/* * Copyright 2008 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkStrokerPriv.h" #include "SkGeometry.h" #include "SkPath.h" #define kMaxQuadSubdivide 5 #define kMaxCubicSubdivide 4 static inline bool degenerate_vector(const SkVector& v) { return !SkPoint::CanNormalize(v.fX, v.fY); } static inline bool normals_too_curvy(const SkVector& norm0, SkVector& norm1) { /* root2/2 is a 45-degree angle make this constant bigger for more subdivisions (but not >= 1) */ static const SkScalar kFlatEnoughNormalDotProd = SK_ScalarSqrt2/2 + SK_Scalar1/10; SkASSERT(kFlatEnoughNormalDotProd > 0 && kFlatEnoughNormalDotProd < SK_Scalar1); return SkPoint::DotProduct(norm0, norm1) <= kFlatEnoughNormalDotProd; } static inline bool normals_too_pinchy(const SkVector& norm0, SkVector& norm1) { static const SkScalar kTooPinchyNormalDotProd = -SK_Scalar1 * 999 / 1000; return SkPoint::DotProduct(norm0, norm1) <= kTooPinchyNormalDotProd; } static bool set_normal_unitnormal(const SkPoint& before, const SkPoint& after, SkScalar radius, SkVector* normal, SkVector* unitNormal) { if (!unitNormal->setNormalize(after.fX - before.fX, after.fY - before.fY)) { return false; } unitNormal->rotateCCW(); unitNormal->scale(radius, normal); return true; } static bool set_normal_unitnormal(const SkVector& vec, SkScalar radius, SkVector* normal, SkVector* unitNormal) { if (!unitNormal->setNormalize(vec.fX, vec.fY)) { return false; } unitNormal->rotateCCW(); unitNormal->scale(radius, normal); return true; } /////////////////////////////////////////////////////////////////////////////// class SkPathStroker { public: SkPathStroker(const SkPath& src, SkScalar radius, SkScalar miterLimit, SkPaint::Cap cap, SkPaint::Join join); void moveTo(const SkPoint&); void lineTo(const SkPoint&); void quadTo(const SkPoint&, const SkPoint&); void cubicTo(const SkPoint&, const SkPoint&, const SkPoint&); void close(bool isLine) { this->finishContour(true, isLine); } void done(SkPath* dst, bool isLine) { this->finishContour(false, isLine); fOuter.addPath(fExtra); dst->swap(fOuter); } private: SkScalar fRadius; SkScalar fInvMiterLimit; SkVector fFirstNormal, fPrevNormal, fFirstUnitNormal, fPrevUnitNormal; SkPoint fFirstPt, fPrevPt; // on original path SkPoint fFirstOuterPt; int fSegmentCount; bool fPrevIsLine; SkStrokerPriv::CapProc fCapper; SkStrokerPriv::JoinProc fJoiner; SkPath fInner, fOuter; // outer is our working answer, inner is temp SkPath fExtra; // added as extra complete contours void finishContour(bool close, bool isLine); void preJoinTo(const SkPoint&, SkVector* normal, SkVector* unitNormal, bool isLine); void postJoinTo(const SkPoint&, const SkVector& normal, const SkVector& unitNormal); void line_to(const SkPoint& currPt, const SkVector& normal); void quad_to(const SkPoint pts[3], const SkVector& normalAB, const SkVector& unitNormalAB, SkVector* normalBC, SkVector* unitNormalBC, int subDivide); void cubic_to(const SkPoint pts[4], const SkVector& normalAB, const SkVector& unitNormalAB, SkVector* normalCD, SkVector* unitNormalCD, int subDivide); }; /////////////////////////////////////////////////////////////////////////////// void SkPathStroker::preJoinTo(const SkPoint& currPt, SkVector* normal, SkVector* unitNormal, bool currIsLine) { SkASSERT(fSegmentCount >= 0); SkScalar prevX = fPrevPt.fX; SkScalar prevY = fPrevPt.fY; SkAssertResult(set_normal_unitnormal(fPrevPt, currPt, fRadius, normal, unitNormal)); if (fSegmentCount == 0) { fFirstNormal = *normal; fFirstUnitNormal = *unitNormal; fFirstOuterPt.set(prevX + normal->fX, prevY + normal->fY); fOuter.moveTo(fFirstOuterPt.fX, fFirstOuterPt.fY); fInner.moveTo(prevX - normal->fX, prevY - normal->fY); } else { // we have a previous segment fJoiner(&fOuter, &fInner, fPrevUnitNormal, fPrevPt, *unitNormal, fRadius, fInvMiterLimit, fPrevIsLine, currIsLine); } fPrevIsLine = currIsLine; } void SkPathStroker::postJoinTo(const SkPoint& currPt, const SkVector& normal, const SkVector& unitNormal) { fPrevPt = currPt; fPrevUnitNormal = unitNormal; fPrevNormal = normal; fSegmentCount += 1; } void SkPathStroker::finishContour(bool close, bool currIsLine) { if (fSegmentCount > 0) { SkPoint pt; if (close) { fJoiner(&fOuter, &fInner, fPrevUnitNormal, fPrevPt, fFirstUnitNormal, fRadius, fInvMiterLimit, fPrevIsLine, currIsLine); fOuter.close(); // now add fInner as its own contour fInner.getLastPt(&pt); fOuter.moveTo(pt.fX, pt.fY); fOuter.reversePathTo(fInner); fOuter.close(); } else { // add caps to start and end // cap the end fInner.getLastPt(&pt); fCapper(&fOuter, fPrevPt, fPrevNormal, pt, currIsLine ? &fInner : NULL); fOuter.reversePathTo(fInner); // cap the start fCapper(&fOuter, fFirstPt, -fFirstNormal, fFirstOuterPt, fPrevIsLine ? &fInner : NULL); fOuter.close(); } } // since we may re-use fInner, we rewind instead of reset, to save on // reallocating its internal storage. fInner.rewind(); fSegmentCount = -1; } /////////////////////////////////////////////////////////////////////////////// SkPathStroker::SkPathStroker(const SkPath& src, SkScalar radius, SkScalar miterLimit, SkPaint::Cap cap, SkPaint::Join join) : fRadius(radius) { /* This is only used when join is miter_join, but we initialize it here so that it is always defined, to fis valgrind warnings. */ fInvMiterLimit = 0; if (join == SkPaint::kMiter_Join) { if (miterLimit <= SK_Scalar1) { join = SkPaint::kBevel_Join; } else { fInvMiterLimit = SkScalarInvert(miterLimit); } } fCapper = SkStrokerPriv::CapFactory(cap); fJoiner = SkStrokerPriv::JoinFactory(join); fSegmentCount = -1; fPrevIsLine = false; // Need some estimate of how large our final result (fOuter) // and our per-contour temp (fInner) will be, so we don't spend // extra time repeatedly growing these arrays. // // 3x for result == inner + outer + join (swag) // 1x for inner == 'wag' (worst contour length would be better guess) fOuter.incReserve(src.countPoints() * 3); fInner.incReserve(src.countPoints()); } void SkPathStroker::moveTo(const SkPoint& pt) { if (fSegmentCount > 0) { this->finishContour(false, false); } fSegmentCount = 0; fFirstPt = fPrevPt = pt; } void SkPathStroker::line_to(const SkPoint& currPt, const SkVector& normal) { fOuter.lineTo(currPt.fX + normal.fX, currPt.fY + normal.fY); fInner.lineTo(currPt.fX - normal.fX, currPt.fY - normal.fY); } void SkPathStroker::lineTo(const SkPoint& currPt) { if (SkPath::IsLineDegenerate(fPrevPt, currPt)) { return; } SkVector normal, unitNormal; this->preJoinTo(currPt, &normal, &unitNormal, true); this->line_to(currPt, normal); this->postJoinTo(currPt, normal, unitNormal); } void SkPathStroker::quad_to(const SkPoint pts[3], const SkVector& normalAB, const SkVector& unitNormalAB, SkVector* normalBC, SkVector* unitNormalBC, int subDivide) { if (!set_normal_unitnormal(pts[1], pts[2], fRadius, normalBC, unitNormalBC)) { // pts[1] nearly equals pts[2], so just draw a line to pts[2] this->line_to(pts[2], normalAB); *normalBC = normalAB; *unitNormalBC = unitNormalAB; return; } if (--subDivide >= 0 && normals_too_curvy(unitNormalAB, *unitNormalBC)) { SkPoint tmp[5]; SkVector norm, unit; SkChopQuadAtHalf(pts, tmp); this->quad_to(&tmp[0], normalAB, unitNormalAB, &norm, &unit, subDivide); this->quad_to(&tmp[2], norm, unit, normalBC, unitNormalBC, subDivide); } else { SkVector normalB; normalB = pts[2] - pts[0]; normalB.rotateCCW(); SkScalar dot = SkPoint::DotProduct(unitNormalAB, *unitNormalBC); SkAssertResult(normalB.setLength(SkScalarDiv(fRadius, SkScalarSqrt((SK_Scalar1 + dot)/2)))); fOuter.quadTo( pts[1].fX + normalB.fX, pts[1].fY + normalB.fY, pts[2].fX + normalBC->fX, pts[2].fY + normalBC->fY); fInner.quadTo( pts[1].fX - normalB.fX, pts[1].fY - normalB.fY, pts[2].fX - normalBC->fX, pts[2].fY - normalBC->fY); } } void SkPathStroker::cubic_to(const SkPoint pts[4], const SkVector& normalAB, const SkVector& unitNormalAB, SkVector* normalCD, SkVector* unitNormalCD, int subDivide) { SkVector ab = pts[1] - pts[0]; SkVector cd = pts[3] - pts[2]; SkVector normalBC, unitNormalBC; bool degenerateAB = degenerate_vector(ab); bool degenerateCD = degenerate_vector(cd); if (degenerateAB && degenerateCD) { DRAW_LINE: this->line_to(pts[3], normalAB); *normalCD = normalAB; *unitNormalCD = unitNormalAB; return; } if (degenerateAB) { ab = pts[2] - pts[0]; degenerateAB = degenerate_vector(ab); } if (degenerateCD) { cd = pts[3] - pts[1]; degenerateCD = degenerate_vector(cd); } if (degenerateAB || degenerateCD) { goto DRAW_LINE; } SkAssertResult(set_normal_unitnormal(cd, fRadius, normalCD, unitNormalCD)); bool degenerateBC = !set_normal_unitnormal(pts[1], pts[2], fRadius, &normalBC, &unitNormalBC); if (degenerateBC || normals_too_curvy(unitNormalAB, unitNormalBC) || normals_too_curvy(unitNormalBC, *unitNormalCD)) { // subdivide if we can if (--subDivide < 0) { goto DRAW_LINE; } SkPoint tmp[7]; SkVector norm, unit, dummy, unitDummy; SkChopCubicAtHalf(pts, tmp); this->cubic_to(&tmp[0], normalAB, unitNormalAB, &norm, &unit, subDivide); // we use dummys since we already have a valid (and more accurate) // normals for CD this->cubic_to(&tmp[3], norm, unit, &dummy, &unitDummy, subDivide); } else { SkVector normalB, normalC; // need normals to inset/outset the off-curve pts B and C SkVector unitBC = pts[2] - pts[1]; unitBC.normalize(); unitBC.rotateCCW(); normalB = unitNormalAB + unitBC; normalC = *unitNormalCD + unitBC; SkScalar dot = SkPoint::DotProduct(unitNormalAB, unitBC); SkAssertResult(normalB.setLength(SkScalarDiv(fRadius, SkScalarSqrt((SK_Scalar1 + dot)/2)))); dot = SkPoint::DotProduct(*unitNormalCD, unitBC); SkAssertResult(normalC.setLength(SkScalarDiv(fRadius, SkScalarSqrt((SK_Scalar1 + dot)/2)))); fOuter.cubicTo( pts[1].fX + normalB.fX, pts[1].fY + normalB.fY, pts[2].fX + normalC.fX, pts[2].fY + normalC.fY, pts[3].fX + normalCD->fX, pts[3].fY + normalCD->fY); fInner.cubicTo( pts[1].fX - normalB.fX, pts[1].fY - normalB.fY, pts[2].fX - normalC.fX, pts[2].fY - normalC.fY, pts[3].fX - normalCD->fX, pts[3].fY - normalCD->fY); } } void SkPathStroker::quadTo(const SkPoint& pt1, const SkPoint& pt2) { bool degenerateAB = SkPath::IsLineDegenerate(fPrevPt, pt1); bool degenerateBC = SkPath::IsLineDegenerate(pt1, pt2); if (degenerateAB | degenerateBC) { if (degenerateAB ^ degenerateBC) { this->lineTo(pt2); } return; } SkVector normalAB, unitAB, normalBC, unitBC; this->preJoinTo(pt1, &normalAB, &unitAB, false); { SkPoint pts[3], tmp[5]; pts[0] = fPrevPt; pts[1] = pt1; pts[2] = pt2; if (SkChopQuadAtMaxCurvature(pts, tmp) == 2) { unitBC.setNormalize(pts[2].fX - pts[1].fX, pts[2].fY - pts[1].fY); unitBC.rotateCCW(); if (normals_too_pinchy(unitAB, unitBC)) { normalBC = unitBC; normalBC.scale(fRadius); fOuter.lineTo(tmp[2].fX + normalAB.fX, tmp[2].fY + normalAB.fY); fOuter.lineTo(tmp[2].fX + normalBC.fX, tmp[2].fY + normalBC.fY); fOuter.lineTo(tmp[4].fX + normalBC.fX, tmp[4].fY + normalBC.fY); fInner.lineTo(tmp[2].fX - normalAB.fX, tmp[2].fY - normalAB.fY); fInner.lineTo(tmp[2].fX - normalBC.fX, tmp[2].fY - normalBC.fY); fInner.lineTo(tmp[4].fX - normalBC.fX, tmp[4].fY - normalBC.fY); fExtra.addCircle(tmp[2].fX, tmp[2].fY, fRadius, SkPath::kCW_Direction); } else { this->quad_to(&tmp[0], normalAB, unitAB, &normalBC, &unitBC, kMaxQuadSubdivide); SkVector n = normalBC; SkVector u = unitBC; this->quad_to(&tmp[2], n, u, &normalBC, &unitBC, kMaxQuadSubdivide); } } else { this->quad_to(pts, normalAB, unitAB, &normalBC, &unitBC, kMaxQuadSubdivide); } } this->postJoinTo(pt2, normalBC, unitBC); } void SkPathStroker::cubicTo(const SkPoint& pt1, const SkPoint& pt2, const SkPoint& pt3) { bool degenerateAB = SkPath::IsLineDegenerate(fPrevPt, pt1); bool degenerateBC = SkPath::IsLineDegenerate(pt1, pt2); bool degenerateCD = SkPath::IsLineDegenerate(pt2, pt3); if (degenerateAB + degenerateBC + degenerateCD >= 2) { this->lineTo(pt3); return; } SkVector normalAB, unitAB, normalCD, unitCD; // find the first tangent (which might be pt1 or pt2 { const SkPoint* nextPt = &pt1; if (degenerateAB) nextPt = &pt2; this->preJoinTo(*nextPt, &normalAB, &unitAB, false); } { SkPoint pts[4], tmp[13]; int i, count; SkVector n, u; SkScalar tValues[3]; pts[0] = fPrevPt; pts[1] = pt1; pts[2] = pt2; pts[3] = pt3; count = SkChopCubicAtMaxCurvature(pts, tmp, tValues); n = normalAB; u = unitAB; for (i = 0; i < count; i++) { this->cubic_to(&tmp[i * 3], n, u, &normalCD, &unitCD, kMaxCubicSubdivide); if (i == count - 1) { break; } n = normalCD; u = unitCD; } } this->postJoinTo(pt3, normalCD, unitCD); } /////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// #include "SkPaintDefaults.h" SkStroke::SkStroke() { fWidth = SK_Scalar1; fMiterLimit = SkPaintDefaults_MiterLimit; fCap = SkPaint::kDefault_Cap; fJoin = SkPaint::kDefault_Join; fDoFill = false; } SkStroke::SkStroke(const SkPaint& p) { fWidth = p.getStrokeWidth(); fMiterLimit = p.getStrokeMiter(); fCap = (uint8_t)p.getStrokeCap(); fJoin = (uint8_t)p.getStrokeJoin(); fDoFill = SkToU8(p.getStyle() == SkPaint::kStrokeAndFill_Style); } SkStroke::SkStroke(const SkPaint& p, SkScalar width) { fWidth = width; fMiterLimit = p.getStrokeMiter(); fCap = (uint8_t)p.getStrokeCap(); fJoin = (uint8_t)p.getStrokeJoin(); fDoFill = SkToU8(p.getStyle() == SkPaint::kStrokeAndFill_Style); } void SkStroke::setWidth(SkScalar width) { SkASSERT(width >= 0); fWidth = width; } void SkStroke::setMiterLimit(SkScalar miterLimit) { SkASSERT(miterLimit >= 0); fMiterLimit = miterLimit; } void SkStroke::setCap(SkPaint::Cap cap) { SkASSERT((unsigned)cap < SkPaint::kCapCount); fCap = SkToU8(cap); } void SkStroke::setJoin(SkPaint::Join join) { SkASSERT((unsigned)join < SkPaint::kJoinCount); fJoin = SkToU8(join); } /////////////////////////////////////////////////////////////////////////////// #ifdef SK_SCALAR_IS_FIXED /* return non-zero if the path is too big, and should be shrunk to avoid overflows during intermediate calculations. Note that we compute the bounds for this. If we had a custom callback/walker for paths, we could perhaps go faster by using that, and just perform the abs | in that routine */ static int needs_to_shrink(const SkPath& path) { const SkRect& r = path.getBounds(); SkFixed mask = SkAbs32(r.fLeft); mask |= SkAbs32(r.fTop); mask |= SkAbs32(r.fRight); mask |= SkAbs32(r.fBottom); // we need the top 3 bits clear (after abs) to avoid overflow return mask >> 29; } static void identity_proc(SkPoint pts[], int count) {} static void shift_down_2_proc(SkPoint pts[], int count) { for (int i = 0; i < count; i++) { pts->fX >>= 2; pts->fY >>= 2; pts += 1; } } #define APPLY_PROC(proc, pts, count) proc(pts, count) #else // float does need any of this #define APPLY_PROC(proc, pts, count) #endif // If src==dst, then we use a tmp path to record the stroke, and then swap // its contents with src when we're done. class AutoTmpPath { public: AutoTmpPath(const SkPath& src, SkPath** dst) : fSrc(src) { if (&src == *dst) { *dst = &fTmpDst; fSwapWithSrc = true; } else { (*dst)->reset(); fSwapWithSrc = false; } } ~AutoTmpPath() { if (fSwapWithSrc) { fTmpDst.swap(*const_cast(&fSrc)); } } private: SkPath fTmpDst; const SkPath& fSrc; bool fSwapWithSrc; }; void SkStroke::strokePath(const SkPath& src, SkPath* dst) const { SkASSERT(&src != NULL && dst != NULL); SkScalar radius = SkScalarHalf(fWidth); AutoTmpPath tmp(src, &dst); if (radius <= 0) { return; } // If src is really a rect, call our specialty strokeRect() method { bool isClosed; SkPath::Direction dir; if (src.isRect(&isClosed, &dir) && isClosed) { this->strokeRect(src.getBounds(), dst, dir); // our answer should preserve the inverseness of the src if (src.isInverseFillType()) { SkASSERT(!dst->isInverseFillType()); dst->toggleInverseFillType(); } return; } } #ifdef SK_SCALAR_IS_FIXED void (*proc)(SkPoint pts[], int count) = identity_proc; if (needs_to_shrink(src)) { proc = shift_down_2_proc; radius >>= 2; if (radius == 0) { return; } } #endif SkPathStroker stroker(src, radius, fMiterLimit, this->getCap(), this->getJoin()); SkPath::Iter iter(src, false); SkPoint pts[4]; SkPath::Verb verb, lastSegment = SkPath::kMove_Verb; while ((verb = iter.next(pts, false)) != SkPath::kDone_Verb) { switch (verb) { case SkPath::kMove_Verb: APPLY_PROC(proc, &pts[0], 1); stroker.moveTo(pts[0]); break; case SkPath::kLine_Verb: APPLY_PROC(proc, &pts[1], 1); stroker.lineTo(pts[1]); lastSegment = verb; break; case SkPath::kQuad_Verb: APPLY_PROC(proc, &pts[1], 2); stroker.quadTo(pts[1], pts[2]); lastSegment = verb; break; case SkPath::kCubic_Verb: APPLY_PROC(proc, &pts[1], 3); stroker.cubicTo(pts[1], pts[2], pts[3]); lastSegment = verb; break; case SkPath::kClose_Verb: stroker.close(lastSegment == SkPath::kLine_Verb); break; default: break; } } stroker.done(dst, lastSegment == SkPath::kLine_Verb); #ifdef SK_SCALAR_IS_FIXED // undo our previous down_shift if (shift_down_2_proc == proc) { // need a real shift methid on path. antialias paths could use this too SkMatrix matrix; matrix.setScale(SkIntToScalar(4), SkIntToScalar(4)); dst->transform(matrix); } #endif if (fDoFill) { if (src.cheapIsDirection(SkPath::kCCW_Direction)) { dst->reverseAddPath(src); } else { dst->addPath(src); } } else { // Seems like we can assume that a 2-point src would always result in // a convex stroke, but testing has proved otherwise. // TODO: fix the stroker to make this assumption true (without making // it slower that the work that will be done in computeConvexity()) #if 0 // this test results in a non-convex stroke :( static void test(SkCanvas* canvas) { SkPoint pts[] = { 146.333328, 192.333328, 300.333344, 293.333344 }; SkPaint paint; paint.setStrokeWidth(7); paint.setStrokeCap(SkPaint::kRound_Cap); canvas->drawLine(pts[0].fX, pts[0].fY, pts[1].fX, pts[1].fY, paint); } #endif #if 0 if (2 == src.countPoints()) { dst->setIsConvex(true); } #endif } // our answer should preserve the inverseness of the src if (src.isInverseFillType()) { SkASSERT(!dst->isInverseFillType()); dst->toggleInverseFillType(); } } static SkPath::Direction reverse_direction(SkPath::Direction dir) { SkASSERT(SkPath::kUnknown_Direction != dir); return SkPath::kCW_Direction == dir ? SkPath::kCCW_Direction : SkPath::kCW_Direction; } static void addBevel(SkPath* path, const SkRect& r, const SkRect& outer, SkPath::Direction dir) { SkPoint pts[8]; if (SkPath::kCW_Direction == dir) { pts[0].set(r.fLeft, outer.fTop); pts[1].set(r.fRight, outer.fTop); pts[2].set(outer.fRight, r.fTop); pts[3].set(outer.fRight, r.fBottom); pts[4].set(r.fRight, outer.fBottom); pts[5].set(r.fLeft, outer.fBottom); pts[6].set(outer.fLeft, r.fBottom); pts[7].set(outer.fLeft, r.fTop); } else { pts[7].set(r.fLeft, outer.fTop); pts[6].set(r.fRight, outer.fTop); pts[5].set(outer.fRight, r.fTop); pts[4].set(outer.fRight, r.fBottom); pts[3].set(r.fRight, outer.fBottom); pts[2].set(r.fLeft, outer.fBottom); pts[1].set(outer.fLeft, r.fBottom); pts[0].set(outer.fLeft, r.fTop); } path->addPoly(pts, 8, true); } void SkStroke::strokeRect(const SkRect& origRect, SkPath* dst, SkPath::Direction dir) const { SkASSERT(dst != NULL); dst->reset(); SkScalar radius = SkScalarHalf(fWidth); if (radius <= 0) { return; } SkScalar rw = origRect.width(); SkScalar rh = origRect.height(); if ((rw < 0) ^ (rh < 0)) { dir = reverse_direction(dir); } SkRect rect(origRect); rect.sort(); // reassign these, now that we know they'll be >= 0 rw = rect.width(); rh = rect.height(); SkRect r(rect); r.outset(radius, radius); SkPaint::Join join = (SkPaint::Join)fJoin; if (SkPaint::kMiter_Join == join && fMiterLimit < SK_ScalarSqrt2) { join = SkPaint::kBevel_Join; } switch (join) { case SkPaint::kMiter_Join: dst->addRect(r, dir); break; case SkPaint::kBevel_Join: addBevel(dst, rect, r, dir); break; case SkPaint::kRound_Join: dst->addRoundRect(r, radius, radius, dir); break; default: break; } if (fWidth < SkMinScalar(rw, rh) && !fDoFill) { r = rect; r.inset(radius, radius); dst->addRect(r, reverse_direction(dir)); } }