/* * Copyright 2006 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkGlyphCache.h" #include "SkPaint.h" #include "SkScalerContext.h" #include "SkAutoMalloc.h" #include "SkAutoPixmapStorage.h" #include "SkColorData.h" #include "SkDescriptor.h" #include "SkDraw.h" #include "SkGlyph.h" #include "SkMakeUnique.h" #include "SkMaskFilter.h" #include "SkMaskGamma.h" #include "SkMatrix22.h" #include "SkPaintPriv.h" #include "SkPathEffect.h" #include "SkPathPriv.h" #include "SkRasterClip.h" #include "SkReadBuffer.h" #include "SkRectPriv.h" #include "SkStroke.h" #include "SkStrokeRec.h" #include "SkSurfacePriv.h" #include "SkTextFormatParams.h" #include "SkTo.h" #include "SkWriteBuffer.h" #include /////////////////////////////////////////////////////////////////////////////// #ifdef SK_DEBUG #define DUMP_RECx #endif SkScalerContext::SkScalerContext(sk_sp typeface, const SkScalerContextEffects& effects, const SkDescriptor* desc) : fRec(*static_cast(desc->findEntry(kRec_SkDescriptorTag, nullptr))) , fTypeface(std::move(typeface)) , fPathEffect(sk_ref_sp(effects.fPathEffect)) , fMaskFilter(sk_ref_sp(effects.fMaskFilter)) // Initialize based on our settings. Subclasses can also force this. , fGenerateImageFromPath(fRec.fFrameWidth > 0 || fPathEffect != nullptr) , fPreBlend(fMaskFilter ? SkMaskGamma::PreBlend() : SkScalerContext::GetMaskPreBlend(fRec)) , fPreBlendForFilter(fMaskFilter ? SkScalerContext::GetMaskPreBlend(fRec) : SkMaskGamma::PreBlend()) { #ifdef DUMP_REC SkDebugf("SkScalerContext checksum %x count %d length %d\n", desc->getChecksum(), desc->getCount(), desc->getLength()); SkDebugf("%s", fRec.dump().c_str()); SkDebugf(" pathEffect %x maskFilter %x\n", desc->findEntry(kPathEffect_SkDescriptorTag, nullptr), desc->findEntry(kMaskFilter_SkDescriptorTag, nullptr)); #endif } SkScalerContext::~SkScalerContext() {} /** * In order to call cachedDeviceLuminance, cachedPaintLuminance, or * cachedMaskGamma the caller must hold the gMaskGammaCacheMutex and continue * to hold it until the returned pointer is refed or forgotten. */ SK_DECLARE_STATIC_MUTEX(gMaskGammaCacheMutex); static SkMaskGamma* gLinearMaskGamma = nullptr; static SkMaskGamma* gMaskGamma = nullptr; static SkScalar gContrast = SK_ScalarMin; static SkScalar gPaintGamma = SK_ScalarMin; static SkScalar gDeviceGamma = SK_ScalarMin; /** * The caller must hold the gMaskGammaCacheMutex and continue to hold it until * the returned SkMaskGamma pointer is refed or forgotten. */ static const SkMaskGamma& cached_mask_gamma(SkScalar contrast, SkScalar paintGamma, SkScalar deviceGamma) { gMaskGammaCacheMutex.assertHeld(); if (0 == contrast && SK_Scalar1 == paintGamma && SK_Scalar1 == deviceGamma) { if (nullptr == gLinearMaskGamma) { gLinearMaskGamma = new SkMaskGamma; } return *gLinearMaskGamma; } if (gContrast != contrast || gPaintGamma != paintGamma || gDeviceGamma != deviceGamma) { SkSafeUnref(gMaskGamma); gMaskGamma = new SkMaskGamma(contrast, paintGamma, deviceGamma); gContrast = contrast; gPaintGamma = paintGamma; gDeviceGamma = deviceGamma; } return *gMaskGamma; } /** * Expands fDeviceGamma, fPaintGamma, fContrast, and fLumBits into a mask pre-blend. */ SkMaskGamma::PreBlend SkScalerContext::GetMaskPreBlend(const SkScalerContextRec& rec) { SkAutoMutexAcquire ama(gMaskGammaCacheMutex); const SkMaskGamma& maskGamma = cached_mask_gamma(rec.getContrast(), rec.getPaintGamma(), rec.getDeviceGamma()); return maskGamma.preBlend(rec.getLuminanceColor()); } size_t SkScalerContext::GetGammaLUTSize(SkScalar contrast, SkScalar paintGamma, SkScalar deviceGamma, int* width, int* height) { SkAutoMutexAcquire ama(gMaskGammaCacheMutex); const SkMaskGamma& maskGamma = cached_mask_gamma(contrast, paintGamma, deviceGamma); maskGamma.getGammaTableDimensions(width, height); size_t size = (*width)*(*height)*sizeof(uint8_t); return size; } bool SkScalerContext::GetGammaLUTData(SkScalar contrast, SkScalar paintGamma, SkScalar deviceGamma, uint8_t* data) { SkAutoMutexAcquire ama(gMaskGammaCacheMutex); const SkMaskGamma& maskGamma = cached_mask_gamma(contrast, paintGamma, deviceGamma); const uint8_t* gammaTables = maskGamma.getGammaTables(); if (!gammaTables) { return false; } int width, height; maskGamma.getGammaTableDimensions(&width, &height); size_t size = width*height * sizeof(uint8_t); memcpy(data, gammaTables, size); return true; } void SkScalerContext::getAdvance(SkGlyph* glyph) { // mark us as just having a valid advance glyph->fMaskFormat = MASK_FORMAT_JUST_ADVANCE; // we mark the format before making the call, in case the impl // internally ends up calling its generateMetrics, which is OK // albeit slower than strictly necessary generateAdvance(glyph); } void SkScalerContext::getMetrics(SkGlyph* glyph) { bool generatingImageFromPath = fGenerateImageFromPath; if (!generatingImageFromPath) { generateMetrics(glyph); if (glyph->fMaskFormat == MASK_FORMAT_UNKNOWN) { glyph->fMaskFormat = fRec.fMaskFormat; } } else { SkPath devPath; generatingImageFromPath = this->internalGetPath(glyph->getPackedID(), &devPath); if (!generatingImageFromPath) { generateMetrics(glyph); if (glyph->fMaskFormat == MASK_FORMAT_UNKNOWN) { glyph->fMaskFormat = fRec.fMaskFormat; } } else { generateAdvance(glyph); if (glyph->fMaskFormat == MASK_FORMAT_UNKNOWN) { glyph->fMaskFormat = fRec.fMaskFormat; } const SkIRect ir = devPath.getBounds().roundOut(); if (ir.isEmpty() || !SkRectPriv::Is16Bit(ir)) { goto SK_ERROR; } glyph->fLeft = ir.fLeft; glyph->fTop = ir.fTop; glyph->fWidth = SkToU16(ir.width()); glyph->fHeight = SkToU16(ir.height()); if (glyph->fWidth > 0) { switch (glyph->fMaskFormat) { case SkMask::kLCD16_Format: glyph->fWidth += 2; glyph->fLeft -= 1; break; default: break; } } } } // if either dimension is empty, zap the image bounds of the glyph if (0 == glyph->fWidth || 0 == glyph->fHeight) { glyph->fWidth = 0; glyph->fHeight = 0; glyph->fTop = 0; glyph->fLeft = 0; glyph->fMaskFormat = 0; return; } // If we are going to create the mask, then we cannot keep the color if (generatingImageFromPath && SkMask::kARGB32_Format == glyph->fMaskFormat) { glyph->fMaskFormat = SkMask::kA8_Format; } if (fMaskFilter) { SkMask src, dst; SkMatrix matrix; glyph->toMask(&src); fRec.getMatrixFrom2x2(&matrix); src.fImage = nullptr; // only want the bounds from the filter if (as_MFB(fMaskFilter)->filterMask(&dst, src, matrix, nullptr)) { if (dst.fBounds.isEmpty() || !SkRectPriv::Is16Bit(dst.fBounds)) { goto SK_ERROR; } SkASSERT(dst.fImage == nullptr); glyph->fLeft = dst.fBounds.fLeft; glyph->fTop = dst.fBounds.fTop; glyph->fWidth = SkToU16(dst.fBounds.width()); glyph->fHeight = SkToU16(dst.fBounds.height()); glyph->fMaskFormat = dst.fFormat; } } return; SK_ERROR: // draw nothing 'cause we failed glyph->fLeft = 0; glyph->fTop = 0; glyph->fWidth = 0; glyph->fHeight = 0; // put a valid value here, in case it was earlier set to // MASK_FORMAT_JUST_ADVANCE glyph->fMaskFormat = fRec.fMaskFormat; } #define SK_SHOW_TEXT_BLIT_COVERAGE 0 static void applyLUTToA8Mask(const SkMask& mask, const uint8_t* lut) { uint8_t* SK_RESTRICT dst = (uint8_t*)mask.fImage; unsigned rowBytes = mask.fRowBytes; for (int y = mask.fBounds.height() - 1; y >= 0; --y) { for (int x = mask.fBounds.width() - 1; x >= 0; --x) { dst[x] = lut[dst[x]]; } dst += rowBytes; } } template static void pack4xHToLCD16(const SkPixmap& src, const SkMask& dst, const SkMaskGamma::PreBlend& maskPreBlend) { #define SAMPLES_PER_PIXEL 4 #define LCD_PER_PIXEL 3 SkASSERT(kAlpha_8_SkColorType == src.colorType()); SkASSERT(SkMask::kLCD16_Format == dst.fFormat); const int sample_width = src.width(); const int height = src.height(); uint16_t* dstP = (uint16_t*)dst.fImage; size_t dstRB = dst.fRowBytes; // An N tap FIR is defined by // out[n] = coeff[0]*x[n] + coeff[1]*x[n-1] + ... + coeff[N]*x[n-N] // or // out[n] = sum(i, 0, N, coeff[i]*x[n-i]) // The strategy is to use one FIR (different coefficients) for each of r, g, and b. // This means using every 4th FIR output value of each FIR and discarding the rest. // The FIRs are aligned, and the coefficients reach 5 samples to each side of their 'center'. // (For r and b this is technically incorrect, but the coeffs outside round to zero anyway.) // These are in some fixed point repesentation. // Adding up to more than one simulates ink spread. // For implementation reasons, these should never add up to more than two. // Coefficients determined by a gausian where 5 samples = 3 std deviations (0x110 'contrast'). // Calculated using tools/generate_fir_coeff.py // With this one almost no fringing is ever seen, but it is imperceptibly blurry. // The lcd smoothed text is almost imperceptibly different from gray, // but is still sharper on small stems and small rounded corners than gray. // This also seems to be about as wide as one can get and only have a three pixel kernel. // TODO: caculate these at runtime so parameters can be adjusted (esp contrast). static const unsigned int coefficients[LCD_PER_PIXEL][SAMPLES_PER_PIXEL*3] = { //The red subpixel is centered inside the first sample (at 1/6 pixel), and is shifted. { 0x03, 0x0b, 0x1c, 0x33, 0x40, 0x39, 0x24, 0x10, 0x05, 0x01, 0x00, 0x00, }, //The green subpixel is centered between two samples (at 1/2 pixel), so is symetric { 0x00, 0x02, 0x08, 0x16, 0x2b, 0x3d, 0x3d, 0x2b, 0x16, 0x08, 0x02, 0x00, }, //The blue subpixel is centered inside the last sample (at 5/6 pixel), and is shifted. { 0x00, 0x00, 0x01, 0x05, 0x10, 0x24, 0x39, 0x40, 0x33, 0x1c, 0x0b, 0x03, }, }; for (int y = 0; y < height; ++y) { const uint8_t* srcP = src.addr8(0, y); // TODO: this fir filter implementation is straight forward, but slow. // It should be possible to make it much faster. for (int sample_x = -4, pixel_x = 0; sample_x < sample_width + 4; sample_x += 4, ++pixel_x) { int fir[LCD_PER_PIXEL] = { 0 }; for (int sample_index = SkMax32(0, sample_x - 4), coeff_index = sample_index - (sample_x - 4) ; sample_index < SkMin32(sample_x + 8, sample_width) ; ++sample_index, ++coeff_index) { int sample_value = srcP[sample_index]; for (int subpxl_index = 0; subpxl_index < LCD_PER_PIXEL; ++subpxl_index) { fir[subpxl_index] += coefficients[subpxl_index][coeff_index] * sample_value; } } for (int subpxl_index = 0; subpxl_index < LCD_PER_PIXEL; ++subpxl_index) { fir[subpxl_index] /= 0x100; fir[subpxl_index] = SkMin32(fir[subpxl_index], 255); } U8CPU r = sk_apply_lut_if(fir[0], maskPreBlend.fR); U8CPU g = sk_apply_lut_if(fir[1], maskPreBlend.fG); U8CPU b = sk_apply_lut_if(fir[2], maskPreBlend.fB); #if SK_SHOW_TEXT_BLIT_COVERAGE r = SkMax32(r, 10); g = SkMax32(g, 10); b = SkMax32(b, 10); #endif dstP[pixel_x] = SkPack888ToRGB16(r, g, b); } dstP = (uint16_t*)((char*)dstP + dstRB); } } static inline int convert_8_to_1(unsigned byte) { SkASSERT(byte <= 0xFF); return byte >> 7; } static uint8_t pack_8_to_1(const uint8_t alpha[8]) { unsigned bits = 0; for (int i = 0; i < 8; ++i) { bits <<= 1; bits |= convert_8_to_1(alpha[i]); } return SkToU8(bits); } static void packA8ToA1(const SkMask& mask, const uint8_t* src, size_t srcRB) { const int height = mask.fBounds.height(); const int width = mask.fBounds.width(); const int octs = width >> 3; const int leftOverBits = width & 7; uint8_t* dst = mask.fImage; const int dstPad = mask.fRowBytes - SkAlign8(width)/8; SkASSERT(dstPad >= 0); SkASSERT(width >= 0); SkASSERT(srcRB >= (size_t)width); const size_t srcPad = srcRB - width; for (int y = 0; y < height; ++y) { for (int i = 0; i < octs; ++i) { *dst++ = pack_8_to_1(src); src += 8; } if (leftOverBits > 0) { unsigned bits = 0; int shift = 7; for (int i = 0; i < leftOverBits; ++i, --shift) { bits |= convert_8_to_1(*src++) << shift; } *dst++ = bits; } src += srcPad; dst += dstPad; } } static void generateMask(const SkMask& mask, const SkPath& path, const SkMaskGamma::PreBlend& maskPreBlend) { SkPaint paint; int srcW = mask.fBounds.width(); int srcH = mask.fBounds.height(); int dstW = srcW; int dstH = srcH; int dstRB = mask.fRowBytes; SkMatrix matrix; matrix.setTranslate(-SkIntToScalar(mask.fBounds.fLeft), -SkIntToScalar(mask.fBounds.fTop)); paint.setAntiAlias(SkMask::kBW_Format != mask.fFormat); switch (mask.fFormat) { case SkMask::kBW_Format: dstRB = 0; // signals we need a copy break; case SkMask::kA8_Format: break; case SkMask::kLCD16_Format: // TODO: trigger off LCD orientation dstW = 4*dstW - 8; matrix.setTranslate(-SkIntToScalar(mask.fBounds.fLeft + 1), -SkIntToScalar(mask.fBounds.fTop)); matrix.postScale(SkIntToScalar(4), SK_Scalar1); dstRB = 0; // signals we need a copy break; default: SkDEBUGFAIL("unexpected mask format"); } SkRasterClip clip; clip.setRect(SkIRect::MakeWH(dstW, dstH)); const SkImageInfo info = SkImageInfo::MakeA8(dstW, dstH); SkAutoPixmapStorage dst; if (0 == dstRB) { if (!dst.tryAlloc(info)) { // can't allocate offscreen, so empty the mask and return sk_bzero(mask.fImage, mask.computeImageSize()); return; } } else { dst.reset(info, mask.fImage, dstRB); } sk_bzero(dst.writable_addr(), dst.computeByteSize()); SkDraw draw; draw.fDst = dst; draw.fRC = &clip; draw.fMatrix = &matrix; draw.drawPath(path, paint); switch (mask.fFormat) { case SkMask::kBW_Format: packA8ToA1(mask, dst.addr8(0, 0), dst.rowBytes()); break; case SkMask::kA8_Format: if (maskPreBlend.isApplicable()) { applyLUTToA8Mask(mask, maskPreBlend.fG); } break; case SkMask::kLCD16_Format: if (maskPreBlend.isApplicable()) { pack4xHToLCD16(dst, mask, maskPreBlend); } else { pack4xHToLCD16(dst, mask, maskPreBlend); } break; default: break; } } void SkScalerContext::getImage(const SkGlyph& origGlyph) { const SkGlyph* glyph = &origGlyph; SkGlyph tmpGlyph; // in case we need to call generateImage on a mask-format that is different // (i.e. larger) than what our caller allocated by looking at origGlyph. SkAutoMalloc tmpGlyphImageStorage; if (fMaskFilter) { // restore the prefilter bounds tmpGlyph.initWithGlyphID(origGlyph.getPackedID()); // need the original bounds, sans our maskfilter SkMaskFilter* mf = fMaskFilter.release(); // temp disable this->getMetrics(&tmpGlyph); fMaskFilter = sk_sp(mf); // restore // we need the prefilter bounds to be <= filter bounds SkASSERT(tmpGlyph.fWidth <= origGlyph.fWidth); SkASSERT(tmpGlyph.fHeight <= origGlyph.fHeight); if (tmpGlyph.fMaskFormat == origGlyph.fMaskFormat) { tmpGlyph.fImage = origGlyph.fImage; } else { tmpGlyphImageStorage.reset(tmpGlyph.computeImageSize()); tmpGlyph.fImage = tmpGlyphImageStorage.get(); } glyph = &tmpGlyph; } if (!fGenerateImageFromPath) { generateImage(*glyph); } else { SkPath devPath; SkMask mask; glyph->toMask(&mask); if (!this->internalGetPath(glyph->getPackedID(), &devPath)) { generateImage(*glyph); } else { SkASSERT(SkMask::kARGB32_Format != origGlyph.fMaskFormat); SkASSERT(SkMask::kARGB32_Format != mask.fFormat); // DAA would have over coverage issues with small stroke_and_fill (crbug.com/821353) SkPathPriv::SetIsBadForDAA(devPath, fRec.fFrameWidth > 0 && fRec.fFrameWidth <= 2); generateMask(mask, devPath, fPreBlend); } } if (fMaskFilter) { SkMask srcM, dstM; SkMatrix matrix; // the src glyph image shouldn't be 3D SkASSERT(SkMask::k3D_Format != glyph->fMaskFormat); glyph->toMask(&srcM); fRec.getMatrixFrom2x2(&matrix); if (as_MFB(fMaskFilter)->filterMask(&dstM, srcM, matrix, nullptr)) { int width = SkMin32(origGlyph.fWidth, dstM.fBounds.width()); int height = SkMin32(origGlyph.fHeight, dstM.fBounds.height()); int dstRB = origGlyph.rowBytes(); int srcRB = dstM.fRowBytes; const uint8_t* src = (const uint8_t*)dstM.fImage; uint8_t* dst = (uint8_t*)origGlyph.fImage; if (SkMask::k3D_Format == dstM.fFormat) { // we have to copy 3 times as much height *= 3; } // clean out our glyph, since it may be larger than dstM //sk_bzero(dst, height * dstRB); while (--height >= 0) { memcpy(dst, src, width); src += srcRB; dst += dstRB; } SkMask::FreeImage(dstM.fImage); if (SkMask::kA8_Format == dstM.fFormat && fPreBlendForFilter.isApplicable()) { applyLUTToA8Mask(srcM, fPreBlendForFilter.fG); } } } } bool SkScalerContext::getPath(SkPackedGlyphID glyphID, SkPath* path) { return this->internalGetPath(glyphID, path); } void SkScalerContext::getFontMetrics(SkPaint::FontMetrics* fm) { SkASSERT(fm); this->generateFontMetrics(fm); } SkUnichar SkScalerContext::generateGlyphToChar(uint16_t glyph) { return 0; } /////////////////////////////////////////////////////////////////////////////// bool SkScalerContext::internalGetPath(SkPackedGlyphID glyphID, SkPath* devPath) { SkPath path; if (!generatePath(glyphID.code(), &path)) { return false; } if (fRec.fFlags & SkScalerContext::kSubpixelPositioning_Flag) { SkFixed dx = glyphID.getSubXFixed(); SkFixed dy = glyphID.getSubYFixed(); if (dx | dy) { path.offset(SkFixedToScalar(dx), SkFixedToScalar(dy)); } } if (fRec.fFrameWidth > 0 || fPathEffect != nullptr) { // need the path in user-space, with only the point-size applied // so that our stroking and effects will operate the same way they // would if the user had extracted the path themself, and then // called drawPath SkPath localPath; SkMatrix matrix, inverse; fRec.getMatrixFrom2x2(&matrix); if (!matrix.invert(&inverse)) { // assume devPath is already empty. return true; } path.transform(inverse, &localPath); // now localPath is only affected by the paint settings, and not the canvas matrix SkStrokeRec rec(SkStrokeRec::kFill_InitStyle); if (fRec.fFrameWidth > 0) { rec.setStrokeStyle(fRec.fFrameWidth, SkToBool(fRec.fFlags & kFrameAndFill_Flag)); // glyphs are always closed contours, so cap type is ignored, // so we just pass something. rec.setStrokeParams((SkPaint::Cap)fRec.fStrokeCap, (SkPaint::Join)fRec.fStrokeJoin, fRec.fMiterLimit); } if (fPathEffect) { SkPath effectPath; if (fPathEffect->filterPath(&effectPath, localPath, &rec, nullptr)) { localPath.swap(effectPath); } } if (rec.needToApply()) { SkPath strokePath; if (rec.applyToPath(&strokePath, localPath)) { localPath.swap(strokePath); } } // now return stuff to the caller if (devPath) { localPath.transform(matrix, devPath); } } else { // nothing tricky to do if (devPath) { devPath->swap(path); } } if (devPath) { devPath->updateBoundsCache(); } return true; } void SkScalerContextRec::getMatrixFrom2x2(SkMatrix* dst) const { dst->setAll(fPost2x2[0][0], fPost2x2[0][1], 0, fPost2x2[1][0], fPost2x2[1][1], 0, 0, 0, 1); } void SkScalerContextRec::getLocalMatrix(SkMatrix* m) const { SkPaintPriv::MakeTextMatrix(m, fTextSize, fPreScaleX, fPreSkewX); } void SkScalerContextRec::getSingleMatrix(SkMatrix* m) const { this->getLocalMatrix(m); // now concat the device matrix SkMatrix deviceMatrix; this->getMatrixFrom2x2(&deviceMatrix); m->postConcat(deviceMatrix); } bool SkScalerContextRec::computeMatrices(PreMatrixScale preMatrixScale, SkVector* s, SkMatrix* sA, SkMatrix* GsA, SkMatrix* G_inv, SkMatrix* A_out) { // A is the 'total' matrix. SkMatrix A; this->getSingleMatrix(&A); // The caller may find the 'total' matrix useful when dealing directly with EM sizes. if (A_out) { *A_out = A; } // GA is the matrix A with rotation removed. SkMatrix GA; bool skewedOrFlipped = A.getSkewX() || A.getSkewY() || A.getScaleX() < 0 || A.getScaleY() < 0; if (skewedOrFlipped) { // QR by Givens rotations. G is Q^T and GA is R. G is rotational (no reflections). // h is where A maps the horizontal baseline. SkPoint h = SkPoint::Make(SK_Scalar1, 0); A.mapPoints(&h, 1); // G is the Givens Matrix for A (rotational matrix where GA[0][1] == 0). SkMatrix G; SkComputeGivensRotation(h, &G); GA = G; GA.preConcat(A); // The 'remainingRotation' is G inverse, which is fairly simple since G is 2x2 rotational. if (G_inv) { G_inv->setAll( G.get(SkMatrix::kMScaleX), -G.get(SkMatrix::kMSkewX), G.get(SkMatrix::kMTransX), -G.get(SkMatrix::kMSkewY), G.get(SkMatrix::kMScaleY), G.get(SkMatrix::kMTransY), G.get(SkMatrix::kMPersp0), G.get(SkMatrix::kMPersp1), G.get(SkMatrix::kMPersp2)); } } else { GA = A; if (G_inv) { G_inv->reset(); } } // If the 'total' matrix is singular, set the 'scale' to something finite and zero the matrices. // All underlying ports have issues with zero text size, so use the matricies to zero. // If one of the scale factors is less than 1/256 then an EM filling square will // never affect any pixels. // If there are any nonfinite numbers in the matrix, bail out and set the matrices to zero. if (SkScalarAbs(GA.get(SkMatrix::kMScaleX)) <= SK_ScalarNearlyZero || SkScalarAbs(GA.get(SkMatrix::kMScaleY)) <= SK_ScalarNearlyZero || !GA.isFinite()) { s->fX = SK_Scalar1; s->fY = SK_Scalar1; sA->setScale(0, 0); if (GsA) { GsA->setScale(0, 0); } if (G_inv) { G_inv->reset(); } return false; } // At this point, given GA, create s. switch (preMatrixScale) { case kFull_PreMatrixScale: s->fX = SkScalarAbs(GA.get(SkMatrix::kMScaleX)); s->fY = SkScalarAbs(GA.get(SkMatrix::kMScaleY)); break; case kVertical_PreMatrixScale: { SkScalar yScale = SkScalarAbs(GA.get(SkMatrix::kMScaleY)); s->fX = yScale; s->fY = yScale; break; } case kVerticalInteger_PreMatrixScale: { SkScalar realYScale = SkScalarAbs(GA.get(SkMatrix::kMScaleY)); SkScalar intYScale = SkScalarRoundToScalar(realYScale); if (intYScale == 0) { intYScale = SK_Scalar1; } s->fX = intYScale; s->fY = intYScale; break; } } // The 'remaining' matrix sA is the total matrix A without the scale. if (!skewedOrFlipped && ( (kFull_PreMatrixScale == preMatrixScale) || (kVertical_PreMatrixScale == preMatrixScale && A.getScaleX() == A.getScaleY()))) { // If GA == A and kFull_PreMatrixScale, sA is identity. // If GA == A and kVertical_PreMatrixScale and A.scaleX == A.scaleY, sA is identity. sA->reset(); } else if (!skewedOrFlipped && kVertical_PreMatrixScale == preMatrixScale) { // If GA == A and kVertical_PreMatrixScale, sA.scaleY is SK_Scalar1. sA->reset(); sA->setScaleX(A.getScaleX() / s->fY); } else { // TODO: like kVertical_PreMatrixScale, kVerticalInteger_PreMatrixScale with int scales. *sA = A; sA->preScale(SkScalarInvert(s->fX), SkScalarInvert(s->fY)); } // The 'remainingWithoutRotation' matrix GsA is the non-rotational part of A without the scale. if (GsA) { *GsA = GA; // G is rotational so reorders with the scale. GsA->preScale(SkScalarInvert(s->fX), SkScalarInvert(s->fY)); } return true; } SkAxisAlignment SkScalerContext::computeAxisAlignmentForHText() const { return fRec.computeAxisAlignmentForHText(); } SkAxisAlignment SkScalerContextRec::computeAxisAlignmentForHText() const { // Why fPost2x2 can be used here. // getSingleMatrix multiplies in getLocalMatrix, which consists of // * fTextSize (a scale, which has no effect) // * fPreScaleX (a scale in x, which has no effect) // * fPreSkewX (has no effect, but would on vertical text alignment). // In other words, making the text bigger, stretching it along the // horizontal axis, or fake italicizing it does not move the baseline. if (0 == fPost2x2[1][0]) { // The x axis is mapped onto the x axis. return kX_SkAxisAlignment; } if (0 == fPost2x2[0][0]) { // The x axis is mapped onto the y axis. return kY_SkAxisAlignment; } return kNone_SkAxisAlignment; } /////////////////////////////////////////////////////////////////////////////// class SkScalerContext_Empty : public SkScalerContext { public: SkScalerContext_Empty(sk_sp typeface, const SkScalerContextEffects& effects, const SkDescriptor* desc) : SkScalerContext(std::move(typeface), effects, desc) {} protected: unsigned generateGlyphCount() override { return 0; } uint16_t generateCharToGlyph(SkUnichar uni) override { return 0; } void generateAdvance(SkGlyph* glyph) override { glyph->zeroMetrics(); } void generateMetrics(SkGlyph* glyph) override { glyph->zeroMetrics(); } void generateImage(const SkGlyph& glyph) override {} bool generatePath(SkGlyphID glyph, SkPath* path) override { path->reset(); return false; } void generateFontMetrics(SkPaint::FontMetrics* metrics) override { if (metrics) { sk_bzero(metrics, sizeof(*metrics)); } } }; extern SkScalerContext* SkCreateColorScalerContext(const SkDescriptor* desc); std::unique_ptr SkTypeface::createScalerContext( const SkScalerContextEffects& effects, const SkDescriptor* desc, bool allowFailure) const { std::unique_ptr c(this->onCreateScalerContext(effects, desc)); if (!c && !allowFailure) { c = skstd::make_unique(sk_ref_sp(const_cast(this)), effects, desc); } // !allowFailure implies c != nullptr SkASSERT(c || allowFailure); return c; } /* * Return the scalar with only limited fractional precision. Used to consolidate matrices * that vary only slightly when we create our key into the font cache, since the font scaler * typically returns the same looking resuts for tiny changes in the matrix. */ static SkScalar sk_relax(SkScalar x) { SkScalar n = SkScalarRoundToScalar(x * 1024); return n / 1024.0f; } static SkMask::Format compute_mask_format(const SkPaint& paint) { uint32_t flags = paint.getFlags(); // Antialiasing being disabled trumps all other settings. if (!(flags & SkPaint::kAntiAlias_Flag)) { return SkMask::kBW_Format; } if (flags & SkPaint::kLCDRenderText_Flag) { return SkMask::kLCD16_Format; } return SkMask::kA8_Format; } // Beyond this size, LCD doesn't appreciably improve quality, but it always // cost more RAM and draws slower, so we set a cap. #ifndef SK_MAX_SIZE_FOR_LCDTEXT #define SK_MAX_SIZE_FOR_LCDTEXT 48 #endif const SkScalar gMaxSize2ForLCDText = SK_MAX_SIZE_FOR_LCDTEXT * SK_MAX_SIZE_FOR_LCDTEXT; static bool too_big_for_lcd(const SkScalerContextRec& rec, bool checkPost2x2) { if (checkPost2x2) { SkScalar area = rec.fPost2x2[0][0] * rec.fPost2x2[1][1] - rec.fPost2x2[1][0] * rec.fPost2x2[0][1]; area *= rec.fTextSize * rec.fTextSize; return area > gMaxSize2ForLCDText; } else { return rec.fTextSize > SK_MAX_SIZE_FOR_LCDTEXT; } } // if linear-text is on, then we force hinting to be off (since that's sort of // the point of linear-text. static SkPaint::Hinting computeHinting(const SkPaint& paint) { SkPaint::Hinting h = paint.getHinting(); if (paint.isLinearText()) { h = SkPaint::kNo_Hinting; } return h; } // The only reason this is not file static is because it needs the context of SkScalerContext to // access SkPaint::computeLuminanceColor. void SkScalerContext::MakeRecAndEffects(const SkPaint& paint, const SkSurfaceProps* surfaceProps, const SkMatrix* deviceMatrix, SkScalerContextFlags scalerContextFlags, SkScalerContextRec* rec, SkScalerContextEffects* effects, bool enableTypefaceFiltering) { SkASSERT(deviceMatrix == nullptr || !deviceMatrix->hasPerspective()); sk_bzero(rec, sizeof(SkScalerContextRec)); SkTypeface* typeface = SkPaintPriv::GetTypefaceOrDefault(paint); rec->fFontID = typeface->uniqueID(); rec->fTextSize = paint.getTextSize(); rec->fPreScaleX = paint.getTextScaleX(); rec->fPreSkewX = paint.getTextSkewX(); bool checkPost2x2 = false; if (deviceMatrix) { const SkMatrix::TypeMask mask = deviceMatrix->getType(); if (mask & SkMatrix::kScale_Mask) { rec->fPost2x2[0][0] = sk_relax(deviceMatrix->getScaleX()); rec->fPost2x2[1][1] = sk_relax(deviceMatrix->getScaleY()); checkPost2x2 = true; } else { rec->fPost2x2[0][0] = rec->fPost2x2[1][1] = SK_Scalar1; } if (mask & SkMatrix::kAffine_Mask) { rec->fPost2x2[0][1] = sk_relax(deviceMatrix->getSkewX()); rec->fPost2x2[1][0] = sk_relax(deviceMatrix->getSkewY()); checkPost2x2 = true; } else { rec->fPost2x2[0][1] = rec->fPost2x2[1][0] = 0; } } else { rec->fPost2x2[0][0] = rec->fPost2x2[1][1] = SK_Scalar1; rec->fPost2x2[0][1] = rec->fPost2x2[1][0] = 0; } SkPaint::Style style = paint.getStyle(); SkScalar strokeWidth = paint.getStrokeWidth(); unsigned flags = 0; if (paint.isFakeBoldText()) { #ifdef SK_USE_FREETYPE_EMBOLDEN flags |= SkScalerContext::kEmbolden_Flag; #else SkScalar fakeBoldScale = SkScalarInterpFunc(paint.getTextSize(), kStdFakeBoldInterpKeys, kStdFakeBoldInterpValues, kStdFakeBoldInterpLength); SkScalar extra = paint.getTextSize() * fakeBoldScale; if (style == SkPaint::kFill_Style) { style = SkPaint::kStrokeAndFill_Style; strokeWidth = extra; // ignore paint's strokeWidth if it was "fill" } else { strokeWidth += extra; } #endif } if (style != SkPaint::kFill_Style && strokeWidth > 0) { rec->fFrameWidth = strokeWidth; rec->fMiterLimit = paint.getStrokeMiter(); rec->fStrokeJoin = SkToU8(paint.getStrokeJoin()); rec->fStrokeCap = SkToU8(paint.getStrokeCap()); if (style == SkPaint::kStrokeAndFill_Style) { flags |= SkScalerContext::kFrameAndFill_Flag; } } else { rec->fFrameWidth = 0; rec->fMiterLimit = 0; rec->fStrokeJoin = 0; rec->fStrokeCap = 0; } rec->fMaskFormat = SkToU8(compute_mask_format(paint)); if (SkMask::kLCD16_Format == rec->fMaskFormat) { if (too_big_for_lcd(*rec, checkPost2x2)) { rec->fMaskFormat = SkMask::kA8_Format; flags |= SkScalerContext::kGenA8FromLCD_Flag; } else { SkPixelGeometry geometry = surfaceProps ? surfaceProps->pixelGeometry() : SkSurfacePropsDefaultPixelGeometry(); switch (geometry) { case kUnknown_SkPixelGeometry: // eeek, can't support LCD rec->fMaskFormat = SkMask::kA8_Format; flags |= SkScalerContext::kGenA8FromLCD_Flag; break; case kRGB_H_SkPixelGeometry: // our default, do nothing. break; case kBGR_H_SkPixelGeometry: flags |= SkScalerContext::kLCD_BGROrder_Flag; break; case kRGB_V_SkPixelGeometry: flags |= SkScalerContext::kLCD_Vertical_Flag; break; case kBGR_V_SkPixelGeometry: flags |= SkScalerContext::kLCD_Vertical_Flag; flags |= SkScalerContext::kLCD_BGROrder_Flag; break; } } } if (paint.isEmbeddedBitmapText()) { flags |= SkScalerContext::kEmbeddedBitmapText_Flag; } if (paint.isSubpixelText()) { flags |= SkScalerContext::kSubpixelPositioning_Flag; } if (paint.isAutohinted()) { flags |= SkScalerContext::kForceAutohinting_Flag; } if (paint.isVerticalText()) { flags |= SkScalerContext::kVertical_Flag; } rec->fFlags = SkToU16(flags); // these modify fFlags, so do them after assigning fFlags rec->setHinting(computeHinting(paint)); rec->setLuminanceColor(paint.computeLuminanceColor()); // For now always set the paint gamma equal to the device gamma. // The math in SkMaskGamma can handle them being different, // but it requires superluminous masks when // Ex : deviceGamma(x) < paintGamma(x) and x is sufficiently large. rec->setDeviceGamma(SK_GAMMA_EXPONENT); rec->setPaintGamma(SK_GAMMA_EXPONENT); #ifdef SK_GAMMA_CONTRAST rec->setContrast(SK_GAMMA_CONTRAST); #else // A value of 0.5 for SK_GAMMA_CONTRAST appears to be a good compromise. // With lower values small text appears washed out (though correctly so). // With higher values lcd fringing is worse and the smoothing effect of // partial coverage is diminished. rec->setContrast(0.5f); #endif // Allow the fonthost to modify our rec before we use it as a key into the // cache. This way if we're asking for something that they will ignore, // they can modify our rec up front, so we don't create duplicate cache // entries. if (enableTypefaceFiltering) { typeface->onFilterRec(rec); } if (!SkToBool(scalerContextFlags & SkScalerContextFlags::kFakeGamma)) { rec->ignoreGamma(); } if (!SkToBool(scalerContextFlags & SkScalerContextFlags::kBoostContrast)) { rec->setContrast(0); } new (effects) SkScalerContextEffects{paint}; if (effects->fMaskFilter) { // Pre-blend is not currently applied to filtered text. // The primary filter is blur, for which contrast makes no sense, // and for which the destination guess error is more visible. // Also, all existing users of blur have calibrated for linear. // TODO: this means fPreBlendForFilter is never used? rec->ignorePreBlend(); } bool luminanceColorWillBeUsed = rec->getDeviceGamma() != SK_Scalar1 || rec->getPaintGamma() != SK_Scalar1; // If we're asking for A8, we force the colorlum to be gray, since that // limits the number of unique entries, and the scaler will only look at // the lum of one of them. switch (rec->fMaskFormat) { case SkMask::kLCD16_Format: if (luminanceColorWillBeUsed) { // filter down the luminance color to a finite number of bits SkColor color = rec->getLuminanceColor(); rec->setLuminanceColor(SkMaskGamma::CanonicalColor(color)); } break; case SkMask::kA8_Format: if (luminanceColorWillBeUsed) { // filter down the luminance to a single component, since A8 can't // use per-component information SkColor color = rec->getLuminanceColor(); U8CPU lum = SkComputeLuminance(SkColorGetR(color), SkColorGetG(color), SkColorGetB(color)); // reduce to our finite number of bits color = SkColorSetRGB(lum, lum, lum); rec->setLuminanceColor(SkMaskGamma::CanonicalColor(color)); } break; case SkMask::kBW_Format: // No need to differentiate gamma or apply contrast if we're BW rec->ignorePreBlend(); break; } } SkDescriptor* SkScalerContext::MakeDescriptorForPaths(SkFontID typefaceID, SkAutoDescriptor* ad) { SkScalerContextRec rec; memset(&rec, 0, sizeof(rec)); rec.fFontID = typefaceID; rec.fTextSize = SkPaint::kCanonicalTextSizeForPaths; rec.fPreScaleX = rec.fPost2x2[0][0] = rec.fPost2x2[1][1] = SK_Scalar1; return AutoDescriptorGivenRecAndEffects(rec, SkScalerContextEffects(), ad); } SkDescriptor* SkScalerContext::CreateDescriptorAndEffectsUsingPaint( const SkPaint& paint, const SkSurfaceProps* surfaceProps, SkScalerContextFlags scalerContextFlags, const SkMatrix* deviceMatrix, SkAutoDescriptor* ad, SkScalerContextEffects* effects) { SkScalerContextRec rec; MakeRecAndEffects(paint, surfaceProps, deviceMatrix, scalerContextFlags, &rec, effects); return AutoDescriptorGivenRecAndEffects(rec, *effects, ad); } static size_t calculate_size_and_flatten( const SkScalerContextRec& rec, const SkScalerContextEffects& effects, SkBinaryWriteBuffer* pathEffectBuffer, SkBinaryWriteBuffer* maskFilterBuffer) { size_t descSize = sizeof(rec); int entryCount = 1; if (effects.fPathEffect) { pathEffectBuffer->writeFlattenable(effects.fPathEffect); descSize += pathEffectBuffer->bytesWritten(); entryCount += 1; } if (effects.fMaskFilter) { maskFilterBuffer->writeFlattenable(effects.fMaskFilter); descSize += maskFilterBuffer->bytesWritten(); entryCount += 1; } descSize += SkDescriptor::ComputeOverhead(entryCount); return descSize; } #ifdef SK_DEBUG #define TEST_DESC #endif #ifdef TEST_DESC static void test_desc(const SkScalerContextRec& rec, const SkScalerContextEffects& effects, SkBinaryWriteBuffer* peBuffer, SkBinaryWriteBuffer* mfBuffer, const SkDescriptor* desc) { // Check that we completely write the bytes in desc (our key), and that // there are no uninitialized bytes. If there were, then we would get // false-misses (or worse, false-hits) in our fontcache. // // We do this buy filling 2 others, one with 0s and the other with 1s // and create those, and then check that all 3 are identical. SkAutoDescriptor ad1(desc->getLength()); SkAutoDescriptor ad2(desc->getLength()); SkDescriptor* desc1 = ad1.getDesc(); SkDescriptor* desc2 = ad2.getDesc(); memset(desc1, 0x00, desc->getLength()); memset(desc2, 0xFF, desc->getLength()); desc1->init(); desc2->init(); desc1->addEntry(kRec_SkDescriptorTag, sizeof(rec), &rec); desc2->addEntry(kRec_SkDescriptorTag, sizeof(rec), &rec); auto add_flattenable = [](SkDescriptor* desc, uint32_t tag, SkBinaryWriteBuffer* buffer) { buffer->writeToMemory(desc->addEntry(tag, buffer->bytesWritten(), nullptr)); }; if (effects.fPathEffect) { add_flattenable(desc1, kPathEffect_SkDescriptorTag, peBuffer); add_flattenable(desc2, kPathEffect_SkDescriptorTag, peBuffer); } if (effects.fMaskFilter) { add_flattenable(desc1, kMaskFilter_SkDescriptorTag, mfBuffer); add_flattenable(desc2, kMaskFilter_SkDescriptorTag, mfBuffer); } SkASSERT(desc->getLength() == desc1->getLength()); SkASSERT(desc->getLength() == desc2->getLength()); desc1->computeChecksum(); desc2->computeChecksum(); SkASSERT(!memcmp(desc, desc1, desc->getLength())); SkASSERT(!memcmp(desc, desc2, desc->getLength())); } #endif void generate_descriptor( const SkScalerContextRec& rec, const SkScalerContextEffects& effects, SkBinaryWriteBuffer* pathEffectBuffer, SkBinaryWriteBuffer* maskFilterBuffer, SkDescriptor* desc) { desc->init(); desc->addEntry(kRec_SkDescriptorTag, sizeof(rec), &rec); auto add = [&desc](uint32_t tag, SkBinaryWriteBuffer* buffer) { buffer->writeToMemory(desc->addEntry(tag, buffer->bytesWritten(), nullptr)); }; if (effects.fPathEffect) { add(kPathEffect_SkDescriptorTag, pathEffectBuffer); } if (effects.fMaskFilter) { add(kMaskFilter_SkDescriptorTag, maskFilterBuffer); } desc->computeChecksum(); #ifdef TEST_DESC test_desc(rec, effects, pathEffectBuffer, maskFilterBuffer, desc); #endif } SkDescriptor* SkScalerContext::AutoDescriptorGivenRecAndEffects( const SkScalerContextRec& rec, const SkScalerContextEffects& effects, SkAutoDescriptor* ad) { SkBinaryWriteBuffer peBuffer, mfBuffer; ad->reset(calculate_size_and_flatten(rec, effects, &peBuffer, &mfBuffer)); generate_descriptor(rec, effects, &peBuffer, &mfBuffer, ad->getDesc()); return ad->getDesc(); } std::unique_ptr SkScalerContext::DescriptorGivenRecAndEffects( const SkScalerContextRec& rec, const SkScalerContextEffects& effects) { SkBinaryWriteBuffer peBuffer, mfBuffer; auto desc = SkDescriptor::Alloc(calculate_size_and_flatten(rec, effects, &peBuffer, &mfBuffer)); generate_descriptor(rec, effects, &peBuffer, &mfBuffer, desc.get()); return desc; } void SkScalerContext::DescriptorBufferGiveRec(const SkScalerContextRec& rec, void* buffer) { SkScalerContextEffects noEffects; SkBinaryWriteBuffer peBuffer, mfBuffer; generate_descriptor(rec, noEffects, &peBuffer, &mfBuffer, (SkDescriptor*)buffer); } bool SkScalerContext::CheckBufferSizeForRec(const SkScalerContextRec& rec, const SkScalerContextEffects& effects, size_t size) { SkBinaryWriteBuffer peBuffer, mfBuffer; return size >= calculate_size_and_flatten(rec, effects, &peBuffer, &mfBuffer); }