/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkSRGB_DEFINED #define SkSRGB_DEFINED #include "SkNx.h" /** Components for building our canonical sRGB -> linear and linear -> sRGB transformations. * * Current best practices: * - for sRGB -> linear, lookup R,G,B in sk_linear_from_srgb; * - for linear -> sRGB, call sk_linear_to_srgb() for R,G,B; * - the alpha channel is linear in both formats, needing at most *(1/255.0f) or *255.0f. * * sk_linear_to_srgb() will run a little faster than usual when compiled with SSE4.1+. */ extern const float sk_linear_from_srgb[256]; extern const uint16_t sk_linear12_from_srgb[256]; extern const uint8_t sk_linear12_to_srgb[4096]; template static inline V sk_clamp_0_255(const V& x) { // The order of the arguments is important here. We want to make sure that NaN // clamps to zero. Note that max(NaN, 0) = 0, while max(0, NaN) = NaN. return V::Min(V::Max(x, 0.0f), 255.0f); } // [0.0f, 1.0f] -> [0.0f, 255.xf], for small x. Correct after truncation. template static inline V sk_linear_to_srgb_needs_trunc(const V& x) { // Approximation of the sRGB gamma curve (within 1 when scaled to 8-bit pixels). // // Constants tuned by brute force to minimize (in order of importance) after truncation: // 1) the number of bytes that fail to round trip (0 of 256); // 2) the number of points in [FLT_MIN, 1.0f] that are non-monotonic (0 of ~1 billion); // 3) the number of points halfway between bytes that hit the wrong byte (131 of 255). auto rsqrt = x.rsqrt(), sqrt = rsqrt.invert(), ftrt = rsqrt.rsqrt(); auto lo = (13.0471f * 255.0f) * x; auto hi = SkNx_fma(V{+0.412999f * 255.0f}, ftrt, SkNx_fma(V{+0.687999f * 255.0f}, sqrt, V{-0.0974983f * 255.0f})); return (x < 0.0048f).thenElse(lo, hi); } // [0.0f, 1.0f] -> [0.0f, 1.0f]. Correct after rounding. template static inline V sk_linear_to_srgb_needs_round(const V& x) { // Tuned to round trip each sRGB byte after rounding. auto rsqrt = x.rsqrt(), sqrt = rsqrt.invert(), ftrt = rsqrt.rsqrt(); auto lo = 12.46f * x; auto hi = V::Min(1.0f, SkNx_fma(V{+0.411192f}, ftrt, SkNx_fma(V{+0.689206f}, sqrt, V{-0.0988f}))); return (x < 0.0043f).thenElse(lo, hi); } template static inline SkNx sk_linear_to_srgb(const SkNx& x) { auto f = sk_linear_to_srgb_needs_trunc(x); return SkNx_cast(sk_clamp_0_255(f)); } // sRGB -> linear, using math instead of table lookups. template static inline V sk_linear_from_srgb_math(const V& x) { // Non-linear segment of sRGB curve approximated by // l = 0.0025 + 0.6975x^2 + 0.3x^3 const V k0 = 0.0025f, k2 = 0.6975f, k3 = 0.3000f; auto hi = SkNx_fma(x*x, SkNx_fma(x, k3, k2), k0); // Linear segment of sRGB curve: the normal slope, extended a little further than normal. auto lo = x * (1/12.92f); return (x < 0.055f).thenElse(lo, hi); } // Same as above, starting from ints. template static inline SkNx sk_linear_from_srgb_math(const SkNx& s) { auto x = SkNx_cast(s); // Same math as above, but working with x in [0,255], so x^n needs scaling by u^n. const float u = 1/255.0f; const SkNx k0 = 0.0025f, k2 = 0.6975f * u*u, k3 = 0.3000f * u*u*u; auto hi = SkNx_fma(x*x, SkNx_fma(x, k3, k2), k0); auto lo = x * (u/12.92f); return (x < (0.055f/u)).thenElse(lo, hi); } #endif//SkSRGB_DEFINED