/* * Copyright 2014 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkPictureShader.h" #include "SkBitmap.h" #include "SkBitmapProcShader.h" #include "SkCanvas.h" #include "SkMatrixUtils.h" #include "SkPicture.h" #include "SkReadBuffer.h" #include "SkResourceCache.h" #if SK_SUPPORT_GPU #include "GrContext.h" #endif namespace { static unsigned gBitmapSkaderKeyNamespaceLabel; struct BitmapShaderKey : public SkResourceCache::Key { public: BitmapShaderKey(uint32_t pictureID, const SkRect& tile, SkShader::TileMode tmx, SkShader::TileMode tmy, const SkSize& scale, const SkMatrix& localMatrix) : fPictureID(pictureID) , fTile(tile) , fTmx(tmx) , fTmy(tmy) , fScale(scale) , fLocalMatrix(localMatrix) { static const size_t keySize = sizeof(fPictureID) + sizeof(fTile) + sizeof(fTmx) + sizeof(fTmy) + sizeof(fScale) + sizeof(fLocalMatrix); // This better be packed. SkASSERT(sizeof(uint32_t) * (&fEndOfStruct - &fPictureID) == keySize); this->init(&gBitmapSkaderKeyNamespaceLabel, keySize); } private: uint32_t fPictureID; SkRect fTile; SkShader::TileMode fTmx, fTmy; SkSize fScale; SkMatrix fLocalMatrix; SkDEBUGCODE(uint32_t fEndOfStruct;) }; struct BitmapShaderRec : public SkResourceCache::Rec { BitmapShaderRec(const BitmapShaderKey& key, SkShader* tileShader, size_t bitmapBytes) : fKey(key) , fShader(SkRef(tileShader)) , fBitmapBytes(bitmapBytes) {} BitmapShaderKey fKey; SkAutoTUnref fShader; size_t fBitmapBytes; virtual const Key& getKey() const SK_OVERRIDE { return fKey; } virtual size_t bytesUsed() const SK_OVERRIDE { return sizeof(fKey) + sizeof(SkShader) + fBitmapBytes; } static bool Visitor(const SkResourceCache::Rec& baseRec, void* contextShader) { const BitmapShaderRec& rec = static_cast(baseRec); SkAutoTUnref* result = reinterpret_cast*>(contextShader); result->reset(SkRef(rec.fShader.get())); return true; } }; static bool cache_try_alloc_pixels(SkBitmap* bitmap) { SkBitmap::Allocator* allocator = SkResourceCache::GetAllocator(); return NULL != allocator ? allocator->allocPixelRef(bitmap, NULL) : bitmap->tryAllocPixels(); } } // namespace SkPictureShader::SkPictureShader(const SkPicture* picture, TileMode tmx, TileMode tmy, const SkMatrix* localMatrix, const SkRect* tile) : INHERITED(localMatrix) , fPicture(SkRef(picture)) , fTile(tile ? *tile : picture->cullRect()) , fTmx(tmx) , fTmy(tmy) { } SkPictureShader::~SkPictureShader() { fPicture->unref(); } SkPictureShader* SkPictureShader::Create(const SkPicture* picture, TileMode tmx, TileMode tmy, const SkMatrix* localMatrix, const SkRect* tile) { if (!picture || picture->cullRect().isEmpty() || (tile && tile->isEmpty())) { return NULL; } return SkNEW_ARGS(SkPictureShader, (picture, tmx, tmy, localMatrix, tile)); } SkFlattenable* SkPictureShader::CreateProc(SkReadBuffer& buffer) { SkMatrix lm; buffer.readMatrix(&lm); TileMode mx = (TileMode)buffer.read32(); TileMode my = (TileMode)buffer.read32(); SkRect tile; buffer.readRect(&tile); SkAutoTUnref picture(SkPicture::CreateFromBuffer(buffer)); return SkPictureShader::Create(picture, mx, my, &lm, &tile); } void SkPictureShader::flatten(SkWriteBuffer& buffer) const { buffer.writeMatrix(this->getLocalMatrix()); buffer.write32(fTmx); buffer.write32(fTmy); buffer.writeRect(fTile); fPicture->flatten(buffer); } SkShader* SkPictureShader::refBitmapShader(const SkMatrix& matrix, const SkMatrix* localM) const { SkASSERT(fPicture && !fPicture->cullRect().isEmpty()); SkMatrix m; m.setConcat(matrix, this->getLocalMatrix()); if (localM) { m.preConcat(*localM); } // Use a rotation-invariant scale SkPoint scale; if (!SkDecomposeUpper2x2(m, NULL, &scale, NULL)) { // Decomposition failed, use an approximation. scale.set(SkScalarSqrt(m.getScaleX() * m.getScaleX() + m.getSkewX() * m.getSkewX()), SkScalarSqrt(m.getScaleY() * m.getScaleY() + m.getSkewY() * m.getSkewY())); } SkSize scaledSize = SkSize::Make(scale.x() * fTile.width(), scale.y() * fTile.height()); // Clamp the tile size to about 16M pixels static const SkScalar kMaxTileArea = 4096 * 4096; SkScalar tileArea = SkScalarMul(scaledSize.width(), scaledSize.height()); if (tileArea > kMaxTileArea) { SkScalar clampScale = SkScalarSqrt(SkScalarDiv(kMaxTileArea, tileArea)); scaledSize.set(SkScalarMul(scaledSize.width(), clampScale), SkScalarMul(scaledSize.height(), clampScale)); } SkISize tileSize = scaledSize.toRound(); if (tileSize.isEmpty()) { return NULL; } // The actual scale, compensating for rounding & clamping. SkSize tileScale = SkSize::Make(SkIntToScalar(tileSize.width()) / fTile.width(), SkIntToScalar(tileSize.height()) / fTile.height()); SkAutoTUnref tileShader; BitmapShaderKey key(fPicture->uniqueID(), fTile, fTmx, fTmy, tileScale, this->getLocalMatrix()); if (!SkResourceCache::Find(key, BitmapShaderRec::Visitor, &tileShader)) { SkBitmap bm; bm.setInfo(SkImageInfo::MakeN32Premul(tileSize)); if (!cache_try_alloc_pixels(&bm)) { return NULL; } bm.eraseColor(SK_ColorTRANSPARENT); SkCanvas canvas(bm); canvas.scale(tileScale.width(), tileScale.height()); canvas.translate(fTile.x(), fTile.y()); canvas.drawPicture(fPicture); SkMatrix shaderMatrix = this->getLocalMatrix(); shaderMatrix.preScale(1 / tileScale.width(), 1 / tileScale.height()); tileShader.reset(CreateBitmapShader(bm, fTmx, fTmy, &shaderMatrix)); SkResourceCache::Add(SkNEW_ARGS(BitmapShaderRec, (key, tileShader.get(), bm.getSize()))); } return tileShader.detach(); } size_t SkPictureShader::contextSize() const { return sizeof(PictureShaderContext); } SkShader::Context* SkPictureShader::onCreateContext(const ContextRec& rec, void* storage) const { SkAutoTUnref bitmapShader(this->refBitmapShader(*rec.fMatrix, rec.fLocalMatrix)); if (NULL == bitmapShader.get()) { return NULL; } return PictureShaderContext::Create(storage, *this, rec, bitmapShader); } ///////////////////////////////////////////////////////////////////////////////////////// SkShader::Context* SkPictureShader::PictureShaderContext::Create(void* storage, const SkPictureShader& shader, const ContextRec& rec, SkShader* bitmapShader) { PictureShaderContext* ctx = SkNEW_PLACEMENT_ARGS(storage, PictureShaderContext, (shader, rec, bitmapShader)); if (NULL == ctx->fBitmapShaderContext) { ctx->~PictureShaderContext(); ctx = NULL; } return ctx; } SkPictureShader::PictureShaderContext::PictureShaderContext( const SkPictureShader& shader, const ContextRec& rec, SkShader* bitmapShader) : INHERITED(shader, rec) , fBitmapShader(SkRef(bitmapShader)) { fBitmapShaderContextStorage = sk_malloc_throw(bitmapShader->contextSize()); fBitmapShaderContext = bitmapShader->createContext(rec, fBitmapShaderContextStorage); //if fBitmapShaderContext is null, we are invalid } SkPictureShader::PictureShaderContext::~PictureShaderContext() { if (fBitmapShaderContext) { fBitmapShaderContext->~Context(); } sk_free(fBitmapShaderContextStorage); } uint32_t SkPictureShader::PictureShaderContext::getFlags() const { SkASSERT(fBitmapShaderContext); return fBitmapShaderContext->getFlags(); } SkShader::Context::ShadeProc SkPictureShader::PictureShaderContext::asAShadeProc(void** ctx) { SkASSERT(fBitmapShaderContext); return fBitmapShaderContext->asAShadeProc(ctx); } void SkPictureShader::PictureShaderContext::shadeSpan(int x, int y, SkPMColor dstC[], int count) { SkASSERT(fBitmapShaderContext); fBitmapShaderContext->shadeSpan(x, y, dstC, count); } void SkPictureShader::PictureShaderContext::shadeSpan16(int x, int y, uint16_t dstC[], int count) { SkASSERT(fBitmapShaderContext); fBitmapShaderContext->shadeSpan16(x, y, dstC, count); } #ifndef SK_IGNORE_TO_STRING void SkPictureShader::toString(SkString* str) const { static const char* gTileModeName[SkShader::kTileModeCount] = { "clamp", "repeat", "mirror" }; str->appendf("PictureShader: [%f:%f:%f:%f] ", fPicture ? fPicture->cullRect().fLeft : 0, fPicture ? fPicture->cullRect().fTop : 0, fPicture ? fPicture->cullRect().fRight : 0, fPicture ? fPicture->cullRect().fBottom : 0); str->appendf("(%s, %s)", gTileModeName[fTmx], gTileModeName[fTmy]); this->INHERITED::toString(str); } #endif #if SK_SUPPORT_GPU bool SkPictureShader::asFragmentProcessor(GrContext* context, const SkPaint& paint, const SkMatrix* localMatrix, GrColor* paintColor, GrFragmentProcessor** fp) const { SkAutoTUnref bitmapShader(this->refBitmapShader(context->getMatrix(), localMatrix)); if (!bitmapShader) { return false; } return bitmapShader->asFragmentProcessor(context, paint, NULL, paintColor, fp); } #else bool SkPictureShader::asFragmentProcessor(GrContext*, const SkPaint&, const SkMatrix*, GrColor*, GrFragmentProcessor**) const { SkDEBUGFAIL("Should not call in GPU-less build"); return false; } #endif