/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkArenaAlloc.h" #include "SkBlitter.h" #include "SkBlendModePriv.h" #include "SkColor.h" #include "SkColorFilter.h" #include "SkOpts.h" #include "SkPM4f.h" #include "SkPM4fPriv.h" #include "SkRasterPipeline.h" #include "SkShader.h" #include "SkUtils.h" #include "../jumper/SkJumper.h" class SkRasterPipelineBlitter : public SkBlitter { public: // Create using paint.getShader() or paint.getColor() if there is no shader. // If there's a shader, we will modulate the shader color by the paint alpha. static SkBlitter* Create(const SkPixmap&, const SkPaint&, SkArenaAlloc*, const SkMatrix& ctm); // Create using pre-built shader pipeline. // This pre-built pipeline must already have handled modulating with the paint alpha. static SkBlitter* Create(const SkPixmap&, const SkPaint&, SkArenaAlloc*, const SkRasterPipeline& shaderPipeline, bool is_opaque, bool is_constant, bool wants_dither); SkRasterPipelineBlitter(SkPixmap dst, SkBlendMode blend, SkArenaAlloc* alloc) : fDst(dst) , fBlend(blend) , fAlloc(alloc) {} void blitH (int x, int y, int w) override; void blitAntiH(int x, int y, const SkAlpha[], const int16_t[]) override; void blitMask (const SkMask&, const SkIRect& clip) override; // TODO: The default implementations of the other blits look fine, // but some of them like blitV could probably benefit from custom // blits using something like a SkRasterPipeline::runFew() method. private: void append_load_d(SkRasterPipeline*) const; void append_blend (SkRasterPipeline*) const; void maybe_clamp (SkRasterPipeline*) const; void append_store (SkRasterPipeline*) const; SkPixmap fDst; SkBlendMode fBlend; SkArenaAlloc* fAlloc; SkRasterPipeline fColorPipeline; // We may be able to specialize blitH() into a memset. bool fCanMemsetInBlitH = false; uint64_t fMemsetColor = 0; // Big enough for largest dst format, F16. // Built lazily on first use. std::function fBlitH, fBlitAntiH, fBlitMaskA8, fBlitMaskLCD16; // These values are pointed to by the blit pipelines above, // which allows us to adjust them from call to call. void* fDstPtr = nullptr; const void* fMaskPtr = nullptr; float fCurrentCoverage = 0.0f; int fCurrentY = 0; SkJumper_DitherCtx fDitherCtx = { &fCurrentY, 0.0f }; typedef SkBlitter INHERITED; }; SkBlitter* SkCreateRasterPipelineBlitter(const SkPixmap& dst, const SkPaint& paint, const SkMatrix& ctm, SkArenaAlloc* alloc) { return SkRasterPipelineBlitter::Create(dst, paint, alloc, ctm); } SkBlitter* SkCreateRasterPipelineBlitter(const SkPixmap& dst, const SkPaint& paint, const SkRasterPipeline& shaderPipeline, bool is_opaque, bool wants_dither, SkArenaAlloc* alloc) { bool is_constant = false; // If this were the case, it'd be better to just set a paint color. return SkRasterPipelineBlitter::Create(dst, paint, alloc, shaderPipeline, is_opaque, is_constant, wants_dither); } SkBlitter* SkRasterPipelineBlitter::Create(const SkPixmap& dst, const SkPaint& paint, SkArenaAlloc* alloc, const SkMatrix& ctm) { auto paintColor = alloc->make(SkPM4f_from_SkColor(paint.getColor(), dst.colorSpace())); if (auto shader = paint.getShader()) { SkRasterPipeline shaderPipeline; if (!shader->appendStages(&shaderPipeline, dst.colorSpace(), alloc, ctm, paint)) { // When a shader fails to append stages, it means it has vetoed drawing entirely. return alloc->make(); } bool is_opaque = shader->isOpaque(); if (paintColor->a() != 1.0f) { shaderPipeline.append(SkRasterPipeline::scale_1_float, &paintColor->fVec[SkPM4f::A]); is_opaque = false; } bool is_constant = shader->isConstant(); bool wants_dither = shader->asAGradient(nullptr) >= SkShader::kLinear_GradientType; return Create(dst, paint, alloc, shaderPipeline, is_opaque, is_constant, wants_dither); } SkRasterPipeline shaderPipeline; shaderPipeline.append(SkRasterPipeline::constant_color, paintColor); bool is_opaque = paintColor->a() == 1.0f, is_constant = true, wants_dither = false; return Create(dst, paint, alloc, shaderPipeline, is_opaque, is_constant, wants_dither); } SkBlitter* SkRasterPipelineBlitter::Create(const SkPixmap& dst, const SkPaint& paint, SkArenaAlloc* alloc, const SkRasterPipeline& shaderPipeline, bool is_opaque, bool is_constant, bool wants_dither) { auto blitter = alloc->make(dst, paint.getBlendMode(), alloc); // Our job in this factory is to fill out the blitter's color pipeline. // This is the common front of the full blit pipelines, each constructed lazily on first use. // The full blit pipelines handle reading and writing the dst, blending, coverage, dithering. auto colorPipeline = &blitter->fColorPipeline; // Let's get the shader in first. If the shader's not constant, it'll need seeding with x,y. if (!is_constant) { colorPipeline->append(SkRasterPipeline::seed_shader, &blitter->fCurrentY); } colorPipeline->extend(shaderPipeline); // If there's a color filter it comes next. if (auto colorFilter = paint.getColorFilter()) { colorFilter->appendStages(colorPipeline, dst.colorSpace(), alloc, is_opaque); is_opaque = is_opaque && (colorFilter->getFlags() & SkColorFilter::kAlphaUnchanged_Flag); } // We'll dither if the shader wants to, or if we're drawing 565 and the paint wants to. // Not all formats make sense to dither (think, F16). We set their dither rate to zero. // We need to decide if we're going to dither now to keep is_constant accurate. if (wants_dither || (paint.isDither() && dst.info().colorType() == kRGB_565_SkColorType)) { switch (dst.info().colorType()) { default: blitter->fDitherCtx.rate = 0.0f; break; case kRGB_565_SkColorType: blitter->fDitherCtx.rate = 1/63.0f; break; case kRGBA_8888_SkColorType: case kBGRA_8888_SkColorType: blitter->fDitherCtx.rate = 1/255.0f; break; } } is_constant = is_constant && (blitter->fDitherCtx.rate == 0.0f); // We're logically done here. The code between here and return blitter is all optimization. // A pipeline that's still constant here can collapse back into a constant color. if (is_constant) { auto constantColor = alloc->make(); colorPipeline->append(SkRasterPipeline::store_f32, &constantColor); colorPipeline->run(0,1); *colorPipeline = SkRasterPipeline(); colorPipeline->append(SkRasterPipeline::constant_color, constantColor); is_opaque = constantColor->a() == 1.0f; } // We can strength-reduce SrcOver into Src when opaque. if (is_opaque && blitter->fBlend == SkBlendMode::kSrcOver) { blitter->fBlend = SkBlendMode::kSrc; } // When we're drawing a constant color in Src mode, we can sometimes just memset. // (The previous two optimizations help find more opportunities for this one.) if (is_constant && blitter->fBlend == SkBlendMode::kSrc) { // Run our color pipeline all the way through to produce what we'd memset when we can. // Not all blits can memset, so we need to keep colorPipeline too. SkRasterPipeline p; p.extend(*colorPipeline); blitter->fDstPtr = &blitter->fMemsetColor; blitter->append_store(&p); p.run(0,1); blitter->fCanMemsetInBlitH = true; } return blitter; } void SkRasterPipelineBlitter::append_load_d(SkRasterPipeline* p) const { p->append(SkRasterPipeline::move_src_dst); switch (fDst.info().colorType()) { case kAlpha_8_SkColorType: p->append(SkRasterPipeline::load_a8, &fDstPtr); break; case kRGB_565_SkColorType: p->append(SkRasterPipeline::load_565, &fDstPtr); break; case kBGRA_8888_SkColorType: case kRGBA_8888_SkColorType: p->append(SkRasterPipeline::load_8888, &fDstPtr); break; case kRGBA_F16_SkColorType: p->append(SkRasterPipeline::load_f16, &fDstPtr); break; default: break; } if (fDst.info().colorType() == kBGRA_8888_SkColorType) { p->append(SkRasterPipeline::swap_rb); } if (fDst.info().gammaCloseToSRGB()) { p->append_from_srgb(fDst.info().alphaType()); } p->append(SkRasterPipeline::swap); } void SkRasterPipelineBlitter::append_store(SkRasterPipeline* p) const { if (fDst.info().gammaCloseToSRGB()) { p->append(SkRasterPipeline::to_srgb); } if (fDitherCtx.rate > 0.0f) { // We dither after any sRGB transfer function to make sure our 1/255.0f is sensible // over the whole range. If we did it before, 1/255.0f is too big a rate near zero. p->append(SkRasterPipeline::dither, &fDitherCtx); } if (fDst.info().colorType() == kBGRA_8888_SkColorType) { p->append(SkRasterPipeline::swap_rb); } switch (fDst.info().colorType()) { case kAlpha_8_SkColorType: p->append(SkRasterPipeline::store_a8, &fDstPtr); break; case kRGB_565_SkColorType: p->append(SkRasterPipeline::store_565, &fDstPtr); break; case kBGRA_8888_SkColorType: case kRGBA_8888_SkColorType: p->append(SkRasterPipeline::store_8888, &fDstPtr); break; case kRGBA_F16_SkColorType: p->append(SkRasterPipeline::store_f16, &fDstPtr); break; default: break; } } void SkRasterPipelineBlitter::append_blend(SkRasterPipeline* p) const { SkBlendMode_AppendStages(fBlend, p); } void SkRasterPipelineBlitter::maybe_clamp(SkRasterPipeline* p) const { if (SkBlendMode_CanOverflow(fBlend)) { p->append(SkRasterPipeline::clamp_a); } } void SkRasterPipelineBlitter::blitH(int x, int y, int w) { fDstPtr = fDst.writable_addr(0,y); fCurrentY = y; if (fCanMemsetInBlitH) { switch (fDst.shiftPerPixel()) { case 0: memset ((uint8_t *)fDstPtr + x, fMemsetColor, w); return; case 1: sk_memset16((uint16_t*)fDstPtr + x, fMemsetColor, w); return; case 2: sk_memset32((uint32_t*)fDstPtr + x, fMemsetColor, w); return; case 3: sk_memset64((uint64_t*)fDstPtr + x, fMemsetColor, w); return; default: break; } } if (!fBlitH) { SkRasterPipeline p; p.extend(fColorPipeline); if (fBlend != SkBlendMode::kSrc) { this->append_load_d(&p); this->append_blend(&p); this->maybe_clamp(&p); } this->append_store(&p); fBlitH = p.compile(fAlloc); } fBlitH(x,w); } void SkRasterPipelineBlitter::blitAntiH(int x, int y, const SkAlpha aa[], const int16_t runs[]) { if (!fBlitAntiH) { SkRasterPipeline p; p.extend(fColorPipeline); if (fBlend == SkBlendMode::kSrcOver) { p.append(SkRasterPipeline::scale_1_float, &fCurrentCoverage); this->append_load_d(&p); this->append_blend(&p); } else { this->append_load_d(&p); this->append_blend(&p); p.append(SkRasterPipeline::lerp_1_float, &fCurrentCoverage); } this->maybe_clamp(&p); this->append_store(&p); fBlitAntiH = p.compile(fAlloc); } fDstPtr = fDst.writable_addr(0,y); fCurrentY = y; for (int16_t run = *runs; run > 0; run = *runs) { switch (*aa) { case 0x00: break; case 0xff: this->blitH(x,y,run); break; default: fCurrentCoverage = *aa * (1/255.0f); fBlitAntiH(x,run); } x += run; runs += run; aa += run; } } void SkRasterPipelineBlitter::blitMask(const SkMask& mask, const SkIRect& clip) { if (mask.fFormat == SkMask::kBW_Format) { // TODO: native BW masks? return INHERITED::blitMask(mask, clip); } if (mask.fFormat == SkMask::kA8_Format && !fBlitMaskA8) { SkRasterPipeline p; p.extend(fColorPipeline); if (fBlend == SkBlendMode::kSrcOver) { p.append(SkRasterPipeline::scale_u8, &fMaskPtr); this->append_load_d(&p); this->append_blend(&p); } else { this->append_load_d(&p); this->append_blend(&p); p.append(SkRasterPipeline::lerp_u8, &fMaskPtr); } this->maybe_clamp(&p); this->append_store(&p); fBlitMaskA8 = p.compile(fAlloc); } if (mask.fFormat == SkMask::kLCD16_Format && !fBlitMaskLCD16) { SkRasterPipeline p; p.extend(fColorPipeline); this->append_load_d(&p); this->append_blend(&p); p.append(SkRasterPipeline::lerp_565, &fMaskPtr); this->maybe_clamp(&p); this->append_store(&p); fBlitMaskLCD16 = p.compile(fAlloc); } int x = clip.left(); for (int y = clip.top(); y < clip.bottom(); y++) { fDstPtr = fDst.writable_addr(0,y); fCurrentY = y; switch (mask.fFormat) { case SkMask::kA8_Format: fMaskPtr = mask.getAddr8(x,y)-x; fBlitMaskA8(x,clip.width()); break; case SkMask::kLCD16_Format: fMaskPtr = mask.getAddrLCD16(x,y)-x; fBlitMaskLCD16(x,clip.width()); break; default: // TODO break; } } }