/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkHalf.h" #include "SkPM4fPriv.h" #include "SkUtils.h" #include "SkXfermode.h" static Sk4f lerp_by_coverage(const Sk4f& src, const Sk4f& dst, uint8_t srcCoverage) { return dst + (src - dst) * Sk4f(srcCoverage * (1/255.0f)); } /////////////////////////////////////////////////////////////////////////////////////////////////// static void xfer_1(const SkXfermode* xfer, uint64_t dst[], const SkPM4f* src, int count, const SkAlpha aa[]) { SkXfermodeProc4f proc = xfer->getProc4f(); SkPM4f d; if (aa) { for (int i = 0; i < count; ++i) { Sk4f d4 = SkHalfToFloat_finite_ftz(dst[i]); d4.store(d.fVec); Sk4f r4 = Sk4f::Load(proc(*src, d).fVec); SkFloatToHalf_finite_ftz(lerp_by_coverage(r4, d4, aa[i])).store(&dst[i]); } } else { for (int i = 0; i < count; ++i) { SkHalfToFloat_finite_ftz(dst[i]).store(d.fVec); Sk4f r4 = Sk4f::Load(proc(*src, d).fVec); SkFloatToHalf_finite_ftz(r4).store(&dst[i]); } } } static void xfer_n(const SkXfermode* xfer, uint64_t dst[], const SkPM4f src[], int count, const SkAlpha aa[]) { SkXfermodeProc4f proc = xfer->getProc4f(); SkPM4f d; if (aa) { for (int i = 0; i < count; ++i) { Sk4f d4 = SkHalfToFloat_finite_ftz(dst[i]); d4.store(d.fVec); Sk4f r4 = Sk4f::Load(proc(src[i], d).fVec); SkFloatToHalf_finite_ftz(lerp_by_coverage(r4, d4, aa[i])).store(&dst[i]); } } else { for (int i = 0; i < count; ++i) { SkHalfToFloat_finite_ftz(dst[i]).store(d.fVec); Sk4f r4 = Sk4f::Load(proc(src[i], d).fVec); SkFloatToHalf_finite_ftz(r4).store(&dst[i]); } } } const SkXfermode::F16Proc gProcs_General[] = { xfer_n, xfer_n, xfer_1, xfer_1 }; /////////////////////////////////////////////////////////////////////////////////////////////////// static void clear(const SkXfermode*, uint64_t dst[], const SkPM4f*, int count, const SkAlpha aa[]) { if (aa) { for (int i = 0; i < count; ++i) { if (aa[i]) { const Sk4f d4 = SkHalfToFloat_finite_ftz(dst[i]); SkFloatToHalf_finite_ftz(d4 * Sk4f((255 - aa[i]) * 1.0f/255)).store(&dst[i]); } } } else { sk_memset64(dst, 0, count); } } const SkXfermode::F16Proc gProcs_Clear[] = { clear, clear, clear, clear }; /////////////////////////////////////////////////////////////////////////////////////////////////// static void src_1(const SkXfermode*, uint64_t dst[], const SkPM4f* src, int count, const SkAlpha aa[]) { const Sk4f s4 = Sk4f::Load(src->fVec); if (aa) { for (int i = 0; i < count; ++i) { const Sk4f d4 = SkHalfToFloat_finite_ftz(dst[i]); SkFloatToHalf_finite_ftz(lerp_by_coverage(s4, d4, aa[i])).store(&dst[i]); } } else { uint64_t s4h; SkFloatToHalf_finite_ftz(s4).store(&s4h); sk_memset64(dst, s4h, count); } } static void src_n(const SkXfermode*, uint64_t dst[], const SkPM4f src[], int count, const SkAlpha aa[]) { if (aa) { for (int i = 0; i < count; ++i) { const Sk4f s4 = Sk4f::Load(src[i].fVec); const Sk4f d4 = SkHalfToFloat_finite_ftz(dst[i]); SkFloatToHalf_finite_ftz(lerp_by_coverage(s4, d4, aa[i])).store(&dst[i]); } } else { for (int i = 0; i < count; ++i) { const Sk4f s4 = Sk4f::Load(src[i].fVec); SkFloatToHalf_finite_ftz(s4).store(&dst[i]); } } } const SkXfermode::F16Proc gProcs_Src[] = { src_n, src_n, src_1, src_1 }; /////////////////////////////////////////////////////////////////////////////////////////////////// static void dst(const SkXfermode*, uint64_t*, const SkPM4f*, int count, const SkAlpha[]) {} const SkXfermode::F16Proc gProcs_Dst[] = { dst, dst, dst, dst }; /////////////////////////////////////////////////////////////////////////////////////////////////// static void srcover_1(const SkXfermode*, uint64_t dst[], const SkPM4f* src, int count, const SkAlpha aa[]) { const Sk4f s4 = Sk4f::Load(src->fVec); const Sk4f dst_scale = Sk4f(1 - get_alpha(s4)); for (int i = 0; i < count; ++i) { const Sk4f d4 = SkHalfToFloat_finite_ftz(dst[i]); const Sk4f r4 = s4 + d4 * dst_scale; if (aa) { SkFloatToHalf_finite_ftz(lerp_by_coverage(r4, d4, aa[i])).store(&dst[i]); } else { SkFloatToHalf_finite_ftz(r4).store(&dst[i]); } } } static void srcover_n(const SkXfermode*, uint64_t dst[], const SkPM4f src[], int count, const SkAlpha aa[]) { for (int i = 0; i < count; ++i) { Sk4f s = Sk4f::Load(src+i), d = SkHalfToFloat_finite_ftz(dst[i]), r = s + d*(1.0f - SkNx_shuffle<3,3,3,3>(s)); if (aa) { r = lerp_by_coverage(r, d, aa[i]); } SkFloatToHalf_finite_ftz(r).store(&dst[i]); } } const SkXfermode::F16Proc gProcs_SrcOver[] = { srcover_n, src_n, srcover_1, src_1 }; /////////////////////////////////////////////////////////////////////////////////////////////////// static SkXfermode::F16Proc find_proc(SkXfermode::Mode mode, uint32_t flags) { SkASSERT(0 == (flags & ~3)); flags &= 3; switch (mode) { case SkXfermode::kClear_Mode: return gProcs_Clear[flags]; case SkXfermode::kSrc_Mode: return gProcs_Src[flags]; case SkXfermode::kDst_Mode: return gProcs_Dst[flags]; case SkXfermode::kSrcOver_Mode: return gProcs_SrcOver[flags]; default: break; } return gProcs_General[flags]; } SkXfermode::F16Proc SkXfermode::onGetF16Proc(uint32_t flags) const { SkASSERT(0 == (flags & ~3)); flags &= 3; Mode mode; return this->asMode(&mode) ? find_proc(mode, flags) : gProcs_General[flags]; } SkXfermode::F16Proc SkXfermode::GetF16Proc(SkXfermode* xfer, uint32_t flags) { return xfer ? xfer->onGetF16Proc(flags) : find_proc(SkXfermode::kSrcOver_Mode, flags); }