/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkWriteBuffer.h" #include "SkBitmap.h" #include "SkData.h" #include "SkDeduper.h" #include "SkImagePriv.h" #include "SkPaintPriv.h" #include "SkPixelRef.h" #include "SkPtrRecorder.h" #include "SkStream.h" #include "SkTo.h" #include "SkTypeface.h" /////////////////////////////////////////////////////////////////////////////////////////////////// SkBinaryWriteBuffer::SkBinaryWriteBuffer() : fFactorySet(nullptr) , fTFSet(nullptr) { } SkBinaryWriteBuffer::SkBinaryWriteBuffer(void* storage, size_t storageSize) : fFactorySet(nullptr) , fTFSet(nullptr) , fWriter(storage, storageSize) {} SkBinaryWriteBuffer::~SkBinaryWriteBuffer() {} bool SkBinaryWriteBuffer::usingInitialStorage() const { return fWriter.usingInitialStorage(); } void SkBinaryWriteBuffer::writeByteArray(const void* data, size_t size) { fWriter.write32(SkToU32(size)); fWriter.writePad(data, size); } void SkBinaryWriteBuffer::writeBool(bool value) { fWriter.writeBool(value); } void SkBinaryWriteBuffer::writeScalar(SkScalar value) { fWriter.writeScalar(value); } void SkBinaryWriteBuffer::writeScalarArray(const SkScalar* value, uint32_t count) { fWriter.write32(count); fWriter.write(value, count * sizeof(SkScalar)); } void SkBinaryWriteBuffer::writeInt(int32_t value) { fWriter.write32(value); } void SkBinaryWriteBuffer::writeIntArray(const int32_t* value, uint32_t count) { fWriter.write32(count); fWriter.write(value, count * sizeof(int32_t)); } void SkBinaryWriteBuffer::writeUInt(uint32_t value) { fWriter.write32(value); } void SkBinaryWriteBuffer::writeString(const char* value) { fWriter.writeString(value); } void SkBinaryWriteBuffer::writeColor(SkColor color) { fWriter.write32(color); } void SkBinaryWriteBuffer::writeColorArray(const SkColor* color, uint32_t count) { fWriter.write32(count); fWriter.write(color, count * sizeof(SkColor)); } void SkBinaryWriteBuffer::writeColor4f(const SkColor4f& color) { fWriter.write(&color, sizeof(SkColor4f)); } void SkBinaryWriteBuffer::writeColor4fArray(const SkColor4f* color, uint32_t count) { fWriter.write32(count); fWriter.write(color, count * sizeof(SkColor4f)); } void SkBinaryWriteBuffer::writePoint(const SkPoint& point) { fWriter.writeScalar(point.fX); fWriter.writeScalar(point.fY); } void SkBinaryWriteBuffer::writePointArray(const SkPoint* point, uint32_t count) { fWriter.write32(count); fWriter.write(point, count * sizeof(SkPoint)); } void SkBinaryWriteBuffer::writeMatrix(const SkMatrix& matrix) { fWriter.writeMatrix(matrix); } void SkBinaryWriteBuffer::writeIRect(const SkIRect& rect) { fWriter.write(&rect, sizeof(SkIRect)); } void SkBinaryWriteBuffer::writeRect(const SkRect& rect) { fWriter.writeRect(rect); } void SkBinaryWriteBuffer::writeRegion(const SkRegion& region) { fWriter.writeRegion(region); } void SkBinaryWriteBuffer::writePath(const SkPath& path) { fWriter.writePath(path); } size_t SkBinaryWriteBuffer::writeStream(SkStream* stream, size_t length) { fWriter.write32(SkToU32(length)); size_t bytesWritten = fWriter.readFromStream(stream, length); if (bytesWritten < length) { fWriter.reservePad(length - bytesWritten); } return bytesWritten; } bool SkBinaryWriteBuffer::writeToStream(SkWStream* stream) { return fWriter.writeToStream(stream); } /* Format: * (subset) bounds * size (31bits) * data [ encoded, with raw width/height ] */ void SkBinaryWriteBuffer::writeImage(const SkImage* image) { if (fDeduper) { this->write32(fDeduper->findOrDefineImage(const_cast(image))); return; } const SkIRect bounds = SkImage_getSubset(image); this->writeIRect(bounds); sk_sp data; if (fProcs.fImageProc) { data = fProcs.fImageProc(const_cast(image), fProcs.fImageCtx); } if (!data) { data = image->encodeToData(); } size_t size = data ? data->size() : 0; if (!SkTFitsIn(size)) { size = 0; // too big to store } this->write32(SkToS32(size)); // writing 0 signals failure if (size) { this->writePad32(data->data(), size); } } void SkBinaryWriteBuffer::writeTypeface(SkTypeface* obj) { if (fDeduper) { this->write32(fDeduper->findOrDefineTypeface(obj)); return; } // Write 32 bits (signed) // 0 -- default font // >0 -- index // <0 -- custom (serial procs) if (obj == nullptr) { fWriter.write32(0); } else if (fProcs.fTypefaceProc) { auto data = fProcs.fTypefaceProc(obj, fProcs.fTypefaceCtx); if (data) { size_t size = data->size(); if (!SkTFitsIn(size)) { size = 0; // fall back to default font } int32_t ssize = SkToS32(size); fWriter.write32(-ssize); // negative to signal custom if (size) { this->writePad32(data->data(), size); } return; } // no data means fall through for std behavior } fWriter.write32(fTFSet ? fTFSet->add(obj) : 0); } void SkBinaryWriteBuffer::writePaint(const SkPaint& paint) { SkPaintPriv::Flatten(paint, *this); } void SkBinaryWriteBuffer::setFactoryRecorder(sk_sp rec) { fFactorySet = std::move(rec); } void SkBinaryWriteBuffer::setTypefaceRecorder(sk_sp rec) { fTFSet = std::move(rec); } void SkBinaryWriteBuffer::writeFlattenable(const SkFlattenable* flattenable) { if (nullptr == flattenable) { this->write32(0); return; } if (fDeduper) { this->write32(fDeduper->findOrDefineFactory(const_cast(flattenable))); } else { /* * We can write 1 of 2 versions of the flattenable: * 1. index into fFactorySet : This assumes the writer will later * resolve the function-ptrs into strings for its reader. SkPicture * does exactly this, by writing a table of names (matching the indices) * up front in its serialized form. * 2. string name of the flattenable or index into fFlattenableDict: We * store the string to allow the reader to specify its own factories * after write time. In order to improve compression, if we have * already written the string, we write its index instead. */ if (fFactorySet) { SkFlattenable::Factory factory = flattenable->getFactory(); SkASSERT(factory); this->write32(fFactorySet->add(factory)); } else { const char* name = flattenable->getTypeName(); SkASSERT(name); SkString key(name); if (uint32_t* indexPtr = fFlattenableDict.find(key)) { // We will write the index as a 32-bit int. We want the first byte // that we send to be zero - this will act as a sentinel that we // have an index (not a string). This means that we will send the // the index shifted left by 8. The remaining 24-bits should be // plenty to store the index. Note that this strategy depends on // being little endian. SkASSERT(0 == *indexPtr >> 24); this->write32(*indexPtr << 8); } else { // Otherwise write the string. Clients should not use the empty // string as a name, or we will have a problem. SkASSERT(strcmp("", name)); this->writeString(name); // Add key to dictionary. fFlattenableDict.set(key, fFlattenableDict.count() + 1); } } } // make room for the size of the flattened object (void)fWriter.reserve(sizeof(uint32_t)); // record the current size, so we can subtract after the object writes. size_t offset = fWriter.bytesWritten(); // now flatten the object flattenable->flatten(*this); size_t objSize = fWriter.bytesWritten() - offset; // record the obj's size fWriter.overwriteTAt(offset - sizeof(uint32_t), SkToU32(objSize)); }