/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrCircleBlurFragmentProcessor.h" #if SK_SUPPORT_GPU #include "GrContext.h" #include "GrInvariantOutput.h" #include "GrTextureProvider.h" #include "glsl/GrGLSLFragmentProcessor.h" #include "glsl/GrGLSLFragmentShaderBuilder.h" #include "glsl/GrGLSLProgramDataManager.h" #include "glsl/GrGLSLUniformHandler.h" #include "SkFixed.h" class GrCircleBlurFragmentProcessor::GLSLProcessor : public GrGLSLFragmentProcessor { public: void emitCode(EmitArgs&) override; protected: void onSetData(const GrGLSLProgramDataManager&, const GrProcessor&) override; private: GrGLSLProgramDataManager::UniformHandle fDataUniform; typedef GrGLSLFragmentProcessor INHERITED; }; void GrCircleBlurFragmentProcessor::GLSLProcessor::emitCode(EmitArgs& args) { const char *dataName; // The data is formatted as: // x,y - the center of the circle // z - the distance at which the intensity starts falling off (e.g., the start of the table) // w - the inverse of the distance over which the texture is stretched. fDataUniform = args.fUniformHandler->addUniform(kFragment_GrShaderFlag, kVec4f_GrSLType, kDefault_GrSLPrecision, "data", &dataName); GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; const char *fragmentPos = fragBuilder->fragmentPosition(); if (args.fInputColor) { fragBuilder->codeAppendf("vec4 src=%s;", args.fInputColor); } else { fragBuilder->codeAppendf("vec4 src=vec4(1);"); } // We just want to compute "length(vec) - %s.z + 0.5) * %s.w" but need to rearrange // for precision fragBuilder->codeAppendf("vec2 vec = vec2( (%s.x - %s.x) * %s.w , (%s.y - %s.y) * %s.w );", fragmentPos, dataName, dataName, fragmentPos, dataName, dataName); fragBuilder->codeAppendf("float dist = length(vec) + ( 0.5 - %s.z ) * %s.w;", dataName, dataName); fragBuilder->codeAppendf("float intensity = "); fragBuilder->appendTextureLookup(args.fTexSamplers[0], "vec2(dist, 0.5)"); fragBuilder->codeAppend(".a;"); fragBuilder->codeAppendf("%s = src * intensity;\n", args.fOutputColor ); } void GrCircleBlurFragmentProcessor::GLSLProcessor::onSetData(const GrGLSLProgramDataManager& pdman, const GrProcessor& proc) { const GrCircleBlurFragmentProcessor& cbfp = proc.cast(); const SkRect& circle = cbfp.fCircle; // The data is formatted as: // x,y - the center of the circle // z - the distance at which the intensity starts falling off (e.g., the start of the table) // w - the inverse of the distance over which the profile texture is stretched. pdman.set4f(fDataUniform, circle.centerX(), circle.centerY(), cbfp.fSolidRadius, 1.f / cbfp.fTextureRadius); } /////////////////////////////////////////////////////////////////////////////// GrCircleBlurFragmentProcessor::GrCircleBlurFragmentProcessor(const SkRect& circle, float sigma, float solidRadius, float textureRadius, GrTexture* blurProfile) : fCircle(circle) , fSigma(sigma) , fSolidRadius(solidRadius) , fTextureRadius(textureRadius) , fBlurProfileAccess(blurProfile, GrTextureParams::kBilerp_FilterMode) { this->initClassID(); this->addTextureAccess(&fBlurProfileAccess); this->setWillReadFragmentPosition(); } GrGLSLFragmentProcessor* GrCircleBlurFragmentProcessor::onCreateGLSLInstance() const { return new GLSLProcessor; } void GrCircleBlurFragmentProcessor::onGetGLSLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) const { // The code for this processor is always the same so there is nothing to add to the key. return; } void GrCircleBlurFragmentProcessor::onComputeInvariantOutput(GrInvariantOutput* inout) const { inout->mulByUnknownSingleComponent(); } // Create a Gaussian half-kernel and a summed area table given a sigma and number of discrete // steps. The half kernel is normalized to sum to 0.5. static void make_half_kernel_and_summed_table(float* halfKernel, float* summedHalfKernel, int halfKernelSize, float sigma) { const float invSigma = 1.f / sigma; const float b = -0.5f * invSigma * invSigma; float tot = 0.0f; // Compute half kernel values at half pixel steps out from the center. float t = 0.5f; for (int i = 0; i < halfKernelSize; ++i) { float value = expf(t * t * b); tot += value; halfKernel[i] = value; t += 1.f; } float sum = 0.f; // The half kernel should sum to 0.5 not 1.0. tot *= 2.f; for (int i = 0; i < halfKernelSize; ++i) { halfKernel[i] /= tot; sum += halfKernel[i]; summedHalfKernel[i] = sum; } } // Applies the 1D half kernel vertically at points along the x axis to a circle centered at the // origin with radius circleR. void apply_kernel_in_y(float* results, int numSteps, float firstX, float circleR, int halfKernelSize, const float* summedHalfKernelTable) { float x = firstX; for (int i = 0; i < numSteps; ++i, x += 1.f) { if (x < -circleR || x > circleR) { results[i] = 0; continue; } float y = sqrtf(circleR * circleR - x * x); // In the column at x we exit the circle at +y and -y // The summed table entry j is actually reflects an offset of j + 0.5. y -= 0.5f; int yInt = SkScalarFloorToInt(y); SkASSERT(yInt >= -1); if (y < 0) { results[i] = (y + 0.5f) * summedHalfKernelTable[0]; } else if (yInt >= halfKernelSize - 1) { results[i] = 0.5f; } else { float yFrac = y - yInt; results[i] = (1.f - yFrac) * summedHalfKernelTable[yInt] + yFrac * summedHalfKernelTable[yInt + 1]; } } } // Apply a Gaussian at point (evalX, 0) to a circle centered at the origin with radius circleR. // This relies on having a half kernel computed for the Gaussian and a table of applications of // the half kernel in y to columns at (evalX - halfKernel, evalX - halfKernel + 1, ..., evalX + // halfKernel) passed in as yKernelEvaluations. static uint8_t eval_at(float evalX, float circleR, const float* halfKernel, int halfKernelSize, const float* yKernelEvaluations) { float acc = 0; float x = evalX - halfKernelSize; for (int i = 0; i < halfKernelSize; ++i, x += 1.f) { if (x < -circleR || x > circleR) { continue; } float verticalEval = yKernelEvaluations[i]; acc += verticalEval * halfKernel[halfKernelSize - i - 1]; } for (int i = 0; i < halfKernelSize; ++i, x += 1.f) { if (x < -circleR || x > circleR) { continue; } float verticalEval = yKernelEvaluations[i + halfKernelSize]; acc += verticalEval * halfKernel[i]; } // Since we applied a half kernel in y we multiply acc by 2 (the circle is symmetric about the // x axis). return SkUnitScalarClampToByte(2.f * acc); } // This function creates a profile of a blurred circle. It does this by computing a kernel for // half the Gaussian and a matching summed area table. The summed area table is used to compute // an array of vertical applications of the half kernel to the circle along the x axis. The table // of y evaluations has 2 * k + n entries where k is the size of the half kernel and n is the size // of the profile being computed. Then for each of the n profile entries we walk out k steps in each // horizontal direction multiplying the corresponding y evaluation by the half kernel entry and // sum these values to compute the profile entry. static uint8_t* create_profile(float sigma, float circleR, float offset, int profileTextureWidth) { const int numSteps = profileTextureWidth; uint8_t* weights = new uint8_t[numSteps]; // The full kernel is 6 sigmas wide. int halfKernelSize = SkScalarCeilToInt(6.0f*sigma); // round up to next multiple of 2 and then divide by 2 halfKernelSize = ((halfKernelSize + 1) & ~1) >> 1; // Number of x steps at which to apply kernel in y to cover all the profile samples in x. int numYSteps = numSteps + 2 * halfKernelSize; SkAutoTArray bulkAlloc(halfKernelSize + halfKernelSize + numYSteps); float* halfKernel = bulkAlloc.get(); float* summedKernel = bulkAlloc.get() + halfKernelSize; float* yEvals = bulkAlloc.get() + 2 * halfKernelSize; make_half_kernel_and_summed_table(halfKernel, summedKernel, halfKernelSize, sigma); float firstX = offset - halfKernelSize + 0.5f; apply_kernel_in_y(yEvals, numYSteps, firstX, circleR, halfKernelSize, summedKernel); for (int i = 0; i < numSteps - 1; ++i) { float evalX = offset + i + 0.5f; weights[i] = eval_at(evalX, circleR, halfKernel, halfKernelSize, yEvals + i); } // Ensure the tail of the Gaussian goes to zero. weights[numSteps - 1] = 0; return weights; } static int next_pow2_16bits(int x) { SkASSERT(x > 0); SkASSERT(x <= SK_MaxS16); x--; x |= x >> 1; x |= x >> 2; x |= x >> 4; x |= x >> 8; return x + 1; } GrTexture* GrCircleBlurFragmentProcessor::CreateCircleBlurProfileTexture( GrTextureProvider* textureProvider, const SkRect& circle, float sigma, float* solidRadius, float* textureRadius) { float circleR = circle.width() / 2.0f; // Profile textures are cached by the ratio of sigma to circle radius and by the size of the // profile texture (binned by powers of 2). SkScalar sigmaToCircleRRatio = sigma / circleR; // When sigma is really small this becomes a equivalent to convolving a Gaussian with a half- // plane. We could do that simpler computation. However, right now we're just using a lower // bound off the ratio. Similarly, in the extreme high ratio cases circle becomes a point WRT to // the Guassian and the profile texture is a just a Gaussian evaluation. sigmaToCircleRRatio = SkTPin(sigmaToCircleRRatio, 0.05f, 8.f); // Convert to fixed point for the key. SkFixed sigmaToCircleRRatioFixed = SkScalarToFixed(sigmaToCircleRRatio); // We shave off some bits to reduce the number of unique entries. We could probably shave off // more than we do. sigmaToCircleRRatioFixed &= ~0xff; // From the circle center to solidRadius is all 1s and represented by the leftmost pixel (with // value 255) in the profile texture. If it is zero then there is no solid center to the // blurred circle. if (3*sigma <= circleR) { // The circle is bigger than the Gaussian. In this case we know the interior of the // blurred circle is solid. *solidRadius = circleR - 3 * sigma; // This location maps to 0.5f in the weights texture. // It should always be 255. *textureRadius = SkScalarCeilToScalar(6 * sigma); } else { // The Gaussian is bigger than the circle. *solidRadius = 0.0f; *textureRadius = SkScalarCeilToScalar(circleR + 3 * sigma); } int profileTextureWidth = SkScalarCeilToInt(*textureRadius); profileTextureWidth = (profileTextureWidth >= 1024) ? 1024 : next_pow2_16bits(profileTextureWidth); static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain(); GrUniqueKey key; GrUniqueKey::Builder builder(&key, kDomain, 2); builder[0] = sigmaToCircleRRatioFixed; builder[1] = profileTextureWidth; builder.finish(); GrTexture *blurProfile = textureProvider->findAndRefTextureByUniqueKey(key); if (!blurProfile) { GrSurfaceDesc texDesc; texDesc.fWidth = profileTextureWidth; texDesc.fHeight = 1; texDesc.fConfig = kAlpha_8_GrPixelConfig; // Rescale params to the size of the texture we're creating. SkScalar scale = profileTextureWidth / *textureRadius; SkAutoTDeleteArray profile(create_profile(sigma * scale, circleR * scale, *solidRadius * scale, profileTextureWidth)); blurProfile = textureProvider->createTexture(texDesc, SkBudgeted::kYes, profile.get(), 0); if (blurProfile) { textureProvider->assignUniqueKeyToTexture(key, blurProfile); } } return blurProfile; } GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrCircleBlurFragmentProcessor); sk_sp GrCircleBlurFragmentProcessor::TestCreate(GrProcessorTestData* d) { SkScalar wh = d->fRandom->nextRangeScalar(100.f, 1000.f); SkScalar sigma = d->fRandom->nextRangeF(1.f,10.f); SkRect circle = SkRect::MakeWH(wh, wh); return GrCircleBlurFragmentProcessor::Make(d->fContext->textureProvider(), circle, sigma); } #endif