/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkWriteBuffer.h" #include "SkBitmap.h" #include "SkData.h" #include "SkPixelRef.h" #include "SkPtrRecorder.h" #include "SkStream.h" #include "SkTypeface.h" SkWriteBuffer::SkWriteBuffer(uint32_t flags) : fFlags(flags) , fFactorySet(NULL) , fNamedFactorySet(NULL) , fBitmapHeap(NULL) , fTFSet(NULL) , fBitmapEncoder(NULL) { } SkWriteBuffer::SkWriteBuffer(void* storage, size_t storageSize, uint32_t flags) : fFlags(flags) , fFactorySet(NULL) , fNamedFactorySet(NULL) , fWriter(storage, storageSize) , fBitmapHeap(NULL) , fTFSet(NULL) , fBitmapEncoder(NULL) { } SkWriteBuffer::~SkWriteBuffer() { SkSafeUnref(fFactorySet); SkSafeUnref(fNamedFactorySet); SkSafeUnref(fBitmapHeap); SkSafeUnref(fTFSet); } void SkWriteBuffer::writeByteArray(const void* data, size_t size) { fWriter.write32(SkToU32(size)); fWriter.writePad(data, size); } void SkWriteBuffer::writeBool(bool value) { fWriter.writeBool(value); } void SkWriteBuffer::writeFixed(SkFixed value) { fWriter.write32(value); } void SkWriteBuffer::writeScalar(SkScalar value) { fWriter.writeScalar(value); } void SkWriteBuffer::writeScalarArray(const SkScalar* value, uint32_t count) { fWriter.write32(count); fWriter.write(value, count * sizeof(SkScalar)); } void SkWriteBuffer::writeInt(int32_t value) { fWriter.write32(value); } void SkWriteBuffer::writeIntArray(const int32_t* value, uint32_t count) { fWriter.write32(count); fWriter.write(value, count * sizeof(int32_t)); } void SkWriteBuffer::writeUInt(uint32_t value) { fWriter.write32(value); } void SkWriteBuffer::write32(int32_t value) { fWriter.write32(value); } void SkWriteBuffer::writeString(const char* value) { fWriter.writeString(value); } void SkWriteBuffer::writeEncodedString(const void* value, size_t byteLength, SkPaint::TextEncoding encoding) { fWriter.writeInt(encoding); fWriter.writeInt(SkToU32(byteLength)); fWriter.write(value, byteLength); } void SkWriteBuffer::writeColor(const SkColor& color) { fWriter.write32(color); } void SkWriteBuffer::writeColorArray(const SkColor* color, uint32_t count) { fWriter.write32(count); fWriter.write(color, count * sizeof(SkColor)); } void SkWriteBuffer::writePoint(const SkPoint& point) { fWriter.writeScalar(point.fX); fWriter.writeScalar(point.fY); } void SkWriteBuffer::writePointArray(const SkPoint* point, uint32_t count) { fWriter.write32(count); fWriter.write(point, count * sizeof(SkPoint)); } void SkWriteBuffer::writeMatrix(const SkMatrix& matrix) { fWriter.writeMatrix(matrix); } void SkWriteBuffer::writeIRect(const SkIRect& rect) { fWriter.write(&rect, sizeof(SkIRect)); } void SkWriteBuffer::writeRect(const SkRect& rect) { fWriter.writeRect(rect); } void SkWriteBuffer::writeRegion(const SkRegion& region) { fWriter.writeRegion(region); } void SkWriteBuffer::writePath(const SkPath& path) { fWriter.writePath(path); } size_t SkWriteBuffer::writeStream(SkStream* stream, size_t length) { fWriter.write32(SkToU32(length)); size_t bytesWritten = fWriter.readFromStream(stream, length); if (bytesWritten < length) { fWriter.reservePad(length - bytesWritten); } return bytesWritten; } bool SkWriteBuffer::writeToStream(SkWStream* stream) { return fWriter.writeToStream(stream); } static void write_encoded_bitmap(SkWriteBuffer* buffer, SkData* data, const SkIPoint& origin) { buffer->writeUInt(SkToU32(data->size())); buffer->getWriter32()->writePad(data->data(), data->size()); buffer->write32(origin.fX); buffer->write32(origin.fY); } void SkWriteBuffer::writeBitmap(const SkBitmap& bitmap) { // Record the width and height. This way if readBitmap fails a dummy bitmap can be drawn at the // right size. this->writeInt(bitmap.width()); this->writeInt(bitmap.height()); // Record information about the bitmap in one of three ways, in order of priority: // 1. If there is an SkBitmapHeap, store it in the heap. The client can avoid serializing the // bitmap entirely or serialize it later as desired. A boolean value of true will be written // to the stream to signify that a heap was used. // 2. If there is a function for encoding bitmaps, use it to write an encoded version of the // bitmap. After writing a boolean value of false, signifying that a heap was not used, write // the size of the encoded data. A non-zero size signifies that encoded data was written. // 3. Call SkBitmap::flatten. After writing a boolean value of false, signifying that a heap was // not used, write a zero to signify that the data was not encoded. bool useBitmapHeap = fBitmapHeap != NULL; // Write a bool: true if the SkBitmapHeap is to be used, in which case the reader must use an // SkBitmapHeapReader to read the SkBitmap. False if the bitmap was serialized another way. this->writeBool(useBitmapHeap); if (useBitmapHeap) { SkASSERT(NULL == fBitmapEncoder); int32_t slot = fBitmapHeap->insert(bitmap); fWriter.write32(slot); // crbug.com/155875 // The generation ID is not required information. We write it to prevent collisions // in SkFlatDictionary. It is possible to get a collision when a previously // unflattened (i.e. stale) instance of a similar flattenable is in the dictionary // and the instance currently being written is re-using the same slot from the // bitmap heap. fWriter.write32(bitmap.getGenerationID()); return; } // see if the pixelref already has an encoded version if (bitmap.pixelRef()) { SkAutoDataUnref data(bitmap.pixelRef()->refEncodedData()); if (data.get() != NULL) { write_encoded_bitmap(this, data, bitmap.pixelRefOrigin()); return; } } // see if the caller wants to manually encode if (fBitmapEncoder != NULL) { SkASSERT(NULL == fBitmapHeap); size_t offset = 0; // this parameter is deprecated/ignored // if we have to "encode" the bitmap, then we assume there is no // offset to share, since we are effectively creating a new pixelref SkAutoDataUnref data(fBitmapEncoder(&offset, bitmap)); if (data.get() != NULL) { write_encoded_bitmap(this, data, SkIPoint::Make(0, 0)); return; } } // Bitmap was not encoded. Record a zero, implying that the reader need not decode. this->writeUInt(0); bitmap.flatten(*this); } void SkWriteBuffer::writeTypeface(SkTypeface* obj) { if (NULL == obj || NULL == fTFSet) { fWriter.write32(0); } else { fWriter.write32(fTFSet->add(obj)); } } SkFactorySet* SkWriteBuffer::setFactoryRecorder(SkFactorySet* rec) { SkRefCnt_SafeAssign(fFactorySet, rec); if (fNamedFactorySet != NULL) { fNamedFactorySet->unref(); fNamedFactorySet = NULL; } return rec; } SkNamedFactorySet* SkWriteBuffer::setNamedFactoryRecorder(SkNamedFactorySet* rec) { SkRefCnt_SafeAssign(fNamedFactorySet, rec); if (fFactorySet != NULL) { fFactorySet->unref(); fFactorySet = NULL; } return rec; } SkRefCntSet* SkWriteBuffer::setTypefaceRecorder(SkRefCntSet* rec) { SkRefCnt_SafeAssign(fTFSet, rec); return rec; } void SkWriteBuffer::setBitmapHeap(SkBitmapHeap* bitmapHeap) { SkRefCnt_SafeAssign(fBitmapHeap, bitmapHeap); if (bitmapHeap != NULL) { SkASSERT(NULL == fBitmapEncoder); fBitmapEncoder = NULL; } } void SkWriteBuffer::setBitmapEncoder(SkPicture::EncodeBitmap bitmapEncoder) { fBitmapEncoder = bitmapEncoder; if (bitmapEncoder != NULL) { SkASSERT(NULL == fBitmapHeap); SkSafeUnref(fBitmapHeap); fBitmapHeap = NULL; } } void SkWriteBuffer::writeFlattenable(const SkFlattenable* flattenable) { /* * If we have a factoryset, then the first 32bits tell us... * 0: failure to write the flattenable * >0: (1-based) index into the SkFactorySet or SkNamedFactorySet * If we don't have a factoryset, then the first "ptr" is either the * factory, or null for failure. * * The distinction is important, since 0-index is 32bits (always), but a * 0-functionptr might be 32 or 64 bits. */ if (NULL == flattenable) { if (this->isValidating()) { this->writeString(""); } else if (fFactorySet != NULL || fNamedFactorySet != NULL) { this->write32(0); } else { this->writeFunctionPtr(NULL); } return; } SkFlattenable::Factory factory = flattenable->getFactory(); SkASSERT(factory != NULL); /* * We can write 1 of 3 versions of the flattenable: * 1. function-ptr : this is the fastest for the reader, but assumes that * the writer and reader are in the same process. * 2. index into fFactorySet : This is assumes the writer will later * resolve the function-ptrs into strings for its reader. SkPicture * does exactly this, by writing a table of names (matching the indices) * up front in its serialized form. * 3. index into fNamedFactorySet. fNamedFactorySet will also store the * name. SkGPipe uses this technique so it can write the name to its * stream before writing the flattenable. */ if (this->isValidating()) { this->writeString(flattenable->getTypeName()); } else if (fFactorySet) { this->write32(fFactorySet->add(factory)); } else if (fNamedFactorySet) { int32_t index = fNamedFactorySet->find(factory); this->write32(index); if (0 == index) { return; } } else { this->writeFunctionPtr((void*)factory); } // make room for the size of the flattened object (void)fWriter.reserve(sizeof(uint32_t)); // record the current size, so we can subtract after the object writes. size_t offset = fWriter.bytesWritten(); // now flatten the object flattenable->flatten(*this); size_t objSize = fWriter.bytesWritten() - offset; // record the obj's size fWriter.overwriteTAt(offset - sizeof(uint32_t), SkToU32(objSize)); }