/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkPM4fPriv.h" #include "SkUtils.h" #include "SkXfermode.h" struct XferProcPair { SkXfermode::PM4fProc1 fP1; SkXfermode::PM4fProcN fPN; }; enum DstType { kLinear_Dst, kSRGB_Dst, }; static Sk4f scale_by_coverage(const Sk4f& x4, uint8_t coverage) { return x4 * Sk4f(coverage * (1/255.0f)); } static Sk4f lerp(const Sk4f& src, const Sk4f& dst, uint8_t srcCoverage) { return dst + (src - dst) * Sk4f(srcCoverage * (1/255.0f)); } template Sk4f load_dst(SkPMColor dstC) { return (D == kSRGB_Dst) ? Sk4f_fromS32(dstC) : Sk4f_fromL32(dstC); } static Sk4f srgb_4b_to_linear_unit(SkPMColor dstC) { return Sk4f_fromS32(dstC); } template uint32_t store_dst(const Sk4f& x4) { return (D == kSRGB_Dst) ? Sk4f_toS32(x4) : Sk4f_toL32(x4); } static Sk4f linear_unit_to_srgb_255f(const Sk4f& l4) { return linear_to_srgb(l4) * Sk4f(255) + Sk4f(0.5f); } /////////////////////////////////////////////////////////////////////////////////////////////////// static Sk4f scale_255_round(const SkPM4f& pm4) { return Sk4f::Load(pm4.fVec) * Sk4f(255) + Sk4f(0.5f); } static void pm4f_to_linear_32(SkPMColor dst[], const SkPM4f src[], int count) { while (count >= 4) { src[0].assertIsUnit(); src[1].assertIsUnit(); src[2].assertIsUnit(); src[3].assertIsUnit(); Sk4f_ToBytes((uint8_t*)dst, scale_255_round(src[0]), scale_255_round(src[1]), scale_255_round(src[2]), scale_255_round(src[3])); src += 4; dst += 4; count -= 4; } for (int i = 0; i < count; ++i) { src[i].assertIsUnit(); SkNx_cast(scale_255_round(src[i])).store((uint8_t*)&dst[i]); } } /////////////////////////////////////////////////////////////////////////////////////////////////// // These are our fallback impl for the SkPM4f procs... // // They just convert the src color(s) into a linear SkPMColor value(s), and then // call the existing virtual xfer32. This clear throws away data (converting floats to bytes) // in the src, and ignores the sRGB flag, but should draw about the same as if the caller // had passed in SkPMColor values directly. // void xfer_pm4_proc_1(const SkXfermode::PM4fState& state, uint32_t dst[], const SkPM4f& src, int count, const SkAlpha aa[]) { uint32_t pm; pm4f_to_linear_32(&pm, &src, 1); const int N = 128; SkPMColor tmp[N]; sk_memset32(tmp, pm, SkMin32(count, N)); while (count > 0) { const int n = SkMin32(count, N); state.fXfer->xfer32(dst, tmp, n, aa); dst += n; if (aa) { aa += n; } count -= n; } } void xfer_pm4_proc_n(const SkXfermode::PM4fState& state, uint32_t dst[], const SkPM4f src[], int count, const SkAlpha aa[]) { const int N = 128; SkPMColor tmp[N]; while (count > 0) { const int n = SkMin32(count, N); pm4f_to_linear_32(tmp, src, n); state.fXfer->xfer32(dst, tmp, n, aa); src += n; dst += n; if (aa) { aa += n; } count -= n; } } /////////////////////////////////////////////////////////////////////////////////////////////////// static void clear_linear_n(const SkXfermode::PM4fState& state, uint32_t dst[], const SkPM4f[], int count, const SkAlpha aa[]) { if (aa) { for (int i = 0; i < count; ++i) { unsigned a = aa[i]; if (a) { SkPMColor dstC = dst[i]; SkPMColor C = 0; if (0xFF != a) { C = SkFourByteInterp(C, dstC, a); } dst[i] = C; } } } else { sk_bzero(dst, count * sizeof(SkPMColor)); } } static void clear_linear_1(const SkXfermode::PM4fState& state, uint32_t dst[], const SkPM4f&, int count, const SkAlpha coverage[]) { clear_linear_n(state, dst, nullptr, count, coverage); } static void clear_srgb_n(const SkXfermode::PM4fState& state, uint32_t dst[], const SkPM4f[], int count, const SkAlpha aa[]) { if (aa) { for (int i = 0; i < count; ++i) { unsigned a = aa[i]; if (a) { Sk4f d = Sk4f_fromS32(dst[i]) * Sk4f((255 - a) * (1/255.0f)); dst[i] = Sk4f_toS32(d); } } } else { sk_bzero(dst, count * sizeof(SkPMColor)); } } static void clear_srgb_1(const SkXfermode::PM4fState& state, uint32_t dst[], const SkPM4f&, int count, const SkAlpha coverage[]) { clear_srgb_n(state, dst, nullptr, count, coverage); } const XferProcPair gProcs_Clear[] = { { clear_linear_1, clear_linear_n }, // linear [alpha] { clear_linear_1, clear_linear_n }, // linear [opaque] { clear_srgb_1, clear_srgb_n }, // srgb [alpha] { clear_srgb_1, clear_srgb_n }, // srgb [opaque] }; /////////////////////////////////////////////////////////////////////////////////////////////////// template void src_n(const SkXfermode::PM4fState& state, uint32_t dst[], const SkPM4f src[], int count, const SkAlpha aa[]) { for (int i = 0; i < count; ++i) { unsigned a = 0xFF; if (aa) { a = aa[i]; if (0 == a) { continue; } } Sk4f r4 = Sk4f::Load(src[i].fVec); // src always overrides dst if (a != 0xFF) { Sk4f d4 = load_dst(dst[i]); r4 = lerp(r4, d4, a); } dst[i] = store_dst(r4); } } static Sk4f lerp(const Sk4f& src, const Sk4f& dst, const Sk4f& src_scale) { return dst + (src - dst) * src_scale; } template void src_1(const SkXfermode::PM4fState& state, uint32_t dst[], const SkPM4f& src, int count, const SkAlpha aa[]) { const Sk4f s4 = Sk4f::Load(src.fVec); if (aa) { if (D == kLinear_Dst) { // operate in bias-255 space for src and dst const Sk4f& s4_255 = s4 * Sk4f(255); while (count >= 4) { Sk4f aa4 = SkNx_cast(Sk4b::Load(aa)) * Sk4f(1/255.f); Sk4f r0 = lerp(s4_255, to_4f(dst[0]), Sk4f(aa4[0])) + Sk4f(0.5f); Sk4f r1 = lerp(s4_255, to_4f(dst[1]), Sk4f(aa4[1])) + Sk4f(0.5f); Sk4f r2 = lerp(s4_255, to_4f(dst[2]), Sk4f(aa4[2])) + Sk4f(0.5f); Sk4f r3 = lerp(s4_255, to_4f(dst[3]), Sk4f(aa4[3])) + Sk4f(0.5f); Sk4f_ToBytes((uint8_t*)dst, r0, r1, r2, r3); dst += 4; aa += 4; count -= 4; } } else { // kSRGB while (count >= 4) { Sk4f aa4 = SkNx_cast(Sk4b::Load(aa)) * Sk4f(1/255.0f); /* If we ever natively support convert 255_linear -> 255_srgb, then perhaps * it would be faster (and possibly allow more code sharing with kLinear) to * stay in that space. */ Sk4f r0 = lerp(s4, load_dst(dst[0]), Sk4f(aa4[0])); Sk4f r1 = lerp(s4, load_dst(dst[1]), Sk4f(aa4[1])); Sk4f r2 = lerp(s4, load_dst(dst[2]), Sk4f(aa4[2])); Sk4f r3 = lerp(s4, load_dst(dst[3]), Sk4f(aa4[3])); Sk4f_ToBytes((uint8_t*)dst, linear_unit_to_srgb_255f(r0), linear_unit_to_srgb_255f(r1), linear_unit_to_srgb_255f(r2), linear_unit_to_srgb_255f(r3)); dst += 4; aa += 4; count -= 4; } } for (int i = 0; i < count; ++i) { unsigned a = aa[i]; Sk4f d4 = load_dst(dst[i]); dst[i] = store_dst(lerp(s4, d4, a)); } } else { sk_memset32(dst, store_dst(s4), count); } } const XferProcPair gProcs_Src[] = { { src_1, src_n }, // linear [alpha] { src_1, src_n }, // linear [opaque] { src_1, src_n }, // srgb [alpha] { src_1, src_n }, // srgb [opaque] }; /////////////////////////////////////////////////////////////////////////////////////////////////// static void dst_n(const SkXfermode::PM4fState& state, uint32_t dst[], const SkPM4f[], int count, const SkAlpha aa[]) {} static void dst_1(const SkXfermode::PM4fState& state, uint32_t dst[], const SkPM4f&, int count, const SkAlpha coverage[]) {} const XferProcPair gProcs_Dst[] = { { dst_1, dst_n }, { dst_1, dst_n }, { dst_1, dst_n }, { dst_1, dst_n }, }; /////////////////////////////////////////////////////////////////////////////////////////////////// template void srcover_n(const SkXfermode::PM4fState& state, uint32_t dst[], const SkPM4f src[], int count, const SkAlpha aa[]) { if (aa) { for (int i = 0; i < count; ++i) { unsigned a = aa[i]; if (0 == a) { continue; } Sk4f s4 = Sk4f::Load(src[i].fVec); Sk4f d4 = load_dst(dst[i]); if (a != 0xFF) { s4 = scale_by_coverage(s4, a); } Sk4f r4 = s4 + d4 * Sk4f(1 - get_alpha(s4)); dst[i] = store_dst(r4); } } else { for (int i = 0; i < count; ++i) { Sk4f s4 = Sk4f::Load(src[i].fVec); Sk4f d4 = load_dst(dst[i]); Sk4f r4 = s4 + d4 * Sk4f(1 - get_alpha(s4)); dst[i] = store_dst(r4); } } } static void srcover_linear_dst_1(const SkXfermode::PM4fState& state, uint32_t dst[], const SkPM4f& src, int count, const SkAlpha aa[]) { const Sk4f s4 = Sk4f::Load(src.fVec); const Sk4f dst_scale = Sk4f(1 - get_alpha(s4)); if (aa) { for (int i = 0; i < count; ++i) { unsigned a = aa[i]; if (0 == a) { continue; } Sk4f d4 = Sk4f_fromL32(dst[i]); Sk4f r4; if (a != 0xFF) { Sk4f s4_aa = scale_by_coverage(s4, a); r4 = s4_aa + d4 * Sk4f(1 - get_alpha(s4_aa)); } else { r4 = s4 + d4 * dst_scale; } dst[i] = Sk4f_toL32(r4); } } else { const Sk4f s4_255 = s4 * Sk4f(255) + Sk4f(0.5f); // +0.5 to pre-bias for rounding while (count >= 4) { Sk4f d0 = to_4f(dst[0]); Sk4f d1 = to_4f(dst[1]); Sk4f d2 = to_4f(dst[2]); Sk4f d3 = to_4f(dst[3]); Sk4f_ToBytes((uint8_t*)dst, s4_255 + d0 * dst_scale, s4_255 + d1 * dst_scale, s4_255 + d2 * dst_scale, s4_255 + d3 * dst_scale); dst += 4; count -= 4; } for (int i = 0; i < count; ++i) { Sk4f d4 = to_4f(dst[i]); dst[i] = to_4b(s4_255 + d4 * dst_scale); } } } static void srcover_srgb_dst_1(const SkXfermode::PM4fState& state, uint32_t dst[], const SkPM4f& src, int count, const SkAlpha aa[]) { Sk4f s4 = Sk4f::Load(src.fVec); Sk4f dst_scale = Sk4f(1 - get_alpha(s4)); if (aa) { for (int i = 0; i < count; ++i) { unsigned a = aa[i]; if (0 == a) { continue; } Sk4f d4 = srgb_4b_to_linear_unit(dst[i]); Sk4f r4; if (a != 0xFF) { const Sk4f s4_aa = scale_by_coverage(s4, a); r4 = s4_aa + d4 * Sk4f(1 - get_alpha(s4_aa)); } else { r4 = s4 + d4 * dst_scale; } dst[i] = to_4b(linear_unit_to_srgb_255f(r4)); } } else { while (count >= 4) { Sk4f d0 = srgb_4b_to_linear_unit(dst[0]); Sk4f d1 = srgb_4b_to_linear_unit(dst[1]); Sk4f d2 = srgb_4b_to_linear_unit(dst[2]); Sk4f d3 = srgb_4b_to_linear_unit(dst[3]); Sk4f_ToBytes((uint8_t*)dst, linear_unit_to_srgb_255f(s4 + d0 * dst_scale), linear_unit_to_srgb_255f(s4 + d1 * dst_scale), linear_unit_to_srgb_255f(s4 + d2 * dst_scale), linear_unit_to_srgb_255f(s4 + d3 * dst_scale)); dst += 4; count -= 4; } for (int i = 0; i < count; ++i) { Sk4f d4 = srgb_4b_to_linear_unit(dst[i]); dst[i] = to_4b(linear_unit_to_srgb_255f(s4 + d4 * dst_scale)); } } } const XferProcPair gProcs_SrcOver[] = { { srcover_linear_dst_1, srcover_n }, // linear alpha { src_1, src_n }, // linear opaque [ we are src-mode ] { srcover_srgb_dst_1, srcover_n }, // srgb alpha { src_1, src_n }, // srgb opaque [ we are src-mode ] }; /////////////////////////////////////////////////////////////////////////////////////////////////// static XferProcPair find_procs(SkXfermode::Mode mode, uint32_t flags) { SkASSERT(0 == (flags & ~3)); flags &= 3; switch (mode) { case SkXfermode::kClear_Mode: return gProcs_Clear[flags]; case SkXfermode::kSrc_Mode: return gProcs_Src[flags]; case SkXfermode::kDst_Mode: return gProcs_Dst[flags]; case SkXfermode::kSrcOver_Mode: return gProcs_SrcOver[flags]; default: break; } return { xfer_pm4_proc_1, xfer_pm4_proc_n }; } SkXfermode::PM4fProc1 SkXfermode::GetPM4fProc1(Mode mode, uint32_t flags) { return find_procs(mode, flags).fP1; } SkXfermode::PM4fProcN SkXfermode::GetPM4fProcN(Mode mode, uint32_t flags) { return find_procs(mode, flags).fPN; } SkXfermode::PM4fProc1 SkXfermode::getPM4fProc1(uint32_t flags) const { Mode mode; return this->asMode(&mode) ? GetPM4fProc1(mode, flags) : xfer_pm4_proc_1; } SkXfermode::PM4fProcN SkXfermode::getPM4fProcN(uint32_t flags) const { Mode mode; return this->asMode(&mode) ? GetPM4fProcN(mode, flags) : xfer_pm4_proc_n; } /////////////////////////////////////////////////////////////////////////////////////////////////// #include "SkColorPriv.h" static Sk4f lcd16_to_unit_4f(uint16_t rgb) { #ifdef SK_PMCOLOR_IS_RGBA Sk4i rgbi = Sk4i(SkGetPackedR16(rgb), SkGetPackedG16(rgb), SkGetPackedB16(rgb), 0); #else Sk4i rgbi = Sk4i(SkGetPackedB16(rgb), SkGetPackedG16(rgb), SkGetPackedR16(rgb), 0); #endif return SkNx_cast(rgbi) * Sk4f(1.0f/31, 1.0f/63, 1.0f/31, 0); } template void src_1_lcd(uint32_t dst[], const SkPM4f* src, int count, const uint16_t lcd[]) { const Sk4f s4 = Sk4f::Load(src->fVec); if (D == kLinear_Dst) { // operate in bias-255 space for src and dst const Sk4f s4bias = s4 * Sk4f(255); for (int i = 0; i < count; ++i) { uint16_t rgb = lcd[i]; if (0 == rgb) { continue; } Sk4f d4bias = to_4f(dst[i]); dst[i] = to_4b(lerp(s4bias, d4bias, lcd16_to_unit_4f(rgb))) | (SK_A32_MASK << SK_A32_SHIFT); } } else { // kSRGB for (int i = 0; i < count; ++i) { uint16_t rgb = lcd[i]; if (0 == rgb) { continue; } Sk4f d4 = load_dst(dst[i]); dst[i] = store_dst(lerp(s4, d4, lcd16_to_unit_4f(rgb))) | (SK_A32_MASK << SK_A32_SHIFT); } } } template void src_n_lcd(uint32_t dst[], const SkPM4f src[], int count, const uint16_t lcd[]) { for (int i = 0; i < count; ++i) { uint16_t rgb = lcd[i]; if (0 == rgb) { continue; } Sk4f s4 = Sk4f::Load(src[i].fVec); Sk4f d4 = load_dst(dst[i]); dst[i] = store_dst(lerp(s4, d4, lcd16_to_unit_4f(rgb))) | (SK_A32_MASK << SK_A32_SHIFT); } } template void srcover_1_lcd(uint32_t dst[], const SkPM4f* src, int count, const uint16_t lcd[]) { const Sk4f s4 = Sk4f::Load(src->fVec); Sk4f dst_scale = Sk4f(1 - get_alpha(s4)); for (int i = 0; i < count; ++i) { uint16_t rgb = lcd[i]; if (0 == rgb) { continue; } Sk4f d4 = load_dst(dst[i]); Sk4f r4 = s4 + d4 * dst_scale; r4 = lerp(r4, d4, lcd16_to_unit_4f(rgb)); dst[i] = store_dst(r4) | (SK_A32_MASK << SK_A32_SHIFT); } } template void srcover_n_lcd(uint32_t dst[], const SkPM4f src[], int count, const uint16_t lcd[]) { for (int i = 0; i < count; ++i) { uint16_t rgb = lcd[i]; if (0 == rgb) { continue; } Sk4f s4 = Sk4f::Load(src[i].fVec); Sk4f dst_scale = Sk4f(1 - get_alpha(s4)); Sk4f d4 = load_dst(dst[i]); Sk4f r4 = s4 + d4 * dst_scale; r4 = lerp(r4, d4, lcd16_to_unit_4f(rgb)); dst[i] = store_dst(r4) | (SK_A32_MASK << SK_A32_SHIFT); } } SkXfermode::LCD32Proc SkXfermode::GetLCD32Proc(uint32_t flags) { SkASSERT((flags & ~7) == 0); flags &= 7; const LCD32Proc procs[] = { srcover_n_lcd, src_n_lcd, srcover_1_lcd, src_1_lcd, srcover_n_lcd, src_n_lcd, srcover_1_lcd, src_1_lcd, }; return procs[flags]; }