/* * Copyright 2013 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkArithmeticMode.h" #include "SkColorPriv.h" #include "SkReadBuffer.h" #include "SkWriteBuffer.h" #include "SkString.h" #include "SkUnPreMultiply.h" #if SK_SUPPORT_GPU #include "GrContext.h" #include "GrCoordTransform.h" #include "gl/GrGLProcessor.h" #include "gl/builders/GrGLProgramBuilder.h" #include "GrTBackendProcessorFactory.h" #endif static const bool gUseUnpremul = false; class SkArithmeticMode_scalar : public SkXfermode { public: static SkArithmeticMode_scalar* Create(SkScalar k1, SkScalar k2, SkScalar k3, SkScalar k4, bool enforcePMColor) { return SkNEW_ARGS(SkArithmeticMode_scalar, (k1, k2, k3, k4, enforcePMColor)); } virtual void xfer32(SkPMColor dst[], const SkPMColor src[], int count, const SkAlpha aa[]) const SK_OVERRIDE; SK_TO_STRING_OVERRIDE() SK_DECLARE_PUBLIC_FLATTENABLE_DESERIALIZATION_PROCS(SkArithmeticMode_scalar) #if SK_SUPPORT_GPU virtual bool asFragmentProcessor(GrFragmentProcessor**, GrTexture* background) const SK_OVERRIDE; #endif private: SkArithmeticMode_scalar(SkScalar k1, SkScalar k2, SkScalar k3, SkScalar k4, bool enforcePMColor) { fK[0] = k1; fK[1] = k2; fK[2] = k3; fK[3] = k4; fEnforcePMColor = enforcePMColor; } #ifdef SK_SUPPORT_LEGACY_DEEPFLATTENING SkArithmeticMode_scalar(SkReadBuffer& buffer) : INHERITED(buffer) { fK[0] = buffer.readScalar(); fK[1] = buffer.readScalar(); fK[2] = buffer.readScalar(); fK[3] = buffer.readScalar(); fEnforcePMColor = buffer.readBool(); } #endif virtual void flatten(SkWriteBuffer& buffer) const SK_OVERRIDE { buffer.writeScalar(fK[0]); buffer.writeScalar(fK[1]); buffer.writeScalar(fK[2]); buffer.writeScalar(fK[3]); buffer.writeBool(fEnforcePMColor); } SkScalar fK[4]; bool fEnforcePMColor; friend class SkArithmeticMode; typedef SkXfermode INHERITED; }; SkFlattenable* SkArithmeticMode_scalar::CreateProc(SkReadBuffer& buffer) { const SkScalar k1 = buffer.readScalar(); const SkScalar k2 = buffer.readScalar(); const SkScalar k3 = buffer.readScalar(); const SkScalar k4 = buffer.readScalar(); const bool enforcePMColor = buffer.readBool(); return Create(k1, k2, k3, k4, enforcePMColor); } static int pinToByte(int value) { if (value < 0) { value = 0; } else if (value > 255) { value = 255; } return value; } static int arith(SkScalar k1, SkScalar k2, SkScalar k3, SkScalar k4, int src, int dst) { SkScalar result = SkScalarMul(k1, src * dst) + SkScalarMul(k2, src) + SkScalarMul(k3, dst) + k4; int res = SkScalarRoundToInt(result); return pinToByte(res); } static int blend(int src, int dst, int scale) { return dst + ((src - dst) * scale >> 8); } static bool needsUnpremul(int alpha) { return 0 != alpha && 0xFF != alpha; } void SkArithmeticMode_scalar::xfer32(SkPMColor dst[], const SkPMColor src[], int count, const SkAlpha aaCoverage[]) const { SkScalar k1 = fK[0] / 255; SkScalar k2 = fK[1]; SkScalar k3 = fK[2]; SkScalar k4 = fK[3] * 255; for (int i = 0; i < count; ++i) { if ((NULL == aaCoverage) || aaCoverage[i]) { SkPMColor sc = src[i]; SkPMColor dc = dst[i]; int a, r, g, b; if (gUseUnpremul) { int sa = SkGetPackedA32(sc); int da = SkGetPackedA32(dc); int srcNeedsUnpremul = needsUnpremul(sa); int dstNeedsUnpremul = needsUnpremul(da); if (!srcNeedsUnpremul && !dstNeedsUnpremul) { a = arith(k1, k2, k3, k4, sa, da); r = arith(k1, k2, k3, k4, SkGetPackedR32(sc), SkGetPackedR32(dc)); g = arith(k1, k2, k3, k4, SkGetPackedG32(sc), SkGetPackedG32(dc)); b = arith(k1, k2, k3, k4, SkGetPackedB32(sc), SkGetPackedB32(dc)); } else { int sr = SkGetPackedR32(sc); int sg = SkGetPackedG32(sc); int sb = SkGetPackedB32(sc); if (srcNeedsUnpremul) { SkUnPreMultiply::Scale scale = SkUnPreMultiply::GetScale(sa); sr = SkUnPreMultiply::ApplyScale(scale, sr); sg = SkUnPreMultiply::ApplyScale(scale, sg); sb = SkUnPreMultiply::ApplyScale(scale, sb); } int dr = SkGetPackedR32(dc); int dg = SkGetPackedG32(dc); int db = SkGetPackedB32(dc); if (dstNeedsUnpremul) { SkUnPreMultiply::Scale scale = SkUnPreMultiply::GetScale(da); dr = SkUnPreMultiply::ApplyScale(scale, dr); dg = SkUnPreMultiply::ApplyScale(scale, dg); db = SkUnPreMultiply::ApplyScale(scale, db); } a = arith(k1, k2, k3, k4, sa, da); r = arith(k1, k2, k3, k4, sr, dr); g = arith(k1, k2, k3, k4, sg, dg); b = arith(k1, k2, k3, k4, sb, db); } } else { a = arith(k1, k2, k3, k4, SkGetPackedA32(sc), SkGetPackedA32(dc)); r = arith(k1, k2, k3, k4, SkGetPackedR32(sc), SkGetPackedR32(dc)); g = arith(k1, k2, k3, k4, SkGetPackedG32(sc), SkGetPackedG32(dc)); b = arith(k1, k2, k3, k4, SkGetPackedB32(sc), SkGetPackedB32(dc)); if (fEnforcePMColor) { r = SkMin32(r, a); g = SkMin32(g, a); b = SkMin32(b, a); } } // apply antialias coverage if necessary if (aaCoverage && 0xFF != aaCoverage[i]) { int scale = aaCoverage[i] + (aaCoverage[i] >> 7); a = blend(a, SkGetPackedA32(sc), scale); r = blend(r, SkGetPackedR32(sc), scale); g = blend(g, SkGetPackedG32(sc), scale); b = blend(b, SkGetPackedB32(sc), scale); } // turn the result back into premul if (gUseUnpremul && (0xFF != a)) { int scale = a + (a >> 7); r = SkAlphaMul(r, scale); g = SkAlphaMul(g, scale); b = SkAlphaMul(b, scale); } dst[i] = fEnforcePMColor ? SkPackARGB32(a, r, g, b) : SkPackARGB32NoCheck(a, r, g, b); } } } #ifndef SK_IGNORE_TO_STRING void SkArithmeticMode_scalar::toString(SkString* str) const { str->append("SkArithmeticMode_scalar: "); for (int i = 0; i < 4; ++i) { str->appendScalar(fK[i]); str->append(" "); } str->appendS32(fEnforcePMColor ? 1 : 0); } #endif /////////////////////////////////////////////////////////////////////////////// static bool fitsInBits(SkScalar x, int bits) { return SkScalarAbs(x) < (1 << (bits - 1)); } #if 0 // UNUSED static int32_t toDot8(SkScalar x) { return (int32_t)(x * 256); } #endif SkXfermode* SkArithmeticMode::Create(SkScalar k1, SkScalar k2, SkScalar k3, SkScalar k4, bool enforcePMColor) { if (fitsInBits(k1, 8) && fitsInBits(k2, 16) && fitsInBits(k2, 16) && fitsInBits(k2, 24)) { #if 0 // UNUSED int32_t i1 = toDot8(k1); int32_t i2 = toDot8(k2); int32_t i3 = toDot8(k3); int32_t i4 = toDot8(k4); if (i1) { return SkNEW_ARGS(SkArithmeticMode_quad, (i1, i2, i3, i4)); } if (0 == i2) { return SkNEW_ARGS(SkArithmeticMode_dst, (i3, i4)); } if (0 == i3) { return SkNEW_ARGS(SkArithmeticMode_src, (i2, i4)); } return SkNEW_ARGS(SkArithmeticMode_linear, (i2, i3, i4)); #endif } return SkArithmeticMode_scalar::Create(k1, k2, k3, k4, enforcePMColor); } ////////////////////////////////////////////////////////////////////////////// #if SK_SUPPORT_GPU class GrGLArithmeticEffect : public GrGLFragmentProcessor { public: GrGLArithmeticEffect(const GrBackendProcessorFactory&, const GrProcessor&); virtual ~GrGLArithmeticEffect(); virtual void emitCode(GrGLFPBuilder*, const GrFragmentProcessor&, const GrProcessorKey&, const char* outputColor, const char* inputColor, const TransformedCoordsArray&, const TextureSamplerArray&) SK_OVERRIDE; virtual void setData(const GrGLProgramDataManager&, const GrProcessor&) SK_OVERRIDE; static void GenKey(const GrProcessor&, const GrGLCaps& caps, GrProcessorKeyBuilder* b); private: GrGLProgramDataManager::UniformHandle fKUni; bool fEnforcePMColor; typedef GrGLFragmentProcessor INHERITED; }; /////////////////////////////////////////////////////////////////////////////// class GrArithmeticEffect : public GrFragmentProcessor { public: static GrFragmentProcessor* Create(float k1, float k2, float k3, float k4, bool enforcePMColor, GrTexture* background) { return SkNEW_ARGS(GrArithmeticEffect, (k1, k2, k3, k4, enforcePMColor, background)); } virtual ~GrArithmeticEffect(); virtual const GrBackendFragmentProcessorFactory& getFactory() const SK_OVERRIDE; typedef GrGLArithmeticEffect GLProcessor; static const char* Name() { return "Arithmetic"; } GrTexture* backgroundTexture() const { return fBackgroundAccess.getTexture(); } float k1() const { return fK1; } float k2() const { return fK2; } float k3() const { return fK3; } float k4() const { return fK4; } bool enforcePMColor() const { return fEnforcePMColor; } private: virtual bool onIsEqual(const GrProcessor&) const SK_OVERRIDE; virtual void onComputeInvariantOutput(InvariantOutput* inout) const SK_OVERRIDE; GrArithmeticEffect(float k1, float k2, float k3, float k4, bool enforcePMColor, GrTexture* background); float fK1, fK2, fK3, fK4; bool fEnforcePMColor; GrCoordTransform fBackgroundTransform; GrTextureAccess fBackgroundAccess; GR_DECLARE_FRAGMENT_PROCESSOR_TEST; typedef GrFragmentProcessor INHERITED; }; /////////////////////////////////////////////////////////////////////////////// GrArithmeticEffect::GrArithmeticEffect(float k1, float k2, float k3, float k4, bool enforcePMColor, GrTexture* background) : fK1(k1), fK2(k2), fK3(k3), fK4(k4), fEnforcePMColor(enforcePMColor) { if (background) { fBackgroundTransform.reset(kLocal_GrCoordSet, background); this->addCoordTransform(&fBackgroundTransform); fBackgroundAccess.reset(background); this->addTextureAccess(&fBackgroundAccess); } else { this->setWillReadDstColor(); } } GrArithmeticEffect::~GrArithmeticEffect() { } bool GrArithmeticEffect::onIsEqual(const GrProcessor& sBase) const { const GrArithmeticEffect& s = sBase.cast(); return fK1 == s.fK1 && fK2 == s.fK2 && fK3 == s.fK3 && fK4 == s.fK4 && fEnforcePMColor == s.fEnforcePMColor && backgroundTexture() == s.backgroundTexture(); } const GrBackendFragmentProcessorFactory& GrArithmeticEffect::getFactory() const { return GrTBackendFragmentProcessorFactory::getInstance(); } void GrArithmeticEffect::onComputeInvariantOutput(InvariantOutput* inout) const { // TODO: optimize this inout->fValidFlags = 0; inout->fIsSingleComponent = false; } /////////////////////////////////////////////////////////////////////////////// GrGLArithmeticEffect::GrGLArithmeticEffect(const GrBackendProcessorFactory& factory, const GrProcessor&) : INHERITED(factory), fEnforcePMColor(true) { } GrGLArithmeticEffect::~GrGLArithmeticEffect() { } void GrGLArithmeticEffect::emitCode(GrGLFPBuilder* builder, const GrFragmentProcessor& fp, const GrProcessorKey& key, const char* outputColor, const char* inputColor, const TransformedCoordsArray& coords, const TextureSamplerArray& samplers) { GrTexture* backgroundTex = fp.cast().backgroundTexture(); GrGLFPFragmentBuilder* fsBuilder = builder->getFragmentShaderBuilder(); const char* dstColor; if (backgroundTex) { fsBuilder->codeAppend("\t\tvec4 bgColor = "); fsBuilder->appendTextureLookup(samplers[0], coords[0].c_str(), coords[0].getType()); fsBuilder->codeAppendf(";\n"); dstColor = "bgColor"; } else { dstColor = fsBuilder->dstColor(); } SkASSERT(dstColor); fKUni = builder->addUniform(GrGLProgramBuilder::kFragment_Visibility, kVec4f_GrSLType, "k"); const char* kUni = builder->getUniformCStr(fKUni); // We don't try to optimize for this case at all if (NULL == inputColor) { fsBuilder->codeAppendf("\t\tconst vec4 src = vec4(1);\n"); } else { fsBuilder->codeAppendf("\t\tvec4 src = %s;\n", inputColor); if (gUseUnpremul) { fsBuilder->codeAppendf("\t\tsrc.rgb = clamp(src.rgb / src.a, 0.0, 1.0);\n"); } } fsBuilder->codeAppendf("\t\tvec4 dst = %s;\n", dstColor); if (gUseUnpremul) { fsBuilder->codeAppendf("\t\tdst.rgb = clamp(dst.rgb / dst.a, 0.0, 1.0);\n"); } fsBuilder->codeAppendf("\t\t%s = %s.x * src * dst + %s.y * src + %s.z * dst + %s.w;\n", outputColor, kUni, kUni, kUni, kUni); fsBuilder->codeAppendf("\t\t%s = clamp(%s, 0.0, 1.0);\n", outputColor, outputColor); if (gUseUnpremul) { fsBuilder->codeAppendf("\t\t%s.rgb *= %s.a;\n", outputColor, outputColor); } else if (fEnforcePMColor) { fsBuilder->codeAppendf("\t\t%s.rgb = min(%s.rgb, %s.a);\n", outputColor, outputColor, outputColor); } } void GrGLArithmeticEffect::setData(const GrGLProgramDataManager& pdman, const GrProcessor& processor) { const GrArithmeticEffect& arith = processor.cast(); pdman.set4f(fKUni, arith.k1(), arith.k2(), arith.k3(), arith.k4()); fEnforcePMColor = arith.enforcePMColor(); } void GrGLArithmeticEffect::GenKey(const GrProcessor& processor, const GrGLCaps&, GrProcessorKeyBuilder* b) { const GrArithmeticEffect& arith = processor.cast(); uint32_t key = arith.enforcePMColor() ? 1 : 0; if (arith.backgroundTexture()) { key |= 2; } b->add32(key); } GrFragmentProcessor* GrArithmeticEffect::TestCreate(SkRandom* rand, GrContext*, const GrDrawTargetCaps&, GrTexture*[]) { float k1 = rand->nextF(); float k2 = rand->nextF(); float k3 = rand->nextF(); float k4 = rand->nextF(); bool enforcePMColor = rand->nextBool(); return SkNEW_ARGS(GrArithmeticEffect, (k1, k2, k3, k4, enforcePMColor, NULL)); } GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrArithmeticEffect); bool SkArithmeticMode_scalar::asFragmentProcessor(GrFragmentProcessor** fp, GrTexture* background) const { if (fp) { *fp = GrArithmeticEffect::Create(SkScalarToFloat(fK[0]), SkScalarToFloat(fK[1]), SkScalarToFloat(fK[2]), SkScalarToFloat(fK[3]), fEnforcePMColor, background); } return true; } #endif SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_START(SkArithmeticMode) SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkArithmeticMode_scalar) SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_END