/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkRRect.h" #include "SkMatrix.h" /////////////////////////////////////////////////////////////////////////////// void SkRRect::setRectXY(const SkRect& rect, SkScalar xRad, SkScalar yRad) { if (rect.isEmpty()) { this->setEmpty(); return; } if (xRad <= 0 || yRad <= 0) { // all corners are square in this case this->setRect(rect); return; } if (rect.width() < xRad+xRad || rect.height() < yRad+yRad) { SkScalar scale = SkMinScalar(SkScalarDiv(rect.width(), xRad + xRad), SkScalarDiv(rect.height(), yRad + yRad)); SkASSERT(scale < SK_Scalar1); xRad = SkScalarMul(xRad, scale); yRad = SkScalarMul(yRad, scale); } fRect = rect; for (int i = 0; i < 4; ++i) { fRadii[i].set(xRad, yRad); } fType = kSimple_Type; if (xRad >= SkScalarHalf(fRect.width()) && yRad >= SkScalarHalf(fRect.height())) { fType = kOval_Type; // TODO: assert that all the x&y radii are already W/2 & H/2 } SkDEBUGCODE(this->validate();) } void SkRRect::setNinePatch(const SkRect& rect, SkScalar leftRad, SkScalar topRad, SkScalar rightRad, SkScalar bottomRad) { if (rect.isEmpty()) { this->setEmpty(); return; } leftRad = SkMaxScalar(leftRad, 0); topRad = SkMaxScalar(topRad, 0); rightRad = SkMaxScalar(rightRad, 0); bottomRad = SkMaxScalar(bottomRad, 0); SkScalar scale = SK_Scalar1; if (leftRad + rightRad > rect.width()) { scale = SkScalarDiv(rect.width(), leftRad + rightRad); } if (topRad + bottomRad > rect.height()) { scale = SkMinScalar(scale, SkScalarDiv(rect.width(), leftRad + rightRad)); } if (scale < SK_Scalar1) { leftRad = SkScalarMul(leftRad, scale); topRad = SkScalarMul(topRad, scale); rightRad = SkScalarMul(rightRad, scale); bottomRad = SkScalarMul(bottomRad, scale); } if (leftRad == rightRad && topRad == bottomRad) { if (leftRad >= SkScalarHalf(rect.width()) && topRad >= SkScalarHalf(rect.height())) { fType = kOval_Type; } else if (0 == leftRad || 0 == topRad) { // If the left and (by equality check above) right radii are zero then it is a rect. // Same goes for top/bottom. fType = kRect_Type; leftRad = 0; topRad = 0; rightRad = 0; bottomRad = 0; } else { fType = kSimple_Type; } } else { fType = kNinePatch_Type; } fRect = rect; fRadii[kUpperLeft_Corner].set(leftRad, topRad); fRadii[kUpperRight_Corner].set(rightRad, topRad); fRadii[kLowerRight_Corner].set(rightRad, bottomRad); fRadii[kLowerLeft_Corner].set(leftRad, bottomRad); SkDEBUGCODE(this->validate();) } void SkRRect::setRectRadii(const SkRect& rect, const SkVector radii[4]) { if (rect.isEmpty()) { this->setEmpty(); return; } fRect = rect; memcpy(fRadii, radii, sizeof(fRadii)); bool allCornersSquare = true; // Clamp negative radii to zero for (int i = 0; i < 4; ++i) { if (fRadii[i].fX <= 0 || fRadii[i].fY <= 0) { // In this case we are being a little fast & loose. Since one of // the radii is 0 the corner is square. However, the other radii // could still be non-zero and play in the global scale factor // computation. fRadii[i].fX = 0; fRadii[i].fY = 0; } else { allCornersSquare = false; } } if (allCornersSquare) { this->setRect(rect); return; } // Proportionally scale down all radii to fit. Find the minimum ratio // of a side and the radii on that side (for all four sides) and use // that to scale down _all_ the radii. This algorithm is from the // W3 spec (http://www.w3.org/TR/css3-background/) section 5.5 - Overlapping // Curves: // "Let f = min(Li/Si), where i is one of { top, right, bottom, left }, // Si is the sum of the two corresponding radii of the corners on side i, // and Ltop = Lbottom = the width of the box, // and Lleft = Lright = the height of the box. // If f < 1, then all corner radii are reduced by multiplying them by f." SkScalar scale = SK_Scalar1; if (fRadii[0].fX + fRadii[1].fX > rect.width()) { scale = SkMinScalar(scale, SkScalarDiv(rect.width(), fRadii[0].fX + fRadii[1].fX)); } if (fRadii[1].fY + fRadii[2].fY > rect.height()) { scale = SkMinScalar(scale, SkScalarDiv(rect.height(), fRadii[1].fY + fRadii[2].fY)); } if (fRadii[2].fX + fRadii[3].fX > rect.width()) { scale = SkMinScalar(scale, SkScalarDiv(rect.width(), fRadii[2].fX + fRadii[3].fX)); } if (fRadii[3].fY + fRadii[0].fY > rect.height()) { scale = SkMinScalar(scale, SkScalarDiv(rect.height(), fRadii[3].fY + fRadii[0].fY)); } if (scale < SK_Scalar1) { for (int i = 0; i < 4; ++i) { fRadii[i].fX = SkScalarMul(fRadii[i].fX, scale); fRadii[i].fY = SkScalarMul(fRadii[i].fY, scale); } } // At this point we're either oval, simple, or complex (not empty or rect) // but we lazily resolve the type to avoid the work if the information // isn't required. fType = (SkRRect::Type) kUnknown_Type; SkDEBUGCODE(this->validate();) } // This method determines if a point known to be inside the RRect's bounds is // inside all the corners. bool SkRRect::checkCornerContainment(SkScalar x, SkScalar y) const { SkPoint canonicalPt; // (x,y) translated to one of the quadrants int index; if (kOval_Type == this->type()) { canonicalPt.set(x - fRect.centerX(), y - fRect.centerY()); index = kUpperLeft_Corner; // any corner will do in this case } else { if (x < fRect.fLeft + fRadii[kUpperLeft_Corner].fX && y < fRect.fTop + fRadii[kUpperLeft_Corner].fY) { // UL corner index = kUpperLeft_Corner; canonicalPt.set(x - (fRect.fLeft + fRadii[kUpperLeft_Corner].fX), y - (fRect.fTop + fRadii[kUpperLeft_Corner].fY)); SkASSERT(canonicalPt.fX < 0 && canonicalPt.fY < 0); } else if (x < fRect.fLeft + fRadii[kLowerLeft_Corner].fX && y > fRect.fBottom - fRadii[kLowerLeft_Corner].fY) { // LL corner index = kLowerLeft_Corner; canonicalPt.set(x - (fRect.fLeft + fRadii[kLowerLeft_Corner].fX), y - (fRect.fBottom - fRadii[kLowerLeft_Corner].fY)); SkASSERT(canonicalPt.fX < 0 && canonicalPt.fY > 0); } else if (x > fRect.fRight - fRadii[kUpperRight_Corner].fX && y < fRect.fTop + fRadii[kUpperRight_Corner].fY) { // UR corner index = kUpperRight_Corner; canonicalPt.set(x - (fRect.fRight - fRadii[kUpperRight_Corner].fX), y - (fRect.fTop + fRadii[kUpperRight_Corner].fY)); SkASSERT(canonicalPt.fX > 0 && canonicalPt.fY < 0); } else if (x > fRect.fRight - fRadii[kLowerRight_Corner].fX && y > fRect.fBottom - fRadii[kLowerRight_Corner].fY) { // LR corner index = kLowerRight_Corner; canonicalPt.set(x - (fRect.fRight - fRadii[kLowerRight_Corner].fX), y - (fRect.fBottom - fRadii[kLowerRight_Corner].fY)); SkASSERT(canonicalPt.fX > 0 && canonicalPt.fY > 0); } else { // not in any of the corners return true; } } // A point is in an ellipse (in standard position) if: // x^2 y^2 // ----- + ----- <= 1 // a^2 b^2 // or : // b^2*x^2 + a^2*y^2 <= (ab)^2 SkScalar dist = SkScalarMul(SkScalarSquare(canonicalPt.fX), SkScalarSquare(fRadii[index].fY)) + SkScalarMul(SkScalarSquare(canonicalPt.fY), SkScalarSquare(fRadii[index].fX)); return dist <= SkScalarSquare(SkScalarMul(fRadii[index].fX, fRadii[index].fY)); } bool SkRRect::allCornersCircular() const { return fRadii[0].fX == fRadii[0].fY && fRadii[1].fX == fRadii[1].fY && fRadii[2].fX == fRadii[2].fY && fRadii[3].fX == fRadii[3].fY; } bool SkRRect::contains(const SkRect& rect) const { if (!this->getBounds().contains(rect)) { // If 'rect' isn't contained by the RR's bounds then the // RR definitely doesn't contain it return false; } if (this->isRect()) { // the prior test was sufficient return true; } // At this point we know all four corners of 'rect' are inside the // bounds of of this RR. Check to make sure all the corners are inside // all the curves return this->checkCornerContainment(rect.fLeft, rect.fTop) && this->checkCornerContainment(rect.fRight, rect.fTop) && this->checkCornerContainment(rect.fRight, rect.fBottom) && this->checkCornerContainment(rect.fLeft, rect.fBottom); } static bool radii_are_nine_patch(const SkVector radii[4]) { return radii[SkRRect::kUpperLeft_Corner].fX == radii[SkRRect::kLowerLeft_Corner].fX && radii[SkRRect::kUpperLeft_Corner].fY == radii[SkRRect::kUpperRight_Corner].fY && radii[SkRRect::kUpperRight_Corner].fX == radii[SkRRect::kLowerRight_Corner].fX && radii[SkRRect::kLowerLeft_Corner].fY == radii[SkRRect::kLowerRight_Corner].fY; } // There is a simplified version of this method in setRectXY void SkRRect::computeType() const { SkDEBUGCODE(this->validate();) if (fRect.isEmpty()) { fType = kEmpty_Type; return; } bool allRadiiEqual = true; // are all x radii equal and all y radii? bool allCornersSquare = 0 == fRadii[0].fX || 0 == fRadii[0].fY; for (int i = 1; i < 4; ++i) { if (0 != fRadii[i].fX && 0 != fRadii[i].fY) { // if either radius is zero the corner is square so both have to // be non-zero to have a rounded corner allCornersSquare = false; } if (fRadii[i].fX != fRadii[i-1].fX || fRadii[i].fY != fRadii[i-1].fY) { allRadiiEqual = false; } } if (allCornersSquare) { fType = kRect_Type; return; } if (allRadiiEqual) { if (fRadii[0].fX >= SkScalarHalf(fRect.width()) && fRadii[0].fY >= SkScalarHalf(fRect.height())) { fType = kOval_Type; } else { fType = kSimple_Type; } return; } if (radii_are_nine_patch(fRadii)) { fType = kNinePatch_Type; } else { fType = kComplex_Type; } } static bool matrix_only_scale_and_translate(const SkMatrix& matrix) { const SkMatrix::TypeMask m = (SkMatrix::TypeMask) (SkMatrix::kAffine_Mask | SkMatrix::kPerspective_Mask); return (matrix.getType() & m) == 0; } bool SkRRect::transform(const SkMatrix& matrix, SkRRect* dst) const { if (NULL == dst) { return false; } // Assert that the caller is not trying to do this in place, which // would violate const-ness. Do not return false though, so that // if they know what they're doing and want to violate it they can. SkASSERT(dst != this); if (matrix.isIdentity()) { *dst = *this; return true; } // If transform supported 90 degree rotations (which it could), we could // use SkMatrix::rectStaysRect() to check for a valid transformation. if (!matrix_only_scale_and_translate(matrix)) { return false; } SkRect newRect; if (!matrix.mapRect(&newRect, fRect)) { return false; } // At this point, this is guaranteed to succeed, so we can modify dst. dst->fRect = newRect; // Since the only transforms that were allowed are scale and translate, the type // remains unchanged. dst->fType = fType; if (kOval_Type == fType) { for (int i = 0; i < 4; ++i) { dst->fRadii[i].fX = SkScalarHalf(newRect.width()); dst->fRadii[i].fY = SkScalarHalf(newRect.height()); } SkDEBUGCODE(dst->validate();) return true; } // Now scale each corner SkScalar xScale = matrix.getScaleX(); const bool flipX = xScale < 0; if (flipX) { xScale = -xScale; } SkScalar yScale = matrix.getScaleY(); const bool flipY = yScale < 0; if (flipY) { yScale = -yScale; } // Scale the radii without respecting the flip. for (int i = 0; i < 4; ++i) { dst->fRadii[i].fX = SkScalarMul(fRadii[i].fX, xScale); dst->fRadii[i].fY = SkScalarMul(fRadii[i].fY, yScale); } // Now swap as necessary. if (flipX) { if (flipY) { // Swap with opposite corners SkTSwap(dst->fRadii[kUpperLeft_Corner], dst->fRadii[kLowerRight_Corner]); SkTSwap(dst->fRadii[kUpperRight_Corner], dst->fRadii[kLowerLeft_Corner]); } else { // Only swap in x SkTSwap(dst->fRadii[kUpperRight_Corner], dst->fRadii[kUpperLeft_Corner]); SkTSwap(dst->fRadii[kLowerRight_Corner], dst->fRadii[kLowerLeft_Corner]); } } else if (flipY) { // Only swap in y SkTSwap(dst->fRadii[kUpperLeft_Corner], dst->fRadii[kLowerLeft_Corner]); SkTSwap(dst->fRadii[kUpperRight_Corner], dst->fRadii[kLowerRight_Corner]); } SkDEBUGCODE(dst->validate();) return true; } /////////////////////////////////////////////////////////////////////////////// void SkRRect::inset(SkScalar dx, SkScalar dy, SkRRect* dst) const { SkRect r = fRect; r.inset(dx, dy); if (r.isEmpty()) { dst->setEmpty(); return; } SkVector radii[4]; memcpy(radii, fRadii, sizeof(radii)); for (int i = 0; i < 4; ++i) { if (radii[i].fX) { radii[i].fX -= dx; } if (radii[i].fY) { radii[i].fY -= dy; } } dst->setRectRadii(r, radii); } /////////////////////////////////////////////////////////////////////////////// size_t SkRRect::writeToMemory(void* buffer) const { SkASSERT(kSizeInMemory == sizeof(SkRect) + sizeof(fRadii)); memcpy(buffer, &fRect, sizeof(SkRect)); memcpy((char*)buffer + sizeof(SkRect), fRadii, sizeof(fRadii)); return kSizeInMemory; } size_t SkRRect::readFromMemory(const void* buffer, size_t length) { if (length < kSizeInMemory) { return 0; } SkScalar storage[12]; SkASSERT(sizeof(storage) == kSizeInMemory); // we make a local copy, to ensure alignment before we cast memcpy(storage, buffer, kSizeInMemory); this->setRectRadii(*(const SkRect*)&storage[0], (const SkVector*)&storage[4]); return kSizeInMemory; } #ifdef SK_DEVELOPER void SkRRect::dump() const { SkDebugf("Rect: "); fRect.dump(); SkDebugf(" Corners: { TL: (%f, %f), TR: (%f, %f), BR: (%f, %f), BL: (%f, %f) }", fRadii[kUpperLeft_Corner].fX, fRadii[kUpperLeft_Corner].fY, fRadii[kUpperRight_Corner].fX, fRadii[kUpperRight_Corner].fY, fRadii[kLowerRight_Corner].fX, fRadii[kLowerRight_Corner].fY, fRadii[kLowerLeft_Corner].fX, fRadii[kLowerLeft_Corner].fY); } #endif /////////////////////////////////////////////////////////////////////////////// #ifdef SK_DEBUG void SkRRect::validate() const { bool allRadiiZero = (0 == fRadii[0].fX && 0 == fRadii[0].fY); bool allCornersSquare = (0 == fRadii[0].fX || 0 == fRadii[0].fY); bool allRadiiSame = true; for (int i = 1; i < 4; ++i) { if (0 != fRadii[i].fX || 0 != fRadii[i].fY) { allRadiiZero = false; } if (fRadii[i].fX != fRadii[i-1].fX || fRadii[i].fY != fRadii[i-1].fY) { allRadiiSame = false; } if (0 != fRadii[i].fX && 0 != fRadii[i].fY) { allCornersSquare = false; } } bool patchesOfNine = radii_are_nine_patch(fRadii); switch (fType) { case kEmpty_Type: SkASSERT(fRect.isEmpty()); SkASSERT(allRadiiZero && allRadiiSame && allCornersSquare); break; case kRect_Type: SkASSERT(!fRect.isEmpty()); SkASSERT(allRadiiZero && allRadiiSame && allCornersSquare); break; case kOval_Type: SkASSERT(!fRect.isEmpty()); SkASSERT(!allRadiiZero && allRadiiSame && !allCornersSquare); for (int i = 0; i < 4; ++i) { SkASSERT(SkScalarNearlyEqual(fRadii[i].fX, SkScalarHalf(fRect.width()))); SkASSERT(SkScalarNearlyEqual(fRadii[i].fY, SkScalarHalf(fRect.height()))); } break; case kSimple_Type: SkASSERT(!fRect.isEmpty()); SkASSERT(!allRadiiZero && allRadiiSame && !allCornersSquare); break; case kNinePatch_Type: SkASSERT(!fRect.isEmpty()); SkASSERT(!allRadiiZero && !allRadiiSame && !allCornersSquare); SkASSERT(patchesOfNine); break; case kComplex_Type: SkASSERT(!fRect.isEmpty()); SkASSERT(!allRadiiZero && !allRadiiSame && !allCornersSquare); SkASSERT(!patchesOfNine); break; case kUnknown_Type: // no limits on this break; } } #endif // SK_DEBUG ///////////////////////////////////////////////////////////////////////////////