/* * Copyright 2014 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkPictureShader.h" #include "SkBitmap.h" #include "SkBitmapProcShader.h" #include "SkCanvas.h" #include "SkImage.h" #include "SkMatrixUtils.h" #include "SkPicture.h" #include "SkReadBuffer.h" #include "SkResourceCache.h" #if SK_SUPPORT_GPU #include "GrContext.h" #include "GrCaps.h" #endif namespace { static unsigned gBitmapSkaderKeyNamespaceLabel; struct BitmapShaderKey : public SkResourceCache::Key { public: BitmapShaderKey(uint32_t pictureID, const SkRect& tile, SkShader::TileMode tmx, SkShader::TileMode tmy, const SkSize& scale, const SkMatrix& localMatrix) : fPictureID(pictureID) , fTile(tile) , fTmx(tmx) , fTmy(tmy) , fScale(scale) { for (int i = 0; i < 9; ++i) { fLocalMatrixStorage[i] = localMatrix[i]; } static const size_t keySize = sizeof(fPictureID) + sizeof(fTile) + sizeof(fTmx) + sizeof(fTmy) + sizeof(fScale) + sizeof(fLocalMatrixStorage); // This better be packed. SkASSERT(sizeof(uint32_t) * (&fEndOfStruct - &fPictureID) == keySize); this->init(&gBitmapSkaderKeyNamespaceLabel, 0, keySize); } private: uint32_t fPictureID; SkRect fTile; SkShader::TileMode fTmx, fTmy; SkSize fScale; SkScalar fLocalMatrixStorage[9]; SkDEBUGCODE(uint32_t fEndOfStruct;) }; struct BitmapShaderRec : public SkResourceCache::Rec { BitmapShaderRec(const BitmapShaderKey& key, SkShader* tileShader, size_t bitmapBytes) : fKey(key) , fShader(SkRef(tileShader)) , fBitmapBytes(bitmapBytes) {} BitmapShaderKey fKey; SkAutoTUnref fShader; size_t fBitmapBytes; const Key& getKey() const override { return fKey; } size_t bytesUsed() const override { return sizeof(fKey) + sizeof(SkShader) + fBitmapBytes; } const char* getCategory() const override { return "bitmap-shader"; } SkDiscardableMemory* diagnostic_only_getDiscardable() const override { return nullptr; } static bool Visitor(const SkResourceCache::Rec& baseRec, void* contextShader) { const BitmapShaderRec& rec = static_cast(baseRec); SkAutoTUnref* result = reinterpret_cast*>(contextShader); result->reset(SkRef(rec.fShader.get())); // The bitmap shader is backed by an image generator, thus it can always re-generate its // pixels if discarded. return true; } }; } // namespace SkPictureShader::SkPictureShader(sk_sp picture, TileMode tmx, TileMode tmy, const SkMatrix* localMatrix, const SkRect* tile) : INHERITED(localMatrix) , fPicture(std::move(picture)) , fTile(tile ? *tile : fPicture->cullRect()) , fTmx(tmx) , fTmy(tmy) { } sk_sp SkPictureShader::Make(sk_sp picture, TileMode tmx, TileMode tmy, const SkMatrix* localMatrix, const SkRect* tile) { if (!picture || picture->cullRect().isEmpty() || (tile && tile->isEmpty())) { return SkShader::MakeEmptyShader(); } return sk_sp(new SkPictureShader(std::move(picture), tmx, tmy, localMatrix, tile)); } sk_sp SkPictureShader::CreateProc(SkReadBuffer& buffer) { SkMatrix lm; buffer.readMatrix(&lm); TileMode mx = (TileMode)buffer.read32(); TileMode my = (TileMode)buffer.read32(); SkRect tile; buffer.readRect(&tile); sk_sp picture; if (buffer.isCrossProcess() && SkPicture::PictureIOSecurityPrecautionsEnabled()) { if (buffer.isVersionLT(SkReadBuffer::kPictureShaderHasPictureBool_Version)) { // Older code blindly serialized pictures. We don't trust them. buffer.validate(false); return nullptr; } // Newer code won't serialize pictures in disallow-cross-process-picture mode. // Assert that they didn't serialize anything except a false here. buffer.validate(!buffer.readBool()); } else { // Old code always serialized the picture. New code writes a 'true' first if it did. if (buffer.isVersionLT(SkReadBuffer::kPictureShaderHasPictureBool_Version) || buffer.readBool()) { picture = SkPicture::MakeFromBuffer(buffer); } } return SkPictureShader::Make(picture, mx, my, &lm, &tile); } void SkPictureShader::flatten(SkWriteBuffer& buffer) const { buffer.writeMatrix(this->getLocalMatrix()); buffer.write32(fTmx); buffer.write32(fTmy); buffer.writeRect(fTile); // The deserialization code won't trust that our serialized picture is safe to deserialize. // So write a 'false' telling it that we're not serializing a picture. if (buffer.isCrossProcess() && SkPicture::PictureIOSecurityPrecautionsEnabled()) { buffer.writeBool(false); } else { buffer.writeBool(true); fPicture->flatten(buffer); } } sk_sp SkPictureShader::refBitmapShader(const SkMatrix& viewMatrix, const SkMatrix* localM, const int maxTextureSize) const { SkASSERT(fPicture && !fPicture->cullRect().isEmpty()); SkMatrix m; m.setConcat(viewMatrix, this->getLocalMatrix()); if (localM) { m.preConcat(*localM); } // Use a rotation-invariant scale SkPoint scale; // // TODO: replace this with decomposeScale() -- but beware LayoutTest rebaselines! // if (!SkDecomposeUpper2x2(m, nullptr, &scale, nullptr)) { // Decomposition failed, use an approximation. scale.set(SkScalarSqrt(m.getScaleX() * m.getScaleX() + m.getSkewX() * m.getSkewX()), SkScalarSqrt(m.getScaleY() * m.getScaleY() + m.getSkewY() * m.getSkewY())); } SkSize scaledSize = SkSize::Make(SkScalarAbs(scale.x() * fTile.width()), SkScalarAbs(scale.y() * fTile.height())); // Clamp the tile size to about 4M pixels static const SkScalar kMaxTileArea = 2048 * 2048; SkScalar tileArea = SkScalarMul(scaledSize.width(), scaledSize.height()); if (tileArea > kMaxTileArea) { SkScalar clampScale = SkScalarSqrt(kMaxTileArea / tileArea); scaledSize.set(SkScalarMul(scaledSize.width(), clampScale), SkScalarMul(scaledSize.height(), clampScale)); } #if SK_SUPPORT_GPU // Scale down the tile size if larger than maxTextureSize for GPU Path or it should fail on create texture if (maxTextureSize) { if (scaledSize.width() > maxTextureSize || scaledSize.height() > maxTextureSize) { SkScalar downScale = maxTextureSize / SkMaxScalar(scaledSize.width(), scaledSize.height()); scaledSize.set(SkScalarFloorToScalar(SkScalarMul(scaledSize.width(), downScale)), SkScalarFloorToScalar(SkScalarMul(scaledSize.height(), downScale))); } } #endif #ifdef SK_SUPPORT_LEGACY_PICTURESHADER_ROUNDING const SkISize tileSize = scaledSize.toRound(); #else const SkISize tileSize = scaledSize.toCeil(); #endif if (tileSize.isEmpty()) { return SkShader::MakeEmptyShader(); } // The actual scale, compensating for rounding & clamping. const SkSize tileScale = SkSize::Make(SkIntToScalar(tileSize.width()) / fTile.width(), SkIntToScalar(tileSize.height()) / fTile.height()); sk_sp tileShader; BitmapShaderKey key(fPicture->uniqueID(), fTile, fTmx, fTmy, tileScale, this->getLocalMatrix()); if (!SkResourceCache::Find(key, BitmapShaderRec::Visitor, &tileShader)) { SkMatrix tileMatrix; tileMatrix.setRectToRect(fTile, SkRect::MakeIWH(tileSize.width(), tileSize.height()), SkMatrix::kFill_ScaleToFit); sk_sp tileImage( SkImage::MakeFromPicture(fPicture, tileSize, &tileMatrix, nullptr)); if (!tileImage) { return nullptr; } SkMatrix shaderMatrix = this->getLocalMatrix(); shaderMatrix.preScale(1 / tileScale.width(), 1 / tileScale.height()); tileShader = tileImage->makeShader(fTmx, fTmy, &shaderMatrix); const SkImageInfo tileInfo = SkImageInfo::MakeN32Premul(tileSize); SkResourceCache::Add(new BitmapShaderRec(key, tileShader.get(), tileInfo.getSafeSize(tileInfo.minRowBytes()))); } return tileShader; } size_t SkPictureShader::onContextSize(const ContextRec&) const { return sizeof(PictureShaderContext); } SkShader::Context* SkPictureShader::onCreateContext(const ContextRec& rec, void* storage) const { sk_sp bitmapShader(this->refBitmapShader(*rec.fMatrix, rec.fLocalMatrix)); if (!bitmapShader) { return nullptr; } return PictureShaderContext::Create(storage, *this, rec, bitmapShader); } ///////////////////////////////////////////////////////////////////////////////////////// SkShader::Context* SkPictureShader::PictureShaderContext::Create(void* storage, const SkPictureShader& shader, const ContextRec& rec, sk_sp bitmapShader) { PictureShaderContext* ctx = new (storage) PictureShaderContext(shader, rec, std::move(bitmapShader)); if (nullptr == ctx->fBitmapShaderContext) { ctx->~PictureShaderContext(); ctx = nullptr; } return ctx; } SkPictureShader::PictureShaderContext::PictureShaderContext( const SkPictureShader& shader, const ContextRec& rec, sk_sp bitmapShader) : INHERITED(shader, rec) , fBitmapShader(std::move(bitmapShader)) { fBitmapShaderContextStorage = sk_malloc_throw(fBitmapShader->contextSize(rec)); fBitmapShaderContext = fBitmapShader->createContext(rec, fBitmapShaderContextStorage); //if fBitmapShaderContext is null, we are invalid } SkPictureShader::PictureShaderContext::~PictureShaderContext() { if (fBitmapShaderContext) { fBitmapShaderContext->~Context(); } sk_free(fBitmapShaderContextStorage); } uint32_t SkPictureShader::PictureShaderContext::getFlags() const { SkASSERT(fBitmapShaderContext); return fBitmapShaderContext->getFlags(); } SkShader::Context::ShadeProc SkPictureShader::PictureShaderContext::asAShadeProc(void** ctx) { SkASSERT(fBitmapShaderContext); return fBitmapShaderContext->asAShadeProc(ctx); } void SkPictureShader::PictureShaderContext::shadeSpan(int x, int y, SkPMColor dstC[], int count) { SkASSERT(fBitmapShaderContext); fBitmapShaderContext->shadeSpan(x, y, dstC, count); } #ifndef SK_IGNORE_TO_STRING void SkPictureShader::toString(SkString* str) const { static const char* gTileModeName[SkShader::kTileModeCount] = { "clamp", "repeat", "mirror" }; str->appendf("PictureShader: [%f:%f:%f:%f] ", fPicture->cullRect().fLeft, fPicture->cullRect().fTop, fPicture->cullRect().fRight, fPicture->cullRect().fBottom); str->appendf("(%s, %s)", gTileModeName[fTmx], gTileModeName[fTmy]); this->INHERITED::toString(str); } #endif #if SK_SUPPORT_GPU const GrFragmentProcessor* SkPictureShader::asFragmentProcessor( GrContext* context, const SkMatrix& viewM, const SkMatrix* localMatrix, SkFilterQuality fq) const { int maxTextureSize = 0; if (context) { maxTextureSize = context->caps()->maxTextureSize(); } sk_sp bitmapShader(this->refBitmapShader(viewM, localMatrix, maxTextureSize)); if (!bitmapShader) { return nullptr; } return bitmapShader->asFragmentProcessor(context, viewM, nullptr, fq); } #endif