/* * Copyright 2008 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkMathPriv.h" #include "SkPoint.h" void SkIPoint::rotateCW(SkIPoint* dst) const { SkASSERT(dst); // use a tmp in case this == dst int32_t tmp = fX; dst->fX = -fY; dst->fY = tmp; } void SkIPoint::rotateCCW(SkIPoint* dst) const { SkASSERT(dst); // use a tmp in case this == dst int32_t tmp = fX; dst->fX = fY; dst->fY = -tmp; } /////////////////////////////////////////////////////////////////////////////// void SkPoint::setIRectFan(int l, int t, int r, int b, size_t stride) { SkASSERT(stride >= sizeof(SkPoint)); ((SkPoint*)((intptr_t)this + 0 * stride))->set(SkIntToScalar(l), SkIntToScalar(t)); ((SkPoint*)((intptr_t)this + 1 * stride))->set(SkIntToScalar(l), SkIntToScalar(b)); ((SkPoint*)((intptr_t)this + 2 * stride))->set(SkIntToScalar(r), SkIntToScalar(b)); ((SkPoint*)((intptr_t)this + 3 * stride))->set(SkIntToScalar(r), SkIntToScalar(t)); } void SkPoint::setRectFan(SkScalar l, SkScalar t, SkScalar r, SkScalar b, size_t stride) { SkASSERT(stride >= sizeof(SkPoint)); ((SkPoint*)((intptr_t)this + 0 * stride))->set(l, t); ((SkPoint*)((intptr_t)this + 1 * stride))->set(l, b); ((SkPoint*)((intptr_t)this + 2 * stride))->set(r, b); ((SkPoint*)((intptr_t)this + 3 * stride))->set(r, t); } void SkPoint::rotateCW(SkPoint* dst) const { SkASSERT(dst); // use a tmp in case this == dst SkScalar tmp = fX; dst->fX = -fY; dst->fY = tmp; } void SkPoint::rotateCCW(SkPoint* dst) const { SkASSERT(dst); // use a tmp in case this == dst SkScalar tmp = fX; dst->fX = fY; dst->fY = -tmp; } void SkPoint::scale(SkScalar scale, SkPoint* dst) const { SkASSERT(dst); dst->set(SkScalarMul(fX, scale), SkScalarMul(fY, scale)); } bool SkPoint::normalize() { return this->setLength(fX, fY, SK_Scalar1); } bool SkPoint::setNormalize(SkScalar x, SkScalar y) { return this->setLength(x, y, SK_Scalar1); } bool SkPoint::setLength(SkScalar length) { return this->setLength(fX, fY, length); } // Returns the square of the Euclidian distance to (dx,dy). static inline float getLengthSquared(float dx, float dy) { return dx * dx + dy * dy; } // Calculates the square of the Euclidian distance to (dx,dy) and stores it in // *lengthSquared. Returns true if the distance is judged to be "nearly zero". // // This logic is encapsulated in a helper method to make it explicit that we // always perform this check in the same manner, to avoid inconsistencies // (see http://code.google.com/p/skia/issues/detail?id=560 ). static inline bool isLengthNearlyZero(float dx, float dy, float *lengthSquared) { *lengthSquared = getLengthSquared(dx, dy); return *lengthSquared <= (SK_ScalarNearlyZero * SK_ScalarNearlyZero); } SkScalar SkPoint::Normalize(SkPoint* pt) { float x = pt->fX; float y = pt->fY; float mag2; if (isLengthNearlyZero(x, y, &mag2)) { return 0; } float mag, scale; if (SkScalarIsFinite(mag2)) { mag = sk_float_sqrt(mag2); scale = 1 / mag; } else { // our mag2 step overflowed to infinity, so use doubles instead. // much slower, but needed when x or y are very large, other wise we // divide by inf. and return (0,0) vector. double xx = x; double yy = y; double magmag = sqrt(xx * xx + yy * yy); mag = (float)magmag; // we perform the divide with the double magmag, to stay exactly the // same as setLength. It would be faster to perform the divide with // mag, but it is possible that mag has overflowed to inf. but still // have a non-zero value for scale (thanks to denormalized numbers). scale = (float)(1 / magmag); } pt->set(x * scale, y * scale); return mag; } SkScalar SkPoint::Length(SkScalar dx, SkScalar dy) { float mag2 = dx * dx + dy * dy; if (SkScalarIsFinite(mag2)) { return sk_float_sqrt(mag2); } else { double xx = dx; double yy = dy; return (float)sqrt(xx * xx + yy * yy); } } /* * We have to worry about 2 tricky conditions: * 1. underflow of mag2 (compared against nearlyzero^2) * 2. overflow of mag2 (compared w/ isfinite) * * If we underflow, we return false. If we overflow, we compute again using * doubles, which is much slower (3x in a desktop test) but will not overflow. */ bool SkPoint::setLength(float x, float y, float length) { float mag2; if (isLengthNearlyZero(x, y, &mag2)) { return false; } float scale; if (SkScalarIsFinite(mag2)) { scale = length / sk_float_sqrt(mag2); } else { // our mag2 step overflowed to infinity, so use doubles instead. // much slower, but needed when x or y are very large, other wise we // divide by inf. and return (0,0) vector. double xx = x; double yy = y; #ifdef SK_DISCARD_DENORMALIZED_FOR_SPEED // The iOS ARM processor discards small denormalized numbers to go faster. // Casting this to a float would cause the scale to go to zero. Keeping it // as a double for the multiply keeps the scale non-zero. double dscale = length / sqrt(xx * xx + yy * yy); fX = x * dscale; fY = y * dscale; return true; #else scale = (float)(length / sqrt(xx * xx + yy * yy)); #endif } fX = x * scale; fY = y * scale; return true; } bool SkPoint::setLengthFast(float length) { return this->setLengthFast(fX, fY, length); } bool SkPoint::setLengthFast(float x, float y, float length) { float mag2; if (isLengthNearlyZero(x, y, &mag2)) { return false; } float scale; if (SkScalarIsFinite(mag2)) { scale = length * sk_float_rsqrt(mag2); // <--- this is the difference } else { // our mag2 step overflowed to infinity, so use doubles instead. // much slower, but needed when x or y are very large, other wise we // divide by inf. and return (0,0) vector. double xx = x; double yy = y; scale = (float)(length / sqrt(xx * xx + yy * yy)); } fX = x * scale; fY = y * scale; return true; } /////////////////////////////////////////////////////////////////////////////// SkScalar SkPoint::distanceToLineBetweenSqd(const SkPoint& a, const SkPoint& b, Side* side) const { SkVector u = b - a; SkVector v = *this - a; SkScalar uLengthSqd = u.lengthSqd(); SkScalar det = u.cross(v); if (NULL != side) { SkASSERT(-1 == SkPoint::kLeft_Side && 0 == SkPoint::kOn_Side && 1 == kRight_Side); *side = (Side) SkScalarSignAsInt(det); } return SkScalarMulDiv(det, det, uLengthSqd); } SkScalar SkPoint::distanceToLineSegmentBetweenSqd(const SkPoint& a, const SkPoint& b) const { // See comments to distanceToLineBetweenSqd. If the projection of c onto // u is between a and b then this returns the same result as that // function. Otherwise, it returns the distance to the closer of a and // b. Let the projection of v onto u be v'. There are three cases: // 1. v' points opposite to u. c is not between a and b and is closer // to a than b. // 2. v' points along u and has magnitude less than y. c is between // a and b and the distance to the segment is the same as distance // to the line ab. // 3. v' points along u and has greater magnitude than u. c is not // not between a and b and is closer to b than a. // v' = (u dot v) * u / |u|. So if (u dot v)/|u| is less than zero we're // in case 1. If (u dot v)/|u| is > |u| we are in case 3. Otherwise // we're in case 2. We actually compare (u dot v) to 0 and |u|^2 to // avoid a sqrt to compute |u|. SkVector u = b - a; SkVector v = *this - a; SkScalar uLengthSqd = u.lengthSqd(); SkScalar uDotV = SkPoint::DotProduct(u, v); if (uDotV <= 0) { return v.lengthSqd(); } else if (uDotV > uLengthSqd) { return b.distanceToSqd(*this); } else { SkScalar det = u.cross(v); return SkScalarMulDiv(det, det, uLengthSqd); } }