/* * Copyright 2018 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ /************************************************************************************************** *** This file was autogenerated from GrCircleBlurFragmentProcessor.fp; do not modify. **************************************************************************************************/ #include "GrCircleBlurFragmentProcessor.h" #if SK_SUPPORT_GPU #include "GrProxyProvider.h" // Computes an unnormalized half kernel (right side). Returns the summation of all the half // kernel values. static float make_unnormalized_half_kernel(float* halfKernel, int halfKernelSize, float sigma) { const float invSigma = 1.f / sigma; const float b = -0.5f * invSigma * invSigma; float tot = 0.0f; // Compute half kernel values at half pixel steps out from the center. float t = 0.5f; for (int i = 0; i < halfKernelSize; ++i) { float value = expf(t * t * b); tot += value; halfKernel[i] = value; t += 1.f; } return tot; } // Create a Gaussian half-kernel (right side) and a summed area table given a sigma and number // of discrete steps. The half kernel is normalized to sum to 0.5. static void make_half_kernel_and_summed_table(float* halfKernel, float* summedHalfKernel, int halfKernelSize, float sigma) { // The half kernel should sum to 0.5 not 1.0. const float tot = 2.f * make_unnormalized_half_kernel(halfKernel, halfKernelSize, sigma); float sum = 0.f; for (int i = 0; i < halfKernelSize; ++i) { halfKernel[i] /= tot; sum += halfKernel[i]; summedHalfKernel[i] = sum; } } // Applies the 1D half kernel vertically at points along the x axis to a circle centered at the // origin with radius circleR. void apply_kernel_in_y(float* results, int numSteps, float firstX, float circleR, int halfKernelSize, const float* summedHalfKernelTable) { float x = firstX; for (int i = 0; i < numSteps; ++i, x += 1.f) { if (x < -circleR || x > circleR) { results[i] = 0; continue; } float y = sqrtf(circleR * circleR - x * x); // In the column at x we exit the circle at +y and -y // The summed table entry j is actually reflects an offset of j + 0.5. y -= 0.5f; int yInt = SkScalarFloorToInt(y); SkASSERT(yInt >= -1); if (y < 0) { results[i] = (y + 0.5f) * summedHalfKernelTable[0]; } else if (yInt >= halfKernelSize - 1) { results[i] = 0.5f; } else { float yFrac = y - yInt; results[i] = (1.f - yFrac) * summedHalfKernelTable[yInt] + yFrac * summedHalfKernelTable[yInt + 1]; } } } // Apply a Gaussian at point (evalX, 0) to a circle centered at the origin with radius circleR. // This relies on having a half kernel computed for the Gaussian and a table of applications of // the half kernel in y to columns at (evalX - halfKernel, evalX - halfKernel + 1, ..., evalX + // halfKernel) passed in as yKernelEvaluations. static uint8_t eval_at(float evalX, float circleR, const float* halfKernel, int halfKernelSize, const float* yKernelEvaluations) { float acc = 0; float x = evalX - halfKernelSize; for (int i = 0; i < halfKernelSize; ++i, x += 1.f) { if (x < -circleR || x > circleR) { continue; } float verticalEval = yKernelEvaluations[i]; acc += verticalEval * halfKernel[halfKernelSize - i - 1]; } for (int i = 0; i < halfKernelSize; ++i, x += 1.f) { if (x < -circleR || x > circleR) { continue; } float verticalEval = yKernelEvaluations[i + halfKernelSize]; acc += verticalEval * halfKernel[i]; } // Since we applied a half kernel in y we multiply acc by 2 (the circle is symmetric about // the x axis). return SkUnitScalarClampToByte(2.f * acc); } // This function creates a profile of a blurred circle. It does this by computing a kernel for // half the Gaussian and a matching summed area table. The summed area table is used to compute // an array of vertical applications of the half kernel to the circle along the x axis. The // table of y evaluations has 2 * k + n entries where k is the size of the half kernel and n is // the size of the profile being computed. Then for each of the n profile entries we walk out k // steps in each horizontal direction multiplying the corresponding y evaluation by the half // kernel entry and sum these values to compute the profile entry. static uint8_t* create_circle_profile(float sigma, float circleR, int profileTextureWidth) { const int numSteps = profileTextureWidth; uint8_t* weights = new uint8_t[numSteps]; // The full kernel is 6 sigmas wide. int halfKernelSize = SkScalarCeilToInt(6.0f * sigma); // round up to next multiple of 2 and then divide by 2 halfKernelSize = ((halfKernelSize + 1) & ~1) >> 1; // Number of x steps at which to apply kernel in y to cover all the profile samples in x. int numYSteps = numSteps + 2 * halfKernelSize; SkAutoTArray bulkAlloc(halfKernelSize + halfKernelSize + numYSteps); float* halfKernel = bulkAlloc.get(); float* summedKernel = bulkAlloc.get() + halfKernelSize; float* yEvals = bulkAlloc.get() + 2 * halfKernelSize; make_half_kernel_and_summed_table(halfKernel, summedKernel, halfKernelSize, sigma); float firstX = -halfKernelSize + 0.5f; apply_kernel_in_y(yEvals, numYSteps, firstX, circleR, halfKernelSize, summedKernel); for (int i = 0; i < numSteps - 1; ++i) { float evalX = i + 0.5f; weights[i] = eval_at(evalX, circleR, halfKernel, halfKernelSize, yEvals + i); } // Ensure the tail of the Gaussian goes to zero. weights[numSteps - 1] = 0; return weights; } static uint8_t* create_half_plane_profile(int profileWidth) { SkASSERT(!(profileWidth & 0x1)); // The full kernel is 6 sigmas wide. float sigma = profileWidth / 6.f; int halfKernelSize = profileWidth / 2; SkAutoTArray halfKernel(halfKernelSize); uint8_t* profile = new uint8_t[profileWidth]; // The half kernel should sum to 0.5. const float tot = 2.f * make_unnormalized_half_kernel(halfKernel.get(), halfKernelSize, sigma); float sum = 0.f; // Populate the profile from the right edge to the middle. for (int i = 0; i < halfKernelSize; ++i) { halfKernel[halfKernelSize - i - 1] /= tot; sum += halfKernel[halfKernelSize - i - 1]; profile[profileWidth - i - 1] = SkUnitScalarClampToByte(sum); } // Populate the profile from the middle to the left edge (by flipping the half kernel and // continuing the summation). for (int i = 0; i < halfKernelSize; ++i) { sum += halfKernel[i]; profile[halfKernelSize - i - 1] = SkUnitScalarClampToByte(sum); } // Ensure tail goes to 0. profile[profileWidth - 1] = 0; return profile; } static sk_sp create_profile_texture(GrProxyProvider* proxyProvider, const SkRect& circle, float sigma, float* solidRadius, float* textureRadius) { float circleR = circle.width() / 2.0f; if (circleR < SK_ScalarNearlyZero) { return nullptr; } // Profile textures are cached by the ratio of sigma to circle radius and by the size of the // profile texture (binned by powers of 2). SkScalar sigmaToCircleRRatio = sigma / circleR; // When sigma is really small this becomes a equivalent to convolving a Gaussian with a // half-plane. Similarly, in the extreme high ratio cases circle becomes a point WRT to the // Guassian and the profile texture is a just a Gaussian evaluation. However, we haven't yet // implemented this latter optimization. sigmaToCircleRRatio = SkTMin(sigmaToCircleRRatio, 8.f); SkFixed sigmaToCircleRRatioFixed; static const SkScalar kHalfPlaneThreshold = 0.1f; bool useHalfPlaneApprox = false; if (sigmaToCircleRRatio <= kHalfPlaneThreshold) { useHalfPlaneApprox = true; sigmaToCircleRRatioFixed = 0; *solidRadius = circleR - 3 * sigma; *textureRadius = 6 * sigma; } else { // Convert to fixed point for the key. sigmaToCircleRRatioFixed = SkScalarToFixed(sigmaToCircleRRatio); // We shave off some bits to reduce the number of unique entries. We could probably // shave off more than we do. sigmaToCircleRRatioFixed &= ~0xff; sigmaToCircleRRatio = SkFixedToScalar(sigmaToCircleRRatioFixed); sigma = circleR * sigmaToCircleRRatio; *solidRadius = 0; *textureRadius = circleR + 3 * sigma; } static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain(); GrUniqueKey key; GrUniqueKey::Builder builder(&key, kDomain, 1); builder[0] = sigmaToCircleRRatioFixed; builder.finish(); sk_sp blurProfile = proxyProvider->findOrCreateProxyByUniqueKey(key, kTopLeft_GrSurfaceOrigin); if (!blurProfile) { static constexpr int kProfileTextureWidth = 512; GrSurfaceDesc texDesc; texDesc.fOrigin = kTopLeft_GrSurfaceOrigin; texDesc.fWidth = kProfileTextureWidth; texDesc.fHeight = 1; texDesc.fConfig = kAlpha_8_GrPixelConfig; std::unique_ptr profile(nullptr); if (useHalfPlaneApprox) { profile.reset(create_half_plane_profile(kProfileTextureWidth)); } else { // Rescale params to the size of the texture we're creating. SkScalar scale = kProfileTextureWidth / *textureRadius; profile.reset( create_circle_profile(sigma * scale, circleR * scale, kProfileTextureWidth)); } blurProfile = proxyProvider->createTextureProxy(texDesc, SkBudgeted::kYes, profile.get(), 0); if (!blurProfile) { return nullptr; } SkASSERT(blurProfile->origin() == kTopLeft_GrSurfaceOrigin); proxyProvider->assignUniqueKeyToProxy(key, blurProfile.get()); } return blurProfile; } std::unique_ptr GrCircleBlurFragmentProcessor::Make( GrProxyProvider* proxyProvider, const SkRect& circle, float sigma) { float solidRadius; float textureRadius; sk_sp profile( create_profile_texture(proxyProvider, circle, sigma, &solidRadius, &textureRadius)); if (!profile) { return nullptr; } return std::unique_ptr(new GrCircleBlurFragmentProcessor( circle, textureRadius, solidRadius, std::move(profile))); } #include "glsl/GrGLSLFragmentProcessor.h" #include "glsl/GrGLSLFragmentShaderBuilder.h" #include "glsl/GrGLSLProgramBuilder.h" #include "GrTexture.h" #include "SkSLCPP.h" #include "SkSLUtil.h" class GrGLSLCircleBlurFragmentProcessor : public GrGLSLFragmentProcessor { public: GrGLSLCircleBlurFragmentProcessor() {} void emitCode(EmitArgs& args) override { GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; const GrCircleBlurFragmentProcessor& _outer = args.fFp.cast(); (void)_outer; auto circleRect = _outer.circleRect(); (void)circleRect; auto textureRadius = _outer.textureRadius(); (void)textureRadius; auto solidRadius = _outer.solidRadius(); (void)solidRadius; fCircleDataVar = args.fUniformHandler->addUniform(kFragment_GrShaderFlag, kHalf4_GrSLType, kDefault_GrSLPrecision, "circleData"); fragBuilder->codeAppendf( "half2 vec = half2(half((sk_FragCoord.x - float(%s.x)) * float(%s.w)), " "half((sk_FragCoord.y - float(%s.y)) * float(%s.w)));\nhalf dist = " "float(length(vec)) + (0.5 - float(%s.z)) * float(%s.w);\n%s = %s * texture(%s, " "float2(half2(dist, 0.5))).%s.w;\n", args.fUniformHandler->getUniformCStr(fCircleDataVar), args.fUniformHandler->getUniformCStr(fCircleDataVar), args.fUniformHandler->getUniformCStr(fCircleDataVar), args.fUniformHandler->getUniformCStr(fCircleDataVar), args.fUniformHandler->getUniformCStr(fCircleDataVar), args.fUniformHandler->getUniformCStr(fCircleDataVar), args.fOutputColor, args.fInputColor ? args.fInputColor : "half4(1)", fragBuilder->getProgramBuilder()->samplerVariable(args.fTexSamplers[0]).c_str(), fragBuilder->getProgramBuilder()->samplerSwizzle(args.fTexSamplers[0]).c_str()); } private: void onSetData(const GrGLSLProgramDataManager& data, const GrFragmentProcessor& _proc) override { const GrCircleBlurFragmentProcessor& _outer = _proc.cast(); auto circleRect = _outer.circleRect(); (void)circleRect; auto textureRadius = _outer.textureRadius(); (void)textureRadius; auto solidRadius = _outer.solidRadius(); (void)solidRadius; GrSurfaceProxy& blurProfileSamplerProxy = *_outer.textureSampler(0).proxy(); GrTexture& blurProfileSampler = *blurProfileSamplerProxy.priv().peekTexture(); (void)blurProfileSampler; UniformHandle& circleData = fCircleDataVar; (void)circleData; data.set4f(circleData, circleRect.centerX(), circleRect.centerY(), solidRadius, 1.f / textureRadius); } UniformHandle fCircleDataVar; }; GrGLSLFragmentProcessor* GrCircleBlurFragmentProcessor::onCreateGLSLInstance() const { return new GrGLSLCircleBlurFragmentProcessor(); } void GrCircleBlurFragmentProcessor::onGetGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const {} bool GrCircleBlurFragmentProcessor::onIsEqual(const GrFragmentProcessor& other) const { const GrCircleBlurFragmentProcessor& that = other.cast(); (void)that; if (fCircleRect != that.fCircleRect) return false; if (fTextureRadius != that.fTextureRadius) return false; if (fSolidRadius != that.fSolidRadius) return false; if (fBlurProfileSampler != that.fBlurProfileSampler) return false; return true; } GrCircleBlurFragmentProcessor::GrCircleBlurFragmentProcessor( const GrCircleBlurFragmentProcessor& src) : INHERITED(kGrCircleBlurFragmentProcessor_ClassID, src.optimizationFlags()) , fCircleRect(src.fCircleRect) , fTextureRadius(src.fTextureRadius) , fSolidRadius(src.fSolidRadius) , fBlurProfileSampler(src.fBlurProfileSampler) { this->addTextureSampler(&fBlurProfileSampler); } std::unique_ptr GrCircleBlurFragmentProcessor::clone() const { return std::unique_ptr(new GrCircleBlurFragmentProcessor(*this)); } GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrCircleBlurFragmentProcessor); #if GR_TEST_UTILS std::unique_ptr GrCircleBlurFragmentProcessor::TestCreate( GrProcessorTestData* testData) { SkScalar wh = testData->fRandom->nextRangeScalar(100.f, 1000.f); SkScalar sigma = testData->fRandom->nextRangeF(1.f, 10.f); SkRect circle = SkRect::MakeWH(wh, wh); return GrCircleBlurFragmentProcessor::Make(testData->proxyProvider(), circle, sigma); } #endif #endif