[1].left(), rects[1].top(), rects[1].right() - dx, rects[1].bottom() - dy); SkASSERT(!smallR[1].isEmpty()); } if (count > 1 || !c_analyticBlurNinepatch) { if (!draw_rects_into_mask(smallR, count, &srcM)) { return kFalse_FilterReturn; } SkAutoMaskFreeImage amf(srcM.fImage); if (!this->filterMask(&patch->fMask, srcM, matrix, &margin)) { return kFalse_FilterReturn; } } else { if (!this->filterRectMask(&patch->fMask, smallR[0], matrix, &margin, SkMask::kComputeBoundsAndRenderImage_CreateMode)) { return kFalse_FilterReturn; } } patch->fMask.fBounds.offsetTo(0, 0); patch->fOuterRect = dstM.fBounds; patch->fCenter = center; return kTrue_FilterReturn; } void SkBlurMaskFilterImpl::computeFastBounds(const SkRect& src, SkRect* dst) const { SkScalar pad = 3.0f * fSigma; dst->set(src.fLeft - pad, src.fTop - pad, src.fRight + pad, src.fBottom + pad); } SkBlurMaskFilterImpl::SkBlurMaskFilterImpl(SkReadBuffer& buffer) : SkMaskFilter(buffer) { fSigma = buffer.readScalar(); fBlurStyle = (SkBlurMaskFilter::BlurStyle)buffer.readInt(); fBlurFlags = buffer.readUInt() & SkBlurMaskFilter::kAll_BlurFlag; SkASSERT(fSigma >= 0); SkASSERT((unsigned)fBlurStyle < SkBlurMaskFilter::kBlurStyleCount); } void SkBlurMaskFilterImpl::flatten(SkWriteBuffer& buffer) const { this->INHERITED::flatten(buffer); buffer.writeScalar(fSigma); buffer.writeInt(fBlurStyle); buffer.writeUInt(fBlurFlags); } #if SK_SUPPORT_GPU class GrGLRectBlurEffect; class GrRectBlurEffect : public GrEffect { public: virtual ~GrRectBlurEffect(); static const char* Name() { return "RectBlur"; } typedef GrGLRectBlurEffect GLEffect; virtual const GrBackendEffectFactory& getFactory() const SK_OVERRIDE; virtual void getConstantColorComponents(GrColor* color, uint32_t* validFlags) const SK_OVERRIDE; /** * Create a simple filter effect with custom bicubic coefficients. */ static GrEffectRef* Create(GrContext *context, const SkRect& rect, float sigma) { GrTexture *horizontalScanline = NULL, *verticalScanline = NULL; bool createdScanlines = CreateScanlineTextures(context, sigma, SkScalarCeilToInt(rect.width()), SkScalarCeilToInt(rect.height()), &horizontalScanline, &verticalScanline); SkAutoTUnref hunref(horizontalScanline), vunref(verticalScanline); if (!createdScanlines) { return NULL; } AutoEffectUnref effect(SkNEW_ARGS(GrRectBlurEffect, (rect, sigma, horizontalScanline, verticalScanline))); return CreateEffectRef(effect); } unsigned int getWidth() const { return fWidth; } unsigned int getHeight() const { return fHeight; } float getSigma() const { return fSigma; } const GrCoordTransform& getTransform() const { return fTransform; } private: GrRectBlurEffect(const SkRect& rect, float sigma, GrTexture *horizontal_scanline, GrTexture *vertical_scanline); virtual bool onIsEqual(const GrEffect&) const SK_OVERRIDE; static bool CreateScanlineTextures(GrContext *context, float sigma, unsigned int width, unsigned int height, GrTexture **horizontalScanline, GrTexture **verticalScanline); unsigned int fWidth, fHeight; float fSigma; GrTextureAccess fHorizontalScanlineAccess; GrTextureAccess fVerticalScanlineAccess; GrCoordTransform fTransform; GR_DECLARE_EFFECT_TEST; typedef GrEffect INHERITED; }; class GrGLRectBlurEffect : public GrGLEffect { public: GrGLRectBlurEffect(const GrBackendEffectFactory& factory, const GrDrawEffect&); virtual void emitCode(GrGLShaderBuilder*, const GrDrawEffect&, EffectKey, const char* outputColor, const char* inputColor, const TransformedCoordsArray&, const TextureSamplerArray&) SK_OVERRIDE; virtual void setData(const GrGLUniformManager&, const GrDrawEffect&) SK_OVERRIDE; private: typedef GrGLUniformManager::UniformHandle UniformHandle; UniformHandle fWidthUni; UniformHandle fHeightUni; typedef GrGLEffect INHERITED; }; GrGLRectBlurEffect::GrGLRectBlurEffect(const GrBackendEffectFactory& factory, const GrDrawEffect&) : INHERITED(factory) { } void GrGLRectBlurEffect::emitCode(GrGLShaderBuilder* builder, const GrDrawEffect&, EffectKey key, const char* outputColor, const char* inputColor, const TransformedCoordsArray& coords, const TextureSamplerArray& samplers) { SkString texture_coords = builder->ensureFSCoords2D(coords, 0); if (inputColor) { builder->fsCodeAppendf("\tvec4 src=%s;\n", inputColor); } else { builder->fsCodeAppendf("\tvec4 src=vec4(1)\n;"); } builder->fsCodeAppendf("\tvec4 horiz = "); builder->fsAppendTextureLookup( samplers[0], texture_coords.c_str() ); builder->fsCodeAppendf(";\n"); builder->fsCodeAppendf("\tvec4 vert = "); builder->fsAppendTextureLookup( samplers[1], texture_coords.c_str() ); builder->fsCodeAppendf(";\n"); builder->fsCodeAppendf("\tfloat final = (horiz*vert).r;\n"); builder->fsCodeAppendf("\t%s = final*src;\n", outputColor); } void GrGLRectBlurEffect::setData(const GrGLUniformManager& uman, const GrDrawEffect& drawEffect) { } bool GrRectBlurEffect::CreateScanlineTextures(GrContext *context, float sigma, unsigned int width, unsigned int height, GrTexture **horizontalScanline, GrTexture **verticalScanline) { GrTextureParams params; GrTextureDesc texDesc; unsigned int profile_size = SkScalarFloorToInt(6*sigma); texDesc.fWidth = width; texDesc.fHeight = 1; texDesc.fConfig = kAlpha_8_GrPixelConfig; static const GrCacheID::Domain gBlurProfileDomain = GrCacheID::GenerateDomain(); GrCacheID::Key key; memset(&key, 0, sizeof(key)); key.fData32[0] = profile_size; key.fData32[1] = width; key.fData32[2] = 1; GrCacheID horizontalCacheID(gBlurProfileDomain, key); uint8_t *profile = NULL; SkAutoTDeleteArray ada(NULL); *horizontalScanline = context->findAndRefTexture(texDesc, horizontalCacheID, ¶ms); if (NULL == *horizontalScanline) { SkBlurMask::ComputeBlurProfile(sigma, &profile); ada.reset(profile); SkAutoTMalloc horizontalPixels(width); SkBlurMask::ComputeBlurredScanline(horizontalPixels, profile, width, sigma); *horizontalScanline = context->createTexture(¶ms, texDesc, horizontalCacheID, horizontalPixels, 0); if (NULL == *horizontalScanline) { return false; } } texDesc.fWidth = 1; texDesc.fHeight = height; key.fData32[1] = 1; key.fData32[2] = height; GrCacheID verticalCacheID(gBlurProfileDomain, key); *verticalScanline = context->findAndRefTexture(texDesc, verticalCacheID, ¶ms); if (NULL == *verticalScanline) { if (NULL == profile) { SkBlurMask::ComputeBlurProfile(sigma, &profile); ada.reset(profile); } SkAutoTMalloc verticalPixels(height); SkBlurMask::ComputeBlurredScanline(verticalPixels, profile, height, sigma); *verticalScanline = context->createTexture(¶ms, texDesc, verticalCacheID, verticalPixels, 0); if (NULL == *verticalScanline) { SkSafeSetNull(*horizontalScanline); return false; } } return true; } GrRectBlurEffect::GrRectBlurEffect(const SkRect& rect, float sigma, GrTexture *horizontal_scanline, GrTexture *vertical_scanline) : INHERITED(), fWidth(horizontal_scanline->width()), fHeight(vertical_scanline->width()), fSigma(sigma), fHorizontalScanlineAccess(horizontal_scanline), fVerticalScanlineAccess(vertical_scanline) { SkMatrix mat; mat.setRectToRect(rect, SkRect::MakeWH(1,1), SkMatrix::kFill_ScaleToFit); fTransform.reset(kLocal_GrCoordSet, mat); this->addTextureAccess(&fHorizontalScanlineAccess); this->addTextureAccess(&fVerticalScanlineAccess); this->addCoordTransform(&fTransform); } GrRectBlurEffect::~GrRectBlurEffect() { } const GrBackendEffectFactory& GrRectBlurEffect::getFactory() const { return GrTBackendEffectFactory::getInstance(); } bool GrRectBlurEffect::onIsEqual(const GrEffect& sBase) const { const GrRectBlurEffect& s = CastEffect(sBase); return this->getWidth() == s.getWidth() && this->getHeight() == s.getHeight() && this->getSigma() == s.getSigma() && this->getTransform() == s.getTransform(); } void GrRectBlurEffect::getConstantColorComponents(GrColor* color, uint32_t* validFlags) const { *validFlags = 0; return; } GR_DEFINE_EFFECT_TEST(GrRectBlurEffect); GrEffectRef* GrRectBlurEffect::TestCreate(SkRandom* random, GrContext* context, const GrDrawTargetCaps&, GrTexture**) { float sigma = random->nextRangeF(3,8); float width = random->nextRangeF(200,300); float height = random->nextRangeF(200,300); return GrRectBlurEffect::Create(context, SkRect::MakeWH(width, height), sigma); } bool SkBlurMaskFilterImpl::directFilterMaskGPU(GrContext* context, GrPaint* grp, const SkStrokeRec& strokeRec, const SkPath& path) const { if (fBlurStyle != SkBlurMaskFilter::kNormal_BlurStyle) { return false; } SkRect rect; if (!path.isRect(&rect)) { return false; } if (!strokeRec.isFillStyle()) { return false; } SkMatrix ctm = context->getMatrix(); SkScalar xformedSigma = this->computeXformedSigma(ctm); rect.outset(3*xformedSigma, 3*xformedSigma); SkAutoTUnref effect(GrRectBlurEffect::Create( context, rect, xformedSigma)); if (!effect) { return false; } GrContext::AutoMatrix am; if (!am.setIdentity(context, grp)) { return false; } grp->addCoverageEffect(effect); context->drawRect(*grp, rect); return true; } bool SkBlurMaskFilterImpl::canFilterMaskGPU(const SkRect& srcBounds, const SkIRect& clipBounds, const SkMatrix& ctm, SkRect* maskRect) const { SkScalar xformedSigma = this->computeXformedSigma(ctm); if (xformedSigma <= 0) { return false; } static const SkScalar kMIN_GPU_BLUR_SIZE = SkIntToScalar(64); static const SkScalar kMIN_GPU_BLUR_SIGMA = SkIntToScalar(32); if (srcBounds.width() <= kMIN_GPU_BLUR_SIZE && srcBounds.height() <= kMIN_GPU_BLUR_SIZE && xformedSigma <= kMIN_GPU_BLUR_SIGMA) { // We prefer to blur small rect with small radius via CPU. return false; } if (NULL == maskRect) { // don't need to compute maskRect return true; } float sigma3 = 3 * SkScalarToFloat(xformedSigma); SkRect clipRect = SkRect::Make(clipBounds); SkRect srcRect(srcBounds); // Outset srcRect and clipRect by 3 * sigma, to compute affected blur area. srcRect.outset(sigma3, sigma3); clipRect.outset(sigma3, sigma3); srcRect.intersect(clipRect); *maskRect = srcRect; return true; } bool SkBlurMaskFilterImpl::filterMaskGPU(GrTexture* src, const SkMatrix& ctm, const SkRect& maskRect, GrTexture** result, bool canOverwriteSrc) const { SkRect clipRect = SkRect::MakeWH(maskRect.width(), maskRect.height()); GrContext* context = src->getContext(); GrContext::AutoWideOpenIdentityDraw awo(context, NULL); SkScalar xformedSigma = this->computeXformedSigma(ctm); SkASSERT(xformedSigma > 0); // If we're doing a normal blur, we can clobber the pathTexture in the // gaussianBlur. Otherwise, we need to save it for later compositing. bool isNormalBlur = (SkBlurMaskFilter::kNormal_BlurStyle == fBlurStyle); *result = SkGpuBlurUtils::GaussianBlur(context, src, isNormalBlur && canOverwriteSrc, clipRect, false, xformedSigma, xformedSigma); if (NULL == *result) { return false; } if (!isNormalBlur) { context->setIdentityMatrix(); GrPaint paint; SkMatrix matrix; matrix.setIDiv(src->width(), src->height()); // Blend pathTexture over blurTexture. GrContext::AutoRenderTarget art(context, (*result)->asRenderTarget()); paint.addColorEffect(GrSimpleTextureEffect::Create(src, matrix))->unref(); if (SkBlurMaskFilter::kInner_BlurStyle == fBlurStyle) { // inner: dst = dst * src paint.setBlendFunc(kDC_GrBlendCoeff, kZero_GrBlendCoeff); } else if (SkBlurMaskFilter::kSolid_BlurStyle == fBlurStyle) { // solid: dst = src + dst - src * dst // = (1 - dst) * src + 1 * dst paint.setBlendFunc(kIDC_GrBlendCoeff, kOne_GrBlendCoeff); } else if (SkBlurMaskFilter::kOuter_BlurStyle == fBlurStyle) { // outer: dst = dst * (1 - src) // = 0 * src + (1 - src) * dst paint.setBlendFunc(kZero_GrBlendCoeff, kISC_GrBlendCoeff); } context->drawRect(paint, clipRect); } return true; } #endif // SK_SUPPORT_GPU #ifdef SK_DEVELOPER void SkBlurMaskFilterImpl::toString(SkString* str) const { str->append("SkBlurMaskFilterImpl: ("); str->append("sigma: "); str->appendScalar(fSigma); str->append(" "); static const char* gStyleName[SkBlurMaskFilter::kBlurStyleCount] = { "normal", "solid", "outer", "inner" }; str->appendf("style: %s ", gStyleName[fBlurStyle]); str->append("flags: ("); if (fBlurFlags) { bool needSeparator = false; SkAddFlagToString(str, SkToBool(fBlurFlags & SkBlurMaskFilter::kIgnoreTransform_BlurFlag), "IgnoreXform", &needSeparator); SkAddFlagToString(str, SkToBool(fBlurFlags & SkBlurMaskFilter::kHighQuality_BlurFlag), "HighQuality", &needSeparator); } else { str->append("None"); } str->append("))"); } #endif SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_START(SkBlurMaskFilter) SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkBlurMaskFilterImpl) SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_END