/* * Copyright 2014 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkRecordDraw.h" #include "SkTSort.h" void SkRecordDraw(const SkRecord& record, SkCanvas* canvas, const SkBBoxHierarchy* bbh, SkDrawPictureCallback* callback) { SkAutoCanvasRestore saveRestore(canvas, true /*save now, restore at exit*/); if (NULL != bbh) { // Draw only ops that affect pixels in the canvas's current clip. SkIRect query; // The SkRecord and BBH were recorded in identity space. This canvas // is not necessarily in that same space. getClipBounds() returns us // this canvas' clip bounds transformed back into identity space, which // lets us query the BBH. SkRect clipBounds = { 0, 0, 0, 0 }; (void)canvas->getClipBounds(&clipBounds); clipBounds.roundOut(&query); SkTDArray ops; bbh->search(query, &ops); SkRecords::Draw draw(canvas); for (int i = 0; i < ops.count(); i++) { if (NULL != callback && callback->abortDrawing()) { return; } record.visit((uintptr_t)ops[i], draw); // See FillBounds below. } } else { // Draw all ops. for (SkRecords::Draw draw(canvas); draw.index() < record.count(); draw.next()) { if (NULL != callback && callback->abortDrawing()) { return; } record.visit(draw.index(), draw); } } } namespace SkRecords { // FIXME: SkBitmaps are stateful, so we need to copy them to play back in multiple threads. static SkBitmap shallow_copy(const SkBitmap& bitmap) { return bitmap; } // NoOps draw nothing. template <> void Draw::draw(const NoOp&) {} #define DRAW(T, call) template <> void Draw::draw(const T& r) { fCanvas->call; } DRAW(Restore, restore()); DRAW(Save, save()); DRAW(SaveLayer, saveLayer(r.bounds, r.paint, r.flags)); DRAW(PopCull, popCull()); DRAW(PushCull, pushCull(r.rect)); DRAW(Clear, clear(r.color)); DRAW(SetMatrix, setMatrix(SkMatrix::Concat(fInitialCTM, r.matrix))); DRAW(ClipPath, clipPath(r.path, r.op, r.doAA)); DRAW(ClipRRect, clipRRect(r.rrect, r.op, r.doAA)); DRAW(ClipRect, clipRect(r.rect, r.op, r.doAA)); DRAW(ClipRegion, clipRegion(r.region, r.op)); DRAW(DrawBitmap, drawBitmap(shallow_copy(r.bitmap), r.left, r.top, r.paint)); DRAW(DrawBitmapMatrix, drawBitmapMatrix(shallow_copy(r.bitmap), r.matrix, r.paint)); DRAW(DrawBitmapNine, drawBitmapNine(shallow_copy(r.bitmap), r.center, r.dst, r.paint)); DRAW(DrawBitmapRectToRect, drawBitmapRectToRect(shallow_copy(r.bitmap), r.src, r.dst, r.paint, r.flags)); DRAW(DrawDRRect, drawDRRect(r.outer, r.inner, r.paint)); DRAW(DrawOval, drawOval(r.oval, r.paint)); DRAW(DrawPaint, drawPaint(r.paint)); DRAW(DrawPath, drawPath(r.path, r.paint)); DRAW(DrawPatch, drawPatch(r.cubics, r.colors, r.texCoords, r.xmode.get(), r.paint)); DRAW(DrawPicture, drawPicture(r.picture, r.matrix, r.paint)); DRAW(DrawPoints, drawPoints(r.mode, r.count, r.pts, r.paint)); DRAW(DrawPosText, drawPosText(r.text, r.byteLength, r.pos, r.paint)); DRAW(DrawPosTextH, drawPosTextH(r.text, r.byteLength, r.xpos, r.y, r.paint)); DRAW(DrawRRect, drawRRect(r.rrect, r.paint)); DRAW(DrawRect, drawRect(r.rect, r.paint)); DRAW(DrawSprite, drawSprite(shallow_copy(r.bitmap), r.left, r.top, r.paint)); DRAW(DrawText, drawText(r.text, r.byteLength, r.x, r.y, r.paint)); DRAW(DrawTextBlob, drawTextBlob(r.blob, r.x, r.y, r.paint)); DRAW(DrawTextOnPath, drawTextOnPath(r.text, r.byteLength, r.path, r.matrix, r.paint)); DRAW(DrawVertices, drawVertices(r.vmode, r.vertexCount, r.vertices, r.texs, r.colors, r.xmode.get(), r.indices, r.indexCount, r.paint)); #undef DRAW // This is an SkRecord visitor that fills an SkBBoxHierarchy. // // The interesting part here is how to calculate bounds for ops which don't // have intrinsic bounds. What is the bounds of a Save or a Translate? // // We answer this by thinking about a particular definition of bounds: if I // don't execute this op, pixels in this rectangle might draw incorrectly. So // the bounds of a Save, a Translate, a Restore, etc. are the union of the // bounds of Draw* ops that they might have an effect on. For any given // Save/Restore block, the bounds of the Save, the Restore, and any other // non-drawing ("control") ops inside are exactly the union of the bounds of // the drawing ops inside that block. // // To implement this, we keep a stack of active Save blocks. As we consume ops // inside the Save/Restore block, drawing ops are unioned with the bounds of // the block, and control ops are stashed away for later. When we finish the // block with a Restore, our bounds are complete, and we go back and fill them // in for all the control ops we stashed away. class FillBounds : SkNoncopyable { public: FillBounds(const SkRecord& record, SkBBoxHierarchy* bbh) : fBounds(record.count()) { // Calculate bounds for all ops. This won't go quite in order, so we'll need // to store the bounds separately then feed them in to the BBH later in order. const SkIRect largest = SkIRect::MakeLargest(); fCTM = &SkMatrix::I(); fCurrentClipBounds = largest; for (fCurrentOp = 0; fCurrentOp < record.count(); fCurrentOp++) { record.visit(fCurrentOp, *this); } // If we have any lingering unpaired Saves, simulate restores to make // sure all ops in those Save blocks have their bounds calculated. while (!fSaveStack.isEmpty()) { this->popSaveBlock(); } // Any control ops not part of any Save/Restore block draw everywhere. while (!fControlIndices.isEmpty()) { this->popControl(largest); } // Finally feed all stored bounds into the BBH. They'll be returned in this order. SkASSERT(NULL != bbh); for (uintptr_t i = 0; i < record.count(); i++) { if (!fBounds[i].isEmpty()) { bbh->insert((void*)i, fBounds[i], true/*ok to defer*/); } } bbh->flushDeferredInserts(); } template void operator()(const T& op) { this->updateCTM(op); this->updateClipBounds(op); this->trackBounds(op); } private: struct SaveBounds { int controlOps; // Number of control ops in this Save block, including the Save. SkIRect bounds; // Bounds of everything in the block. const SkPaint* paint; // Unowned. If set, adjusts the bounds of all ops in this block. }; template void updateCTM(const T&) { /* most ops don't change the CTM */ } void updateCTM(const Restore& op) { fCTM = &op.matrix; } void updateCTM(const SetMatrix& op) { fCTM = &op.matrix; } template void updateClipBounds(const T&) { /* most ops don't change the clip */ } // Each of these devBounds fields is the state of the device bounds after the op. // So Restore's devBounds are those bounds saved by its paired Save or SaveLayer. void updateClipBounds(const Restore& op) { fCurrentClipBounds = op.devBounds; } void updateClipBounds(const ClipPath& op) { fCurrentClipBounds = op.devBounds; } void updateClipBounds(const ClipRRect& op) { fCurrentClipBounds = op.devBounds; } void updateClipBounds(const ClipRect& op) { fCurrentClipBounds = op.devBounds; } void updateClipBounds(const ClipRegion& op) { fCurrentClipBounds = op.devBounds; } void updateClipBounds(const SaveLayer& op) { if (op.bounds) { fCurrentClipBounds.intersect(this->adjustAndMap(*op.bounds, op.paint)); } } // The bounds of these ops must be calculated when we hit the Restore // from the bounds of the ops in the same Save block. void trackBounds(const Save&) { this->pushSaveBlock(NULL); } // TODO: bounds of SaveLayer may be more complicated? void trackBounds(const SaveLayer& op) { this->pushSaveBlock(op.paint); } void trackBounds(const Restore&) { fBounds[fCurrentOp] = this->popSaveBlock(); } void trackBounds(const SetMatrix&) { this->pushControl(); } void trackBounds(const ClipRect&) { this->pushControl(); } void trackBounds(const ClipRRect&) { this->pushControl(); } void trackBounds(const ClipPath&) { this->pushControl(); } void trackBounds(const ClipRegion&) { this->pushControl(); } // For all other ops, we can calculate and store the bounds directly now. template void trackBounds(const T& op) { fBounds[fCurrentOp] = this->bounds(op); this->updateSaveBounds(fBounds[fCurrentOp]); } void pushSaveBlock(const SkPaint* paint) { // Starting a new Save block. Push a new entry to represent that. SaveBounds sb = { 0, SkIRect::MakeEmpty(), paint }; fSaveStack.push(sb); this->pushControl(); } SkIRect popSaveBlock() { // We're done the Save block. Apply the block's bounds to all control ops inside it. SaveBounds sb; fSaveStack.pop(&sb); while (sb.controlOps --> 0) { this->popControl(sb.bounds); } // This whole Save block may be part another Save block. this->updateSaveBounds(sb.bounds); // If called from a real Restore (not a phony one for balance), it'll need the bounds. return sb.bounds; } void pushControl() { fControlIndices.push(fCurrentOp); if (!fSaveStack.isEmpty()) { fSaveStack.top().controlOps++; } } void popControl(const SkIRect& bounds) { fBounds[fControlIndices.top()] = bounds; fControlIndices.pop(); } void updateSaveBounds(const SkIRect& bounds) { // If we're in a Save block, expand its bounds to cover these bounds too. if (!fSaveStack.isEmpty()) { fSaveStack.top().bounds.join(bounds); } } // TODO(mtklein): Remove this default when done bounding all ops. template SkIRect bounds(const T&) const { return fCurrentClipBounds; } SkIRect bounds(const Clear&) const { return SkIRect::MakeLargest(); } // Ignores the clip SkIRect bounds(const NoOp&) const { return SkIRect::MakeEmpty(); } // NoOps don't draw. SkIRect bounds(const DrawRect& op) const { return this->adjustAndMap(op.rect, &op.paint); } SkIRect bounds(const DrawOval& op) const { return this->adjustAndMap(op.oval, &op.paint); } SkIRect bounds(const DrawRRect& op) const { return this->adjustAndMap(op.rrect.rect(), &op.paint); } SkIRect bounds(const DrawDRRect& op) const { return this->adjustAndMap(op.outer.rect(), &op.paint); } SkIRect bounds(const DrawBitmapRectToRect& op) const { return this->adjustAndMap(op.dst, op.paint); } SkIRect bounds(const DrawBitmapNine& op) const { return this->adjustAndMap(op.dst, op.paint); } SkIRect bounds(const DrawBitmap& op) const { const SkBitmap& bm = op.bitmap; return this->adjustAndMap(SkRect::MakeXYWH(op.left, op.top, bm.width(), bm.height()), op.paint); } SkIRect bounds(const DrawBitmapMatrix& op) const { const SkBitmap& bm = op.bitmap; SkRect dst = SkRect::MakeWH(bm.width(), bm.height()); op.matrix.mapRect(&dst); return this->adjustAndMap(dst, op.paint); } SkIRect bounds(const DrawPath& op) const { return op.path.isInverseFillType() ? fCurrentClipBounds : this->adjustAndMap(op.path.getBounds(), &op.paint); } SkIRect bounds(const DrawPoints& op) const { SkRect dst; dst.set(op.pts, op.count); // Pad the bounding box a little to make sure hairline points' bounds aren't empty. SkScalar stroke = SkMaxScalar(op.paint.getStrokeWidth(), 0.01f); dst.outset(stroke/2, stroke/2); return this->adjustAndMap(dst, &op.paint); } SkIRect bounds(const DrawPosText& op) const { const int N = op.paint.countText(op.text, op.byteLength); if (N == 0) { return SkIRect::MakeEmpty(); } SkRect dst; dst.set(op.pos, op.paint.countText(op.text, N)); AdjustTextForFontMetrics(&dst, op.paint); return this->adjustAndMap(dst, &op.paint); } SkIRect bounds(const DrawPosTextH& op) const { const int N = op.paint.countText(op.text, op.byteLength); if (N == 0) { return SkIRect::MakeEmpty(); } SkScalar left = op.xpos[0], right = op.xpos[0]; for (int i = 1; i < N; i++) { left = SkMinScalar(left, op.xpos[i]); right = SkMaxScalar(right, op.xpos[i]); } SkRect dst = { left, op.y, right, op.y }; AdjustTextForFontMetrics(&dst, op.paint); return this->adjustAndMap(dst, &op.paint); } static void AdjustTextForFontMetrics(SkRect* rect, const SkPaint& paint) { #ifdef SK_DEBUG SkRect correct = *rect; #endif const SkScalar yPad = 1.5f * paint.getTextSize(), // In practice, this seems to be enough. xPad = 4.0f * yPad; // Hack for very wide Github logo font. rect->outset(xPad, yPad); #ifdef SK_DEBUG SkPaint::FontMetrics metrics; paint.getFontMetrics(&metrics); correct.fLeft += metrics.fXMin; correct.fTop += metrics.fTop; correct.fRight += metrics.fXMax; correct.fBottom += metrics.fBottom; // See skia:2862 for why we ignore small text sizes. SkASSERTF(paint.getTextSize() < 0.001f || rect->contains(correct), "%f %f %f %f vs. %f %f %f %f\n", -xPad, -yPad, +xPad, +yPad, metrics.fXMin, metrics.fTop, metrics.fXMax, metrics.fBottom); #endif } // Returns true if rect was meaningfully adjusted for the effects of paint, // false if the paint could affect the rect in unknown ways. static bool AdjustForPaint(const SkPaint* paint, SkRect* rect) { if (paint) { if (paint->canComputeFastBounds()) { *rect = paint->computeFastBounds(*rect, rect); return true; } return false; } return true; } // Adjust rect for all paints that may affect its geometry, then map it to device space. SkIRect adjustAndMap(SkRect rect, const SkPaint* paint) const { // Inverted rectangles really confuse our BBHs. rect.sort(); // Adjust the rect for its own paint. if (!AdjustForPaint(paint, &rect)) { // The paint could do anything to our bounds. The only safe answer is the current clip. return fCurrentClipBounds; } // Adjust rect for all the paints from the SaveLayers we're inside. for (int i = fSaveStack.count() - 1; i >= 0; i--) { if (!AdjustForPaint(fSaveStack[i].paint, &rect)) { // Same deal as above. return fCurrentClipBounds; } } // Map the rect back to device space. fCTM->mapRect(&rect); SkIRect devRect; rect.roundOut(&devRect); // Nothing can draw outside the current clip. // (Only bounded ops call into this method, so oddballs like Clear don't matter here.) devRect.intersect(fCurrentClipBounds); return devRect; } // Conservative device bounds for each op in the SkRecord. SkAutoTMalloc fBounds; // We walk fCurrentOp through the SkRecord, as we go using updateCTM() // and updateClipBounds() to maintain the exact CTM (fCTM) and conservative // device bounds of the current clip (fCurrentClipBounds). unsigned fCurrentOp; const SkMatrix* fCTM; SkIRect fCurrentClipBounds; // Used to track the bounds of Save/Restore blocks and the control ops inside them. SkTDArray fSaveStack; SkTDArray fControlIndices; }; } // namespace SkRecords void SkRecordFillBounds(const SkRecord& record, SkBBoxHierarchy* bbh) { SkRecords::FillBounds(record, bbh); }