/* * Copyright 2013 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkArithmeticMode.h" #include "SkColorPriv.h" #include "SkReadBuffer.h" #include "SkWriteBuffer.h" #include "SkString.h" #include "SkUnPreMultiply.h" #if SK_SUPPORT_GPU #include "SkArithmeticMode_gpu.h" #endif static const bool gUseUnpremul = false; class SkArithmeticMode_scalar : public SkXfermode { public: static SkArithmeticMode_scalar* Create(SkScalar k1, SkScalar k2, SkScalar k3, SkScalar k4, bool enforcePMColor) { return new SkArithmeticMode_scalar(k1, k2, k3, k4, enforcePMColor); } virtual void xfer32(SkPMColor dst[], const SkPMColor src[], int count, const SkAlpha aa[]) const override; SK_TO_STRING_OVERRIDE() SK_DECLARE_PUBLIC_FLATTENABLE_DESERIALIZATION_PROCS(SkArithmeticMode_scalar) #if SK_SUPPORT_GPU bool asFragmentProcessor(const GrFragmentProcessor**, const GrFragmentProcessor* dst) const override; bool asXPFactory(GrXPFactory**) const override; #endif private: SkArithmeticMode_scalar(SkScalar k1, SkScalar k2, SkScalar k3, SkScalar k4, bool enforcePMColor) { fK[0] = k1; fK[1] = k2; fK[2] = k3; fK[3] = k4; fEnforcePMColor = enforcePMColor; } void flatten(SkWriteBuffer& buffer) const override { buffer.writeScalar(fK[0]); buffer.writeScalar(fK[1]); buffer.writeScalar(fK[2]); buffer.writeScalar(fK[3]); buffer.writeBool(fEnforcePMColor); } SkScalar fK[4]; bool fEnforcePMColor; friend class SkArithmeticMode; typedef SkXfermode INHERITED; }; SkFlattenable* SkArithmeticMode_scalar::CreateProc(SkReadBuffer& buffer) { const SkScalar k1 = buffer.readScalar(); const SkScalar k2 = buffer.readScalar(); const SkScalar k3 = buffer.readScalar(); const SkScalar k4 = buffer.readScalar(); const bool enforcePMColor = buffer.readBool(); return Create(k1, k2, k3, k4, enforcePMColor); } static int pinToByte(int value) { if (value < 0) { value = 0; } else if (value > 255) { value = 255; } return value; } static int arith(SkScalar k1, SkScalar k2, SkScalar k3, SkScalar k4, int src, int dst) { SkScalar result = SkScalarMul(k1, src * dst) + SkScalarMul(k2, src) + SkScalarMul(k3, dst) + k4; int res = SkScalarRoundToInt(result); return pinToByte(res); } static int blend(int src, int dst, int scale) { return dst + ((src - dst) * scale >> 8); } static bool needsUnpremul(int alpha) { return 0 != alpha && 0xFF != alpha; } void SkArithmeticMode_scalar::xfer32(SkPMColor dst[], const SkPMColor src[], int count, const SkAlpha aaCoverage[]) const { SkScalar k1 = fK[0] / 255; SkScalar k2 = fK[1]; SkScalar k3 = fK[2]; SkScalar k4 = fK[3] * 255; for (int i = 0; i < count; ++i) { if ((nullptr == aaCoverage) || aaCoverage[i]) { SkPMColor sc = src[i]; SkPMColor dc = dst[i]; int a, r, g, b; if (gUseUnpremul) { int sa = SkGetPackedA32(sc); int da = SkGetPackedA32(dc); int srcNeedsUnpremul = needsUnpremul(sa); int dstNeedsUnpremul = needsUnpremul(da); if (!srcNeedsUnpremul && !dstNeedsUnpremul) { a = arith(k1, k2, k3, k4, sa, da); r = arith(k1, k2, k3, k4, SkGetPackedR32(sc), SkGetPackedR32(dc)); g = arith(k1, k2, k3, k4, SkGetPackedG32(sc), SkGetPackedG32(dc)); b = arith(k1, k2, k3, k4, SkGetPackedB32(sc), SkGetPackedB32(dc)); } else { int sr = SkGetPackedR32(sc); int sg = SkGetPackedG32(sc); int sb = SkGetPackedB32(sc); if (srcNeedsUnpremul) { SkUnPreMultiply::Scale scale = SkUnPreMultiply::GetScale(sa); sr = SkUnPreMultiply::ApplyScale(scale, sr); sg = SkUnPreMultiply::ApplyScale(scale, sg); sb = SkUnPreMultiply::ApplyScale(scale, sb); } int dr = SkGetPackedR32(dc); int dg = SkGetPackedG32(dc); int db = SkGetPackedB32(dc); if (dstNeedsUnpremul) { SkUnPreMultiply::Scale scale = SkUnPreMultiply::GetScale(da); dr = SkUnPreMultiply::ApplyScale(scale, dr); dg = SkUnPreMultiply::ApplyScale(scale, dg); db = SkUnPreMultiply::ApplyScale(scale, db); } a = arith(k1, k2, k3, k4, sa, da); r = arith(k1, k2, k3, k4, sr, dr); g = arith(k1, k2, k3, k4, sg, dg); b = arith(k1, k2, k3, k4, sb, db); } } else { a = arith(k1, k2, k3, k4, SkGetPackedA32(sc), SkGetPackedA32(dc)); r = arith(k1, k2, k3, k4, SkGetPackedR32(sc), SkGetPackedR32(dc)); g = arith(k1, k2, k3, k4, SkGetPackedG32(sc), SkGetPackedG32(dc)); b = arith(k1, k2, k3, k4, SkGetPackedB32(sc), SkGetPackedB32(dc)); if (fEnforcePMColor) { r = SkMin32(r, a); g = SkMin32(g, a); b = SkMin32(b, a); } } // apply antialias coverage if necessary if (aaCoverage && 0xFF != aaCoverage[i]) { int scale = aaCoverage[i] + (aaCoverage[i] >> 7); a = blend(a, SkGetPackedA32(sc), scale); r = blend(r, SkGetPackedR32(sc), scale); g = blend(g, SkGetPackedG32(sc), scale); b = blend(b, SkGetPackedB32(sc), scale); } // turn the result back into premul if (gUseUnpremul && (0xFF != a)) { int scale = a + (a >> 7); r = SkAlphaMul(r, scale); g = SkAlphaMul(g, scale); b = SkAlphaMul(b, scale); } dst[i] = fEnforcePMColor ? SkPackARGB32(a, r, g, b) : SkPackARGB32NoCheck(a, r, g, b); } } } #ifndef SK_IGNORE_TO_STRING void SkArithmeticMode_scalar::toString(SkString* str) const { str->append("SkArithmeticMode_scalar: "); for (int i = 0; i < 4; ++i) { str->appendScalar(fK[i]); str->append(" "); } str->appendS32(fEnforcePMColor ? 1 : 0); } #endif /////////////////////////////////////////////////////////////////////////////// static bool fitsInBits(SkScalar x, int bits) { return SkScalarAbs(x) < (1 << (bits - 1)); } #if 0 // UNUSED static int32_t toDot8(SkScalar x) { return (int32_t)(x * 256); } #endif SkXfermode* SkArithmeticMode::Create(SkScalar k1, SkScalar k2, SkScalar k3, SkScalar k4, bool enforcePMColor) { if (fitsInBits(k1, 8) && fitsInBits(k2, 16) && fitsInBits(k2, 16) && fitsInBits(k2, 24)) { #if 0 // UNUSED int32_t i1 = toDot8(k1); int32_t i2 = toDot8(k2); int32_t i3 = toDot8(k3); int32_t i4 = toDot8(k4); if (i1) { return new SkArithmeticMode_quad (i1, i2, i3, i4); } if (0 == i2) { return new SkArithmeticMode_dst (i3, i4); } if (0 == i3) { return new SkArithmeticMode_src (i2, i4); } return new SkArithmeticMode_linear (i2, i3, i4); #endif } return SkArithmeticMode_scalar::Create(k1, k2, k3, k4, enforcePMColor); } ////////////////////////////////////////////////////////////////////////////// #if SK_SUPPORT_GPU bool SkArithmeticMode_scalar::asFragmentProcessor(const GrFragmentProcessor** fp, const GrFragmentProcessor* dst) const { if (fp) { *fp = GrArithmeticFP::Create(SkScalarToFloat(fK[0]), SkScalarToFloat(fK[1]), SkScalarToFloat(fK[2]), SkScalarToFloat(fK[3]), fEnforcePMColor, dst); } return true; } bool SkArithmeticMode_scalar::asXPFactory(GrXPFactory** xpf) const { if (xpf) { *xpf = GrArithmeticXPFactory::Create(SkScalarToFloat(fK[0]), SkScalarToFloat(fK[1]), SkScalarToFloat(fK[2]), SkScalarToFloat(fK[3]), fEnforcePMColor); } return true; } #endif SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_START(SkArithmeticMode) SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkArithmeticMode_scalar) SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_END