/* * Copyright 2014 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkLayerInfo.h" #include "SkRecordDraw.h" #include "SkPatchUtils.h" void SkRecordDraw(const SkRecord& record, SkCanvas* canvas, SkPicture const* const drawablePicts[], SkCanvasDrawable* const drawables[], int drawableCount, const SkBBoxHierarchy* bbh, SkPicture::AbortCallback* callback) { SkAutoCanvasRestore saveRestore(canvas, true /*save now, restore at exit*/); if (bbh) { // Draw only ops that affect pixels in the canvas's current clip. // The SkRecord and BBH were recorded in identity space. This canvas // is not necessarily in that same space. getClipBounds() returns us // this canvas' clip bounds transformed back into identity space, which // lets us query the BBH. SkRect query; if (!canvas->getClipBounds(&query)) { query.setEmpty(); } SkTDArray ops; bbh->search(query, &ops); SkRecords::Draw draw(canvas, drawablePicts, drawables, drawableCount); for (int i = 0; i < ops.count(); i++) { if (callback && callback->abort()) { return; } // This visit call uses the SkRecords::Draw::operator() to call // methods on the |canvas|, wrapped by methods defined with the // DRAW() macro. record.visit(ops[i], draw); } } else { // Draw all ops. SkRecords::Draw draw(canvas, drawablePicts, drawables, drawableCount); for (unsigned i = 0; i < record.count(); i++) { if (callback && callback->abort()) { return; } // This visit call uses the SkRecords::Draw::operator() to call // methods on the |canvas|, wrapped by methods defined with the // DRAW() macro. record.visit(i, draw); } } } void SkRecordPartialDraw(const SkRecord& record, SkCanvas* canvas, SkPicture const* const drawablePicts[], int drawableCount, unsigned start, unsigned stop, const SkMatrix& initialCTM) { SkAutoCanvasRestore saveRestore(canvas, true /*save now, restore at exit*/); stop = SkTMin(stop, record.count()); SkRecords::Draw draw(canvas, drawablePicts, NULL, drawableCount, &initialCTM); for (unsigned i = start; i < stop; i++) { record.visit(i, draw); } } namespace SkRecords { // NoOps draw nothing. template <> void Draw::draw(const NoOp&) {} #define DRAW(T, call) template <> void Draw::draw(const T& r) { fCanvas->call; } DRAW(Restore, restore()); DRAW(Save, save()); DRAW(SaveLayer, saveLayer(r.bounds, r.paint, r.flags)); DRAW(SetMatrix, setMatrix(SkMatrix::Concat(fInitialCTM, r.matrix))); DRAW(ClipPath, clipPath(r.path, r.opAA.op, r.opAA.aa)); DRAW(ClipRRect, clipRRect(r.rrect, r.opAA.op, r.opAA.aa)); DRAW(ClipRect, clipRect(r.rect, r.opAA.op, r.opAA.aa)); DRAW(ClipRegion, clipRegion(r.region, r.op)); DRAW(BeginCommentGroup, beginCommentGroup(r.description)); DRAW(AddComment, addComment(r.key, r.value)); DRAW(EndCommentGroup, endCommentGroup()); DRAW(DrawBitmap, drawBitmap(r.bitmap.shallowCopy(), r.left, r.top, r.paint)); DRAW(DrawBitmapNine, drawBitmapNine(r.bitmap.shallowCopy(), r.center, r.dst, r.paint)); DRAW(DrawBitmapRectToRect, drawBitmapRectToRect(r.bitmap.shallowCopy(), r.src, r.dst, r.paint, SkCanvas::kNone_DrawBitmapRectFlag)); DRAW(DrawBitmapRectToRectBleed, drawBitmapRectToRect(r.bitmap.shallowCopy(), r.src, r.dst, r.paint, SkCanvas::kBleed_DrawBitmapRectFlag)); DRAW(DrawDRRect, drawDRRect(r.outer, r.inner, r.paint)); DRAW(DrawImage, drawImage(r.image, r.left, r.top, r.paint)); DRAW(DrawImageRect, drawImageRect(r.image, r.src, r.dst, r.paint)); DRAW(DrawOval, drawOval(r.oval, r.paint)); DRAW(DrawPaint, drawPaint(r.paint)); DRAW(DrawPath, drawPath(r.path, r.paint)); DRAW(DrawPatch, drawPatch(r.cubics, r.colors, r.texCoords, r.xmode, r.paint)); DRAW(DrawPicture, drawPicture(r.picture, &r.matrix, r.paint)); DRAW(DrawPoints, drawPoints(r.mode, r.count, r.pts, r.paint)); DRAW(DrawPosText, drawPosText(r.text, r.byteLength, r.pos, r.paint)); DRAW(DrawPosTextH, drawPosTextH(r.text, r.byteLength, r.xpos, r.y, r.paint)); DRAW(DrawRRect, drawRRect(r.rrect, r.paint)); DRAW(DrawRect, drawRect(r.rect, r.paint)); DRAW(DrawSprite, drawSprite(r.bitmap.shallowCopy(), r.left, r.top, r.paint)); DRAW(DrawText, drawText(r.text, r.byteLength, r.x, r.y, r.paint)); DRAW(DrawTextBlob, drawTextBlob(r.blob, r.x, r.y, r.paint)); DRAW(DrawTextOnPath, drawTextOnPath(r.text, r.byteLength, r.path, &r.matrix, r.paint)); DRAW(DrawVertices, drawVertices(r.vmode, r.vertexCount, r.vertices, r.texs, r.colors, r.xmode.get(), r.indices, r.indexCount, r.paint)); #undef DRAW template <> void Draw::draw(const DrawDrawable& r) { SkASSERT(r.index >= 0); SkASSERT(r.index < fDrawableCount); if (fDrawables) { SkASSERT(NULL == fDrawablePicts); fCanvas->EXPERIMENTAL_drawDrawable(fDrawables[r.index]); } else { fCanvas->drawPicture(fDrawablePicts[r.index]); } } // This is an SkRecord visitor that fills an SkBBoxHierarchy. // // The interesting part here is how to calculate bounds for ops which don't // have intrinsic bounds. What is the bounds of a Save or a Translate? // // We answer this by thinking about a particular definition of bounds: if I // don't execute this op, pixels in this rectangle might draw incorrectly. So // the bounds of a Save, a Translate, a Restore, etc. are the union of the // bounds of Draw* ops that they might have an effect on. For any given // Save/Restore block, the bounds of the Save, the Restore, and any other // non-drawing ("control") ops inside are exactly the union of the bounds of // the drawing ops inside that block. // // To implement this, we keep a stack of active Save blocks. As we consume ops // inside the Save/Restore block, drawing ops are unioned with the bounds of // the block, and control ops are stashed away for later. When we finish the // block with a Restore, our bounds are complete, and we go back and fill them // in for all the control ops we stashed away. class FillBounds : SkNoncopyable { public: FillBounds(const SkRect& cullRect, const SkRecord& record) : fNumRecords(record.count()) , fCullRect(cullRect) , fBounds(record.count()) { // Calculate bounds for all ops. This won't go quite in order, so we'll need // to store the bounds separately then feed them in to the BBH later in order. fCTM = &SkMatrix::I(); fCurrentClipBounds = fCullRect; } void setCurrentOp(unsigned currentOp) { fCurrentOp = currentOp; } void cleanUp(SkBBoxHierarchy* bbh) { // If we have any lingering unpaired Saves, simulate restores to make // sure all ops in those Save blocks have their bounds calculated. while (!fSaveStack.isEmpty()) { this->popSaveBlock(); } // Any control ops not part of any Save/Restore block draw everywhere. while (!fControlIndices.isEmpty()) { this->popControl(fCullRect); } // Finally feed all stored bounds into the BBH. They'll be returned in this order. if (bbh) { bbh->insert(&fBounds, fNumRecords); } } template void operator()(const T& op) { this->updateCTM(op); this->updateClipBounds(op); this->trackBounds(op); } // In this file, SkRect are in local coordinates, Bounds are translated back to identity space. typedef SkRect Bounds; unsigned currentOp() const { return fCurrentOp; } const SkMatrix& ctm() const { return *fCTM; } const Bounds& getBounds(unsigned index) const { return fBounds[index]; } // Adjust rect for all paints that may affect its geometry, then map it to identity space. Bounds adjustAndMap(SkRect rect, const SkPaint* paint) const { // Inverted rectangles really confuse our BBHs. rect.sort(); // Adjust the rect for its own paint. if (!AdjustForPaint(paint, &rect)) { // The paint could do anything to our bounds. The only safe answer is the current clip. return fCurrentClipBounds; } // Adjust rect for all the paints from the SaveLayers we're inside. if (!this->adjustForSaveLayerPaints(&rect)) { // Same deal as above. return fCurrentClipBounds; } // Map the rect back to identity space. fCTM->mapRect(&rect); // Nothing can draw outside the current clip. if (!rect.intersect(fCurrentClipBounds)) { return Bounds::MakeEmpty(); } return rect; } private: struct SaveBounds { int controlOps; // Number of control ops in this Save block, including the Save. Bounds bounds; // Bounds of everything in the block. const SkPaint* paint; // Unowned. If set, adjusts the bounds of all ops in this block. }; // Only Restore and SetMatrix change the CTM. template void updateCTM(const T&) {} void updateCTM(const Restore& op) { fCTM = &op.matrix; } void updateCTM(const SetMatrix& op) { fCTM = &op.matrix; } // Most ops don't change the clip. template void updateClipBounds(const T&) {} // Clip{Path,RRect,Rect,Region} obviously change the clip. They all know their bounds already. void updateClipBounds(const ClipPath& op) { this->updateClipBoundsForClipOp(op.devBounds); } void updateClipBounds(const ClipRRect& op) { this->updateClipBoundsForClipOp(op.devBounds); } void updateClipBounds(const ClipRect& op) { this->updateClipBoundsForClipOp(op.devBounds); } void updateClipBounds(const ClipRegion& op) { this->updateClipBoundsForClipOp(op.devBounds); } // The bounds of clip ops need to be adjusted for the paints of saveLayers they're inside. void updateClipBoundsForClipOp(const SkIRect& devBounds) { Bounds clip = SkRect::Make(devBounds); // We don't call adjustAndMap() because as its last step it would intersect the adjusted // clip bounds with the previous clip, exactly what we can't do when the clip grows. fCurrentClipBounds = this->adjustForSaveLayerPaints(&clip) ? clip : fCullRect; } // Restore holds the devBounds for the clip after the {save,saveLayer}/restore block completes. void updateClipBounds(const Restore& op) { // This is just like the clip ops above, but we need to skip the effects (if any) of our // paired saveLayer (if it is one); it has not yet been popped off the save stack. Our // devBounds reflect the state of the world after the saveLayer/restore block is done, // so they are not affected by the saveLayer's paint. const int kSavesToIgnore = 1; Bounds clip = SkRect::Make(op.devBounds); fCurrentClipBounds = this->adjustForSaveLayerPaints(&clip, kSavesToIgnore) ? clip : fCullRect; } // We also take advantage of SaveLayer bounds when present to further cut the clip down. void updateClipBounds(const SaveLayer& op) { if (op.bounds) { // adjustAndMap() intersects these layer bounds with the previous clip for us. fCurrentClipBounds = this->adjustAndMap(*op.bounds, op.paint); } } // The bounds of these ops must be calculated when we hit the Restore // from the bounds of the ops in the same Save block. void trackBounds(const Save&) { this->pushSaveBlock(NULL); } void trackBounds(const SaveLayer& op) { this->pushSaveBlock(op.paint); } void trackBounds(const Restore&) { fBounds[fCurrentOp] = this->popSaveBlock(); } void trackBounds(const SetMatrix&) { this->pushControl(); } void trackBounds(const ClipRect&) { this->pushControl(); } void trackBounds(const ClipRRect&) { this->pushControl(); } void trackBounds(const ClipPath&) { this->pushControl(); } void trackBounds(const ClipRegion&) { this->pushControl(); } void trackBounds(const BeginCommentGroup&) { this->pushControl(); } void trackBounds(const AddComment&) { this->pushControl(); } void trackBounds(const EndCommentGroup&) { this->pushControl(); } // For all other ops, we can calculate and store the bounds directly now. template void trackBounds(const T& op) { fBounds[fCurrentOp] = this->bounds(op); this->updateSaveBounds(fBounds[fCurrentOp]); } void pushSaveBlock(const SkPaint* paint) { // Starting a new Save block. Push a new entry to represent that. SaveBounds sb; sb.controlOps = 0; // If the paint affects transparent black, the bound shouldn't be smaller // than the current clip bounds. sb.bounds = PaintMayAffectTransparentBlack(paint) ? fCurrentClipBounds : Bounds::MakeEmpty(); sb.paint = paint; fSaveStack.push(sb); this->pushControl(); } static bool PaintMayAffectTransparentBlack(const SkPaint* paint) { if (paint) { // FIXME: this is very conservative if (paint->getImageFilter() || paint->getColorFilter()) { return true; } // Unusual Xfermodes require us to process a saved layer // even with operations outisde the clip. // For example, DstIn is used by masking layers. // https://code.google.com/p/skia/issues/detail?id=1291 // https://crbug.com/401593 SkXfermode* xfermode = paint->getXfermode(); SkXfermode::Mode mode; // SrcOver is ok, and is also the common case with a NULL xfermode. // So we should make that the fast path and bypass the mode extraction // and test. if (xfermode && xfermode->asMode(&mode)) { switch (mode) { // For each of the following transfer modes, if the source // alpha is zero (our transparent black), the resulting // blended alpha is not necessarily equal to the original // destination alpha. case SkXfermode::kClear_Mode: case SkXfermode::kSrc_Mode: case SkXfermode::kSrcIn_Mode: case SkXfermode::kDstIn_Mode: case SkXfermode::kSrcOut_Mode: case SkXfermode::kDstATop_Mode: case SkXfermode::kModulate_Mode: return true; break; default: break; } } } return false; } Bounds popSaveBlock() { // We're done the Save block. Apply the block's bounds to all control ops inside it. SaveBounds sb; fSaveStack.pop(&sb); while (sb.controlOps --> 0) { this->popControl(sb.bounds); } // This whole Save block may be part another Save block. this->updateSaveBounds(sb.bounds); // If called from a real Restore (not a phony one for balance), it'll need the bounds. return sb.bounds; } void pushControl() { fControlIndices.push(fCurrentOp); if (!fSaveStack.isEmpty()) { fSaveStack.top().controlOps++; } } void popControl(const Bounds& bounds) { fBounds[fControlIndices.top()] = bounds; fControlIndices.pop(); } void updateSaveBounds(const Bounds& bounds) { // If we're in a Save block, expand its bounds to cover these bounds too. if (!fSaveStack.isEmpty()) { fSaveStack.top().bounds.join(bounds); } } // FIXME: this method could use better bounds Bounds bounds(const DrawText&) const { return fCurrentClipBounds; } Bounds bounds(const DrawPaint&) const { return fCurrentClipBounds; } Bounds bounds(const NoOp&) const { return Bounds::MakeEmpty(); } // NoOps don't draw. Bounds bounds(const DrawSprite& op) const { // Ignores the matrix. return Bounds::MakeXYWH(op.left, op.top, op.bitmap.width(), op.bitmap.height()); } Bounds bounds(const DrawRect& op) const { return this->adjustAndMap(op.rect, &op.paint); } Bounds bounds(const DrawOval& op) const { return this->adjustAndMap(op.oval, &op.paint); } Bounds bounds(const DrawRRect& op) const { return this->adjustAndMap(op.rrect.rect(), &op.paint); } Bounds bounds(const DrawDRRect& op) const { return this->adjustAndMap(op.outer.rect(), &op.paint); } Bounds bounds(const DrawImage& op) const { const SkImage* image = op.image; SkRect rect = SkRect::MakeXYWH(op.left, op.top, image->width(), image->height()); return this->adjustAndMap(rect, op.paint); } Bounds bounds(const DrawImageRect& op) const { return this->adjustAndMap(op.dst, op.paint); } Bounds bounds(const DrawBitmapRectToRect& op) const { return this->adjustAndMap(op.dst, op.paint); } Bounds bounds(const DrawBitmapRectToRectBleed& op) const { return this->adjustAndMap(op.dst, op.paint); } Bounds bounds(const DrawBitmapNine& op) const { return this->adjustAndMap(op.dst, op.paint); } Bounds bounds(const DrawBitmap& op) const { return this->adjustAndMap( SkRect::MakeXYWH(op.left, op.top, op.bitmap.width(), op.bitmap.height()), op.paint); } Bounds bounds(const DrawPath& op) const { return op.path.isInverseFillType() ? fCurrentClipBounds : this->adjustAndMap(op.path.getBounds(), &op.paint); } Bounds bounds(const DrawPoints& op) const { SkRect dst; dst.set(op.pts, op.count); // Pad the bounding box a little to make sure hairline points' bounds aren't empty. SkScalar stroke = SkMaxScalar(op.paint.getStrokeWidth(), 0.01f); dst.outset(stroke/2, stroke/2); return this->adjustAndMap(dst, &op.paint); } Bounds bounds(const DrawPatch& op) const { SkRect dst; dst.set(op.cubics, SkPatchUtils::kNumCtrlPts); return this->adjustAndMap(dst, &op.paint); } Bounds bounds(const DrawVertices& op) const { SkRect dst; dst.set(op.vertices, op.vertexCount); return this->adjustAndMap(dst, &op.paint); } Bounds bounds(const DrawPicture& op) const { SkRect dst = op.picture->cullRect(); op.matrix.mapRect(&dst); return this->adjustAndMap(dst, op.paint); } Bounds bounds(const DrawPosText& op) const { const int N = op.paint.countText(op.text, op.byteLength); if (N == 0) { return Bounds::MakeEmpty(); } SkRect dst; dst.set(op.pos, N); AdjustTextForFontMetrics(&dst, op.paint); return this->adjustAndMap(dst, &op.paint); } Bounds bounds(const DrawPosTextH& op) const { const int N = op.paint.countText(op.text, op.byteLength); if (N == 0) { return Bounds::MakeEmpty(); } SkScalar left = op.xpos[0], right = op.xpos[0]; for (int i = 1; i < N; i++) { left = SkMinScalar(left, op.xpos[i]); right = SkMaxScalar(right, op.xpos[i]); } SkRect dst = { left, op.y, right, op.y }; AdjustTextForFontMetrics(&dst, op.paint); return this->adjustAndMap(dst, &op.paint); } Bounds bounds(const DrawTextOnPath& op) const { SkRect dst = op.path.getBounds(); // Pad all sides by the maximum padding in any direction we'd normally apply. SkRect pad = { 0, 0, 0, 0}; AdjustTextForFontMetrics(&pad, op.paint); // That maximum padding happens to always be the right pad today. SkASSERT(pad.fLeft == -pad.fRight); SkASSERT(pad.fTop == -pad.fBottom); SkASSERT(pad.fRight > pad.fBottom); dst.outset(pad.fRight, pad.fRight); return this->adjustAndMap(dst, &op.paint); } Bounds bounds(const DrawTextBlob& op) const { SkRect dst = op.blob->bounds(); dst.offset(op.x, op.y); return this->adjustAndMap(dst, &op.paint); } Bounds bounds(const DrawDrawable& op) const { return this->adjustAndMap(op.worstCaseBounds, NULL); } static void AdjustTextForFontMetrics(SkRect* rect, const SkPaint& paint) { #ifdef SK_DEBUG SkRect correct = *rect; #endif // crbug.com/373785 ~~> xPad = 4x yPad // crbug.com/424824 ~~> bump yPad from 2x text size to 2.5x const SkScalar yPad = 2.5f * paint.getTextSize(), xPad = 4.0f * yPad; rect->outset(xPad, yPad); #ifdef SK_DEBUG SkPaint::FontMetrics metrics; paint.getFontMetrics(&metrics); correct.fLeft += metrics.fXMin; correct.fTop += metrics.fTop; correct.fRight += metrics.fXMax; correct.fBottom += metrics.fBottom; // See skia:2862 for why we ignore small text sizes. SkASSERTF(paint.getTextSize() < 0.001f || rect->contains(correct), "%f %f %f %f vs. %f %f %f %f\n", -xPad, -yPad, +xPad, +yPad, metrics.fXMin, metrics.fTop, metrics.fXMax, metrics.fBottom); #endif } // Returns true if rect was meaningfully adjusted for the effects of paint, // false if the paint could affect the rect in unknown ways. static bool AdjustForPaint(const SkPaint* paint, SkRect* rect) { if (paint) { if (paint->canComputeFastBounds()) { *rect = paint->computeFastBounds(*rect, rect); return true; } return false; } return true; } bool adjustForSaveLayerPaints(SkRect* rect, int savesToIgnore = 0) const { for (int i = fSaveStack.count() - 1 - savesToIgnore; i >= 0; i--) { if (!AdjustForPaint(fSaveStack[i].paint, rect)) { return false; } } return true; } const unsigned fNumRecords; // We do not guarantee anything for operations outside of the cull rect const SkRect fCullRect; // Conservative identity-space bounds for each op in the SkRecord. SkAutoTMalloc fBounds; // We walk fCurrentOp through the SkRecord, as we go using updateCTM() // and updateClipBounds() to maintain the exact CTM (fCTM) and conservative // identity-space bounds of the current clip (fCurrentClipBounds). unsigned fCurrentOp; const SkMatrix* fCTM; Bounds fCurrentClipBounds; // Used to track the bounds of Save/Restore blocks and the control ops inside them. SkTDArray fSaveStack; SkTDArray fControlIndices; }; // SkRecord visitor to gather saveLayer/restore information. class CollectLayers : SkNoncopyable { public: CollectLayers(const SkRect& cullRect, const SkRecord& record, const SkPicture::SnapshotArray* pictList, SkLayerInfo* accelData) : fSaveLayersInStack(0) , fAccelData(accelData) , fPictList(pictList) , fFillBounds(cullRect, record) {} void setCurrentOp(unsigned currentOp) { fFillBounds.setCurrentOp(currentOp); } void cleanUp(SkBBoxHierarchy* bbh) { // fFillBounds must perform its cleanUp first so that all the bounding // boxes associated with unbalanced restores are updated (prior to // fetching their bound in popSaveLayerInfo). fFillBounds.cleanUp(bbh); while (!fSaveLayerStack.isEmpty()) { this->popSaveLayerInfo(); } } template void operator()(const T& op) { fFillBounds(op); this->trackSaveLayers(op); } private: struct SaveLayerInfo { SaveLayerInfo() { } SaveLayerInfo(int opIndex, bool isSaveLayer, const SkRect* bounds, const SkPaint* paint) : fStartIndex(opIndex) , fIsSaveLayer(isSaveLayer) , fHasNestedSaveLayer(false) , fBounds(bounds ? *bounds : SkRect::MakeEmpty()) , fPaint(paint) { } int fStartIndex; bool fIsSaveLayer; bool fHasNestedSaveLayer; SkRect fBounds; const SkPaint* fPaint; }; template void trackSaveLayers(const T& op) { /* most ops aren't involved in saveLayers */ } void trackSaveLayers(const Save& s) { this->pushSaveLayerInfo(false, NULL, NULL); } void trackSaveLayers(const SaveLayer& sl) { this->pushSaveLayerInfo(true, sl.bounds, sl.paint); } void trackSaveLayers(const Restore& r) { this->popSaveLayerInfo(); } void trackSaveLayersForPicture(const SkPicture* picture, const SkPaint* paint) { // For sub-pictures, we wrap their layer information within the parent // picture's rendering hierarchy SkPicture::AccelData::Key key = SkLayerInfo::ComputeKey(); const SkLayerInfo* childData = static_cast(picture->EXPERIMENTAL_getAccelData(key)); if (!childData) { // If the child layer hasn't been generated with saveLayer data we // assume the worst (i.e., that it does contain layers which nest // inside existing layers). Layers within sub-pictures that don't // have saveLayer data cannot be hoisted. // TODO: could the analysis data be use to fine tune this? this->updateStackForSaveLayer(); return; } for (int i = 0; i < childData->numBlocks(); ++i) { const SkLayerInfo::BlockInfo& src = childData->block(i); FillBounds::Bounds newBound = fFillBounds.adjustAndMap(src.fBounds, paint); if (newBound.isEmpty()) { continue; } this->updateStackForSaveLayer(); SkLayerInfo::BlockInfo& dst = fAccelData->addBlock(); // If src.fPicture is NULL the layer is in dp.picture; otherwise // it belongs to a sub-picture. dst.fPicture = src.fPicture ? src.fPicture : picture; dst.fPicture->ref(); dst.fBounds = newBound; dst.fSrcBounds = src.fSrcBounds; dst.fLocalMat = src.fLocalMat; dst.fPreMat = src.fPreMat; dst.fPreMat.postConcat(fFillBounds.ctm()); if (src.fPaint) { dst.fPaint = SkNEW_ARGS(SkPaint, (*src.fPaint)); } dst.fSaveLayerOpID = src.fSaveLayerOpID; dst.fRestoreOpID = src.fRestoreOpID; dst.fHasNestedLayers = src.fHasNestedLayers; dst.fIsNested = fSaveLayersInStack > 0 || src.fIsNested; // Store 'saveLayer ops from enclosing picture' + drawPict op + 'ops from sub-picture' dst.fKeySize = fSaveLayerOpStack.count() + src.fKeySize + 1; dst.fKey = SkNEW_ARRAY(unsigned, dst.fKeySize); memcpy(dst.fKey, fSaveLayerOpStack.begin(), fSaveLayerOpStack.count() * sizeof(unsigned)); dst.fKey[fSaveLayerOpStack.count()] = fFillBounds.currentOp(); memcpy(&dst.fKey[fSaveLayerOpStack.count()+1], src.fKey, src.fKeySize * sizeof(unsigned)); } } void trackSaveLayers(const DrawPicture& dp) { this->trackSaveLayersForPicture(dp.picture, dp.paint); } void trackSaveLayers(const DrawDrawable& dp) { SkASSERT(fPictList); SkASSERT(dp.index >= 0 && dp.index < fPictList->count()); const SkPaint* paint = NULL; // drawables don't get a side-car paint this->trackSaveLayersForPicture(fPictList->begin()[dp.index], paint); } // Inform all the saveLayers already on the stack that they now have a // nested saveLayer inside them void updateStackForSaveLayer() { for (int index = fSaveLayerStack.count() - 1; index >= 0; --index) { if (fSaveLayerStack[index].fHasNestedSaveLayer) { break; } fSaveLayerStack[index].fHasNestedSaveLayer = true; if (fSaveLayerStack[index].fIsSaveLayer) { break; } } } void pushSaveLayerInfo(bool isSaveLayer, const SkRect* bounds, const SkPaint* paint) { if (isSaveLayer) { this->updateStackForSaveLayer(); ++fSaveLayersInStack; fSaveLayerOpStack.push(fFillBounds.currentOp()); } fSaveLayerStack.push(SaveLayerInfo(fFillBounds.currentOp(), isSaveLayer, bounds, paint)); } void popSaveLayerInfo() { if (fSaveLayerStack.count() <= 0) { SkASSERT(false); return; } SkASSERT(fSaveLayersInStack == fSaveLayerOpStack.count()); SaveLayerInfo sli; fSaveLayerStack.pop(&sli); if (!sli.fIsSaveLayer) { return; } --fSaveLayersInStack; SkLayerInfo::BlockInfo& block = fAccelData->addBlock(); SkASSERT(NULL == block.fPicture); // This layer is in the top-most picture block.fBounds = fFillBounds.getBounds(sli.fStartIndex); block.fLocalMat = fFillBounds.ctm(); block.fPreMat = SkMatrix::I(); if (sli.fPaint) { block.fPaint = SkNEW_ARGS(SkPaint, (*sli.fPaint)); } block.fSrcBounds = sli.fBounds; block.fSaveLayerOpID = sli.fStartIndex; block.fRestoreOpID = fFillBounds.currentOp(); block.fHasNestedLayers = sli.fHasNestedSaveLayer; block.fIsNested = fSaveLayersInStack > 0; block.fKeySize = fSaveLayerOpStack.count(); block.fKey = SkNEW_ARRAY(unsigned, block.fKeySize); memcpy(block.fKey, fSaveLayerOpStack.begin(), block.fKeySize * sizeof(unsigned)); fSaveLayerOpStack.pop(); } // Used to collect saveLayer information for layer hoisting int fSaveLayersInStack; SkTDArray fSaveLayerStack; // The op code indices of all the currently active saveLayers SkTDArray fSaveLayerOpStack; SkLayerInfo* fAccelData; const SkPicture::SnapshotArray* fPictList; SkRecords::FillBounds fFillBounds; }; } // namespace SkRecords void SkRecordFillBounds(const SkRect& cullRect, const SkRecord& record, SkBBoxHierarchy* bbh) { SkRecords::FillBounds visitor(cullRect, record); for (unsigned curOp = 0; curOp < record.count(); curOp++) { visitor.setCurrentOp(curOp); record.visit(curOp, visitor); } visitor.cleanUp(bbh); } void SkRecordComputeLayers(const SkRect& cullRect, const SkRecord& record, const SkPicture::SnapshotArray* pictList, SkBBoxHierarchy* bbh, SkLayerInfo* data) { SkRecords::CollectLayers visitor(cullRect, record, pictList, data); for (unsigned curOp = 0; curOp < record.count(); curOp++) { visitor.setCurrentOp(curOp); record.visit(curOp, visitor); } visitor.cleanUp(bbh); }