/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include #include "SkRRectPriv.h" #include "SkScopeExit.h" #include "SkBuffer.h" #include "SkMalloc.h" #include "SkMatrix.h" #include "SkScaleToSides.h" /////////////////////////////////////////////////////////////////////////////// void SkRRect::setRectXY(const SkRect& rect, SkScalar xRad, SkScalar yRad) { if (!this->initializeRect(rect)) { return; } if (!SkScalarsAreFinite(xRad, yRad)) { xRad = yRad = 0; // devolve into a simple rect } if (xRad <= 0 || yRad <= 0) { // all corners are square in this case this->setRect(rect); return; } if (fRect.width() < xRad+xRad || fRect.height() < yRad+yRad) { SkScalar scale = SkMinScalar(fRect.width() / (xRad + xRad), fRect.height() / (yRad + yRad)); SkASSERT(scale < SK_Scalar1); xRad *= scale; yRad *= scale; } for (int i = 0; i < 4; ++i) { fRadii[i].set(xRad, yRad); } fType = kSimple_Type; if (xRad >= SkScalarHalf(fRect.width()) && yRad >= SkScalarHalf(fRect.height())) { fType = kOval_Type; // TODO: assert that all the x&y radii are already W/2 & H/2 } SkASSERT(this->isValid()); } void SkRRect::setNinePatch(const SkRect& rect, SkScalar leftRad, SkScalar topRad, SkScalar rightRad, SkScalar bottomRad) { if (!this->initializeRect(rect)) { return; } const SkScalar array[4] = { leftRad, topRad, rightRad, bottomRad }; if (!SkScalarsAreFinite(array, 4)) { this->setRect(rect); // devolve into a simple rect return; } leftRad = SkMaxScalar(leftRad, 0); topRad = SkMaxScalar(topRad, 0); rightRad = SkMaxScalar(rightRad, 0); bottomRad = SkMaxScalar(bottomRad, 0); SkScalar scale = SK_Scalar1; if (leftRad + rightRad > fRect.width()) { scale = fRect.width() / (leftRad + rightRad); } if (topRad + bottomRad > fRect.height()) { scale = SkMinScalar(scale, fRect.height() / (topRad + bottomRad)); } if (scale < SK_Scalar1) { leftRad *= scale; topRad *= scale; rightRad *= scale; bottomRad *= scale; } if (leftRad == rightRad && topRad == bottomRad) { if (leftRad >= SkScalarHalf(fRect.width()) && topRad >= SkScalarHalf(fRect.height())) { fType = kOval_Type; } else if (0 == leftRad || 0 == topRad) { // If the left and (by equality check above) right radii are zero then it is a rect. // Same goes for top/bottom. fType = kRect_Type; leftRad = 0; topRad = 0; rightRad = 0; bottomRad = 0; } else { fType = kSimple_Type; } } else { fType = kNinePatch_Type; } fRadii[kUpperLeft_Corner].set(leftRad, topRad); fRadii[kUpperRight_Corner].set(rightRad, topRad); fRadii[kLowerRight_Corner].set(rightRad, bottomRad); fRadii[kLowerLeft_Corner].set(leftRad, bottomRad); SkASSERT(this->isValid()); } // These parameters intentionally double. Apropos crbug.com/463920, if one of the // radii is huge while the other is small, single precision math can completely // miss the fact that a scale is required. static double compute_min_scale(double rad1, double rad2, double limit, double curMin) { if ((rad1 + rad2) > limit) { return SkTMin(curMin, limit / (rad1 + rad2)); } return curMin; } static bool clamp_to_zero(SkVector radii[4]) { bool allCornersSquare = true; // Clamp negative radii to zero for (int i = 0; i < 4; ++i) { if (radii[i].fX <= 0 || radii[i].fY <= 0) { // In this case we are being a little fast & loose. Since one of // the radii is 0 the corner is square. However, the other radii // could still be non-zero and play in the global scale factor // computation. radii[i].fX = 0; radii[i].fY = 0; } else { allCornersSquare = false; } } return allCornersSquare; } void SkRRect::setRectRadii(const SkRect& rect, const SkVector radii[4]) { if (!this->initializeRect(rect)) { return; } if (!SkScalarsAreFinite(&radii[0].fX, 8)) { this->setRect(rect); // devolve into a simple rect return; } memcpy(fRadii, radii, sizeof(fRadii)); if (clamp_to_zero(fRadii)) { this->setRect(rect); return; } this->scaleRadii(rect); } bool SkRRect::initializeRect(const SkRect& rect) { // Check this before sorting because sorting can hide nans. if (!rect.isFinite()) { *this = SkRRect(); return false; } fRect = rect.makeSorted(); if (fRect.isEmpty()) { memset(fRadii, 0, sizeof(fRadii)); fType = kEmpty_Type; return false; } return true; } void SkRRect::scaleRadii(const SkRect& rect) { // Proportionally scale down all radii to fit. Find the minimum ratio // of a side and the radii on that side (for all four sides) and use // that to scale down _all_ the radii. This algorithm is from the // W3 spec (http://www.w3.org/TR/css3-background/) section 5.5 - Overlapping // Curves: // "Let f = min(Li/Si), where i is one of { top, right, bottom, left }, // Si is the sum of the two corresponding radii of the corners on side i, // and Ltop = Lbottom = the width of the box, // and Lleft = Lright = the height of the box. // If f < 1, then all corner radii are reduced by multiplying them by f." double scale = 1.0; // The sides of the rectangle may be larger than a float. double width = (double)fRect.fRight - (double)fRect.fLeft; double height = (double)fRect.fBottom - (double)fRect.fTop; scale = compute_min_scale(fRadii[0].fX, fRadii[1].fX, width, scale); scale = compute_min_scale(fRadii[1].fY, fRadii[2].fY, height, scale); scale = compute_min_scale(fRadii[2].fX, fRadii[3].fX, width, scale); scale = compute_min_scale(fRadii[3].fY, fRadii[0].fY, height, scale); if (scale < 1.0) { SkScaleToSides::AdjustRadii(width, scale, &fRadii[0].fX, &fRadii[1].fX); SkScaleToSides::AdjustRadii(height, scale, &fRadii[1].fY, &fRadii[2].fY); SkScaleToSides::AdjustRadii(width, scale, &fRadii[2].fX, &fRadii[3].fX); SkScaleToSides::AdjustRadii(height, scale, &fRadii[3].fY, &fRadii[0].fY); } // adjust radii may set x or y to zero; set companion to zero as well if (clamp_to_zero(fRadii)) { this->setRect(rect); return; } // At this point we're either oval, simple, or complex (not empty or rect). this->computeType(); SkASSERT(this->isValid()); } // This method determines if a point known to be inside the RRect's bounds is // inside all the corners. bool SkRRect::checkCornerContainment(SkScalar x, SkScalar y) const { SkPoint canonicalPt; // (x,y) translated to one of the quadrants int index; if (kOval_Type == this->type()) { canonicalPt.set(x - fRect.centerX(), y - fRect.centerY()); index = kUpperLeft_Corner; // any corner will do in this case } else { if (x < fRect.fLeft + fRadii[kUpperLeft_Corner].fX && y < fRect.fTop + fRadii[kUpperLeft_Corner].fY) { // UL corner index = kUpperLeft_Corner; canonicalPt.set(x - (fRect.fLeft + fRadii[kUpperLeft_Corner].fX), y - (fRect.fTop + fRadii[kUpperLeft_Corner].fY)); SkASSERT(canonicalPt.fX < 0 && canonicalPt.fY < 0); } else if (x < fRect.fLeft + fRadii[kLowerLeft_Corner].fX && y > fRect.fBottom - fRadii[kLowerLeft_Corner].fY) { // LL corner index = kLowerLeft_Corner; canonicalPt.set(x - (fRect.fLeft + fRadii[kLowerLeft_Corner].fX), y - (fRect.fBottom - fRadii[kLowerLeft_Corner].fY)); SkASSERT(canonicalPt.fX < 0 && canonicalPt.fY > 0); } else if (x > fRect.fRight - fRadii[kUpperRight_Corner].fX && y < fRect.fTop + fRadii[kUpperRight_Corner].fY) { // UR corner index = kUpperRight_Corner; canonicalPt.set(x - (fRect.fRight - fRadii[kUpperRight_Corner].fX), y - (fRect.fTop + fRadii[kUpperRight_Corner].fY)); SkASSERT(canonicalPt.fX > 0 && canonicalPt.fY < 0); } else if (x > fRect.fRight - fRadii[kLowerRight_Corner].fX && y > fRect.fBottom - fRadii[kLowerRight_Corner].fY) { // LR corner index = kLowerRight_Corner; canonicalPt.set(x - (fRect.fRight - fRadii[kLowerRight_Corner].fX), y - (fRect.fBottom - fRadii[kLowerRight_Corner].fY)); SkASSERT(canonicalPt.fX > 0 && canonicalPt.fY > 0); } else { // not in any of the corners return true; } } // A point is in an ellipse (in standard position) if: // x^2 y^2 // ----- + ----- <= 1 // a^2 b^2 // or : // b^2*x^2 + a^2*y^2 <= (ab)^2 SkScalar dist = SkScalarSquare(canonicalPt.fX) * SkScalarSquare(fRadii[index].fY) + SkScalarSquare(canonicalPt.fY) * SkScalarSquare(fRadii[index].fX); return dist <= SkScalarSquare(fRadii[index].fX * fRadii[index].fY); } bool SkRRectPriv::AllCornersCircular(const SkRRect& rr, SkScalar tolerance) { return SkScalarNearlyEqual(rr.fRadii[0].fX, rr.fRadii[0].fY, tolerance) && SkScalarNearlyEqual(rr.fRadii[1].fX, rr.fRadii[1].fY, tolerance) && SkScalarNearlyEqual(rr.fRadii[2].fX, rr.fRadii[2].fY, tolerance) && SkScalarNearlyEqual(rr.fRadii[3].fX, rr.fRadii[3].fY, tolerance); } bool SkRRect::contains(const SkRect& rect) const { if (!this->getBounds().contains(rect)) { // If 'rect' isn't contained by the RR's bounds then the // RR definitely doesn't contain it return false; } if (this->isRect()) { // the prior test was sufficient return true; } // At this point we know all four corners of 'rect' are inside the // bounds of of this RR. Check to make sure all the corners are inside // all the curves return this->checkCornerContainment(rect.fLeft, rect.fTop) && this->checkCornerContainment(rect.fRight, rect.fTop) && this->checkCornerContainment(rect.fRight, rect.fBottom) && this->checkCornerContainment(rect.fLeft, rect.fBottom); } static bool radii_are_nine_patch(const SkVector radii[4]) { return radii[SkRRect::kUpperLeft_Corner].fX == radii[SkRRect::kLowerLeft_Corner].fX && radii[SkRRect::kUpperLeft_Corner].fY == radii[SkRRect::kUpperRight_Corner].fY && radii[SkRRect::kUpperRight_Corner].fX == radii[SkRRect::kLowerRight_Corner].fX && radii[SkRRect::kLowerLeft_Corner].fY == radii[SkRRect::kLowerRight_Corner].fY; } // There is a simplified version of this method in setRectXY void SkRRect::computeType() { SK_AT_SCOPE_EXIT(SkASSERT(this->isValid())); if (fRect.isEmpty()) { SkASSERT(fRect.isSorted()); for (size_t i = 0; i < SK_ARRAY_COUNT(fRadii); ++i) { SkASSERT((fRadii[i] == SkVector{0, 0})); } fType = kEmpty_Type; return; } bool allRadiiEqual = true; // are all x radii equal and all y radii? bool allCornersSquare = 0 == fRadii[0].fX || 0 == fRadii[0].fY; for (int i = 1; i < 4; ++i) { if (0 != fRadii[i].fX && 0 != fRadii[i].fY) { // if either radius is zero the corner is square so both have to // be non-zero to have a rounded corner allCornersSquare = false; } if (fRadii[i].fX != fRadii[i-1].fX || fRadii[i].fY != fRadii[i-1].fY) { allRadiiEqual = false; } } if (allCornersSquare) { fType = kRect_Type; return; } if (allRadiiEqual) { if (fRadii[0].fX >= SkScalarHalf(fRect.width()) && fRadii[0].fY >= SkScalarHalf(fRect.height())) { fType = kOval_Type; } else { fType = kSimple_Type; } return; } if (radii_are_nine_patch(fRadii)) { fType = kNinePatch_Type; } else { fType = kComplex_Type; } } static bool matrix_only_scale_and_translate(const SkMatrix& matrix) { const SkMatrix::TypeMask m = (SkMatrix::TypeMask) (SkMatrix::kAffine_Mask | SkMatrix::kPerspective_Mask); return (matrix.getType() & m) == 0; } bool SkRRect::transform(const SkMatrix& matrix, SkRRect* dst) const { if (nullptr == dst) { return false; } // Assert that the caller is not trying to do this in place, which // would violate const-ness. Do not return false though, so that // if they know what they're doing and want to violate it they can. SkASSERT(dst != this); if (matrix.isIdentity()) { *dst = *this; return true; } // If transform supported 90 degree rotations (which it could), we could // use SkMatrix::rectStaysRect() to check for a valid transformation. if (!matrix_only_scale_and_translate(matrix)) { return false; } SkRect newRect; if (!matrix.mapRect(&newRect, fRect)) { return false; } // The matrix may have scaled us to zero (or due to float madness, we now have collapsed // some dimension of the rect, so we need to check for that. Note that matrix must be // scale and translate and mapRect() produces a sorted rect. So an empty rect indicates // loss of precision. if (!newRect.isFinite() || newRect.isEmpty()) { return false; } // At this point, this is guaranteed to succeed, so we can modify dst. dst->fRect = newRect; // Since the only transforms that were allowed are scale and translate, the type // remains unchanged. dst->fType = fType; if (kRect_Type == fType) { SkASSERT(dst->isValid()); return true; } if (kOval_Type == fType) { for (int i = 0; i < 4; ++i) { dst->fRadii[i].fX = SkScalarHalf(newRect.width()); dst->fRadii[i].fY = SkScalarHalf(newRect.height()); } SkASSERT(dst->isValid()); return true; } // Now scale each corner SkScalar xScale = matrix.getScaleX(); const bool flipX = xScale < 0; if (flipX) { xScale = -xScale; } SkScalar yScale = matrix.getScaleY(); const bool flipY = yScale < 0; if (flipY) { yScale = -yScale; } // Scale the radii without respecting the flip. for (int i = 0; i < 4; ++i) { dst->fRadii[i].fX = fRadii[i].fX * xScale; dst->fRadii[i].fY = fRadii[i].fY * yScale; } // Now swap as necessary. if (flipX) { if (flipY) { // Swap with opposite corners SkTSwap(dst->fRadii[kUpperLeft_Corner], dst->fRadii[kLowerRight_Corner]); SkTSwap(dst->fRadii[kUpperRight_Corner], dst->fRadii[kLowerLeft_Corner]); } else { // Only swap in x SkTSwap(dst->fRadii[kUpperRight_Corner], dst->fRadii[kUpperLeft_Corner]); SkTSwap(dst->fRadii[kLowerRight_Corner], dst->fRadii[kLowerLeft_Corner]); } } else if (flipY) { // Only swap in y SkTSwap(dst->fRadii[kUpperLeft_Corner], dst->fRadii[kLowerLeft_Corner]); SkTSwap(dst->fRadii[kUpperRight_Corner], dst->fRadii[kLowerRight_Corner]); } if (!AreRectAndRadiiValid(dst->fRect, dst->fRadii)) { return false; } dst->scaleRadii(dst->fRect); dst->isValid(); return true; } /////////////////////////////////////////////////////////////////////////////// void SkRRect::inset(SkScalar dx, SkScalar dy, SkRRect* dst) const { SkRect r = fRect.makeInset(dx, dy); bool degenerate = false; if (r.fRight <= r.fLeft) { degenerate = true; r.fLeft = r.fRight = SkScalarAve(r.fLeft, r.fRight); } if (r.fBottom <= r.fTop) { degenerate = true; r.fTop = r.fBottom = SkScalarAve(r.fTop, r.fBottom); } if (degenerate) { dst->fRect = r; memset(dst->fRadii, 0, sizeof(dst->fRadii)); dst->fType = kEmpty_Type; return; } if (!r.isFinite()) { *dst = SkRRect(); return; } SkVector radii[4]; memcpy(radii, fRadii, sizeof(radii)); for (int i = 0; i < 4; ++i) { if (radii[i].fX) { radii[i].fX -= dx; } if (radii[i].fY) { radii[i].fY -= dy; } } dst->setRectRadii(r, radii); } /////////////////////////////////////////////////////////////////////////////// size_t SkRRect::writeToMemory(void* buffer) const { // Serialize only the rect and corners, but not the derived type tag. memcpy(buffer, this, kSizeInMemory); return kSizeInMemory; } void SkRRectPriv::WriteToBuffer(const SkRRect& rr, SkWBuffer* buffer) { // Serialize only the rect and corners, but not the derived type tag. buffer->write(&rr, SkRRect::kSizeInMemory); } size_t SkRRect::readFromMemory(const void* buffer, size_t length) { if (length < kSizeInMemory) { return 0; } SkRRect raw; memcpy(&raw, buffer, kSizeInMemory); this->setRectRadii(raw.fRect, raw.fRadii); return kSizeInMemory; } bool SkRRectPriv::ReadFromBuffer(SkRBuffer* buffer, SkRRect* rr) { if (buffer->available() < SkRRect::kSizeInMemory) { return false; } SkRRect storage; return buffer->read(&storage, SkRRect::kSizeInMemory) && (rr->readFromMemory(&storage, SkRRect::kSizeInMemory) == SkRRect::kSizeInMemory); } #include "SkString.h" #include "SkStringUtils.h" void SkRRect::dump(bool asHex) const { SkScalarAsStringType asType = asHex ? kHex_SkScalarAsStringType : kDec_SkScalarAsStringType; fRect.dump(asHex); SkString line("const SkPoint corners[] = {\n"); for (int i = 0; i < 4; ++i) { SkString strX, strY; SkAppendScalar(&strX, fRadii[i].x(), asType); SkAppendScalar(&strY, fRadii[i].y(), asType); line.appendf(" { %s, %s },", strX.c_str(), strY.c_str()); if (asHex) { line.appendf(" /* %f %f */", fRadii[i].x(), fRadii[i].y()); } line.append("\n"); } line.append("};"); SkDebugf("%s\n", line.c_str()); } /////////////////////////////////////////////////////////////////////////////// /** * We need all combinations of predicates to be true to have a "safe" radius value. */ static bool are_radius_check_predicates_valid(SkScalar rad, SkScalar min, SkScalar max) { return (min <= max) && (rad <= max - min) && (min + rad <= max) && (max - rad >= min) && rad >= 0; } bool SkRRect::isValid() const { if (!AreRectAndRadiiValid(fRect, fRadii)) { return false; } bool allRadiiZero = (0 == fRadii[0].fX && 0 == fRadii[0].fY); bool allCornersSquare = (0 == fRadii[0].fX || 0 == fRadii[0].fY); bool allRadiiSame = true; for (int i = 1; i < 4; ++i) { if (0 != fRadii[i].fX || 0 != fRadii[i].fY) { allRadiiZero = false; } if (fRadii[i].fX != fRadii[i-1].fX || fRadii[i].fY != fRadii[i-1].fY) { allRadiiSame = false; } if (0 != fRadii[i].fX && 0 != fRadii[i].fY) { allCornersSquare = false; } } bool patchesOfNine = radii_are_nine_patch(fRadii); if (fType < 0 || fType > kLastType) { return false; } switch (fType) { case kEmpty_Type: if (!fRect.isEmpty() || !allRadiiZero || !allRadiiSame || !allCornersSquare) { return false; } break; case kRect_Type: if (fRect.isEmpty() || !allRadiiZero || !allRadiiSame || !allCornersSquare) { return false; } break; case kOval_Type: if (fRect.isEmpty() || allRadiiZero || !allRadiiSame || allCornersSquare) { return false; } for (int i = 0; i < 4; ++i) { if (!SkScalarNearlyEqual(fRadii[i].fX, SkScalarHalf(fRect.width())) || !SkScalarNearlyEqual(fRadii[i].fY, SkScalarHalf(fRect.height()))) { return false; } } break; case kSimple_Type: if (fRect.isEmpty() || allRadiiZero || !allRadiiSame || allCornersSquare) { return false; } break; case kNinePatch_Type: if (fRect.isEmpty() || allRadiiZero || allRadiiSame || allCornersSquare || !patchesOfNine) { return false; } break; case kComplex_Type: if (fRect.isEmpty() || allRadiiZero || allRadiiSame || allCornersSquare || patchesOfNine) { return false; } break; } return true; } bool SkRRect::AreRectAndRadiiValid(const SkRect& rect, const SkVector radii[4]) { if (!rect.isFinite() || !rect.isSorted()) { return false; } for (int i = 0; i < 4; ++i) { if (!are_radius_check_predicates_valid(radii[i].fX, rect.fLeft, rect.fRight) || !are_radius_check_predicates_valid(radii[i].fY, rect.fTop, rect.fBottom)) { return false; } } return true; } ///////////////////////////////////////////////////////////////////////////////