/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include #include "SkBBoxHierarchy.h" #include "SkOffsetTable.h" #include "SkPicturePlayback.h" #include "SkPictureRecord.h" #include "SkPictureStateTree.h" #include "SkReadBuffer.h" #include "SkTypeface.h" #include "SkTSort.h" #include "SkWriteBuffer.h" template int SafeCount(const T* obj) { return obj ? obj->count() : 0; } /* Define this to spew out a debug statement whenever we skip the remainder of a save/restore block because a clip... command returned false (empty). */ #define SPEW_CLIP_SKIPPINGx SkPicturePlayback::SkPicturePlayback() { this->init(); } SkPicturePlayback::SkPicturePlayback(const SkPictureRecord& record, bool deepCopy) { #ifdef SK_DEBUG_SIZE size_t overallBytes, bitmapBytes, matricesBytes, paintBytes, pathBytes, pictureBytes, regionBytes; int bitmaps = record.bitmaps(&bitmapBytes); int matrices = record.matrices(&matricesBytes); int paints = record.paints(&paintBytes); int paths = record.paths(&pathBytes); int pictures = record.pictures(&pictureBytes); int regions = record.regions(®ionBytes); SkDebugf("picture record mem used %zd (stream %zd) ", record.size(), record.streamlen()); if (bitmaps != 0) SkDebugf("bitmaps size %zd (bitmaps:%d) ", bitmapBytes, bitmaps); if (matrices != 0) SkDebugf("matrices size %zd (matrices:%d) ", matricesBytes, matrices); if (paints != 0) SkDebugf("paints size %zd (paints:%d) ", paintBytes, paints); if (paths != 0) SkDebugf("paths size %zd (paths:%d) ", pathBytes, paths); if (pictures != 0) SkDebugf("pictures size %zd (pictures:%d) ", pictureBytes, pictures); if (regions != 0) SkDebugf("regions size %zd (regions:%d) ", regionBytes, regions); if (record.fPointWrites != 0) SkDebugf("points size %zd (points:%d) ", record.fPointBytes, record.fPointWrites); if (record.fRectWrites != 0) SkDebugf("rects size %zd (rects:%d) ", record.fRectBytes, record.fRectWrites); if (record.fTextWrites != 0) SkDebugf("text size %zd (text strings:%d) ", record.fTextBytes, record.fTextWrites); SkDebugf("\n"); #endif #ifdef SK_DEBUG_DUMP record.dumpMatrices(); record.dumpPaints(); #endif record.validate(record.writeStream().bytesWritten(), 0); const SkWriter32& writer = record.writeStream(); this->init(); SkASSERT(!fOpData); if (writer.bytesWritten() == 0) { fOpData = SkData::NewEmpty(); return; } fOpData = writer.snapshotAsData(); fBoundingHierarchy = record.fBoundingHierarchy; fStateTree = record.fStateTree; SkSafeRef(fBoundingHierarchy); SkSafeRef(fStateTree); if (NULL != fBoundingHierarchy) { fBoundingHierarchy->flushDeferredInserts(); } // copy over the refcnt dictionary to our reader record.fFlattenableHeap.setupPlaybacks(); fBitmaps = record.fBitmapHeap->extractBitmaps(); fPaints = record.fPaints.unflattenToArray(); fBitmapHeap.reset(SkSafeRef(record.fBitmapHeap)); fPathHeap.reset(SkSafeRef(record.fPathHeap)); fBitmapUseOffsets.reset(SkSafeRef(record.fBitmapUseOffsets.get())); // ensure that the paths bounds are pre-computed if (fPathHeap.get()) { for (int i = 0; i < fPathHeap->count(); i++) { (*fPathHeap)[i].updateBoundsCache(); } } const SkTDArray& pictures = record.getPictureRefs(); fPictureCount = pictures.count(); if (fPictureCount > 0) { fPictureRefs = SkNEW_ARRAY(SkPicture*, fPictureCount); for (int i = 0; i < fPictureCount; i++) { if (deepCopy) { fPictureRefs[i] = pictures[i]->clone(); } else { fPictureRefs[i] = pictures[i]; fPictureRefs[i]->ref(); } } } #ifdef SK_DEBUG_SIZE int overall = fPlayback->size(&overallBytes); bitmaps = fPlayback->bitmaps(&bitmapBytes); paints = fPlayback->paints(&paintBytes); paths = fPlayback->paths(&pathBytes); pictures = fPlayback->pictures(&pictureBytes); regions = fPlayback->regions(®ionBytes); SkDebugf("playback size %zd (objects:%d) ", overallBytes, overall); if (bitmaps != 0) SkDebugf("bitmaps size %zd (bitmaps:%d) ", bitmapBytes, bitmaps); if (paints != 0) SkDebugf("paints size %zd (paints:%d) ", paintBytes, paints); if (paths != 0) SkDebugf("paths size %zd (paths:%d) ", pathBytes, paths); if (pictures != 0) SkDebugf("pictures size %zd (pictures:%d) ", pictureBytes, pictures); if (regions != 0) SkDebugf("regions size %zd (regions:%d) ", regionBytes, regions); SkDebugf("\n"); #endif } static bool needs_deep_copy(const SkPaint& paint) { /* * These fields are known to be immutable, and so can be shallow-copied * * getTypeface() * getAnnotation() * paint.getColorFilter() * getXfermode() */ return paint.getPathEffect() || paint.getShader() || paint.getMaskFilter() || paint.getRasterizer() || paint.getLooper() || paint.getImageFilter(); } SkPicturePlayback::SkPicturePlayback(const SkPicturePlayback& src, SkPictCopyInfo* deepCopyInfo) { this->init(); fBitmapHeap.reset(SkSafeRef(src.fBitmapHeap.get())); fPathHeap.reset(SkSafeRef(src.fPathHeap.get())); fOpData = SkSafeRef(src.fOpData); fBoundingHierarchy = src.fBoundingHierarchy; fStateTree = src.fStateTree; SkSafeRef(fBoundingHierarchy); SkSafeRef(fStateTree); if (deepCopyInfo) { int paintCount = SafeCount(src.fPaints); if (src.fBitmaps) { fBitmaps = SkTRefArray::Create(src.fBitmaps->begin(), src.fBitmaps->count()); } if (!deepCopyInfo->initialized) { /* The alternative to doing this is to have a clone method on the paint and have it make * the deep copy of its internal structures as needed. The holdup to doing that is at * this point we would need to pass the SkBitmapHeap so that we don't unnecessarily * flatten the pixels in a bitmap shader. */ deepCopyInfo->paintData.setCount(paintCount); /* Use an SkBitmapHeap to avoid flattening bitmaps in shaders. If there already is one, * use it. If this SkPicturePlayback was created from a stream, fBitmapHeap will be * NULL, so create a new one. */ if (fBitmapHeap.get() == NULL) { // FIXME: Put this on the stack inside SkPicture::clone. Further, is it possible to // do the rest of this initialization in SkPicture::clone as well? SkBitmapHeap* heap = SkNEW(SkBitmapHeap); deepCopyInfo->controller.setBitmapStorage(heap); heap->unref(); } else { deepCopyInfo->controller.setBitmapStorage(fBitmapHeap); } SkDEBUGCODE(int heapSize = SafeCount(fBitmapHeap.get());) for (int i = 0; i < paintCount; i++) { if (needs_deep_copy(src.fPaints->at(i))) { deepCopyInfo->paintData[i] = SkFlatData::Create(&deepCopyInfo->controller, src.fPaints->at(i), 0); } else { // this is our sentinel, which we use in the unflatten loop deepCopyInfo->paintData[i] = NULL; } } SkASSERT(SafeCount(fBitmapHeap.get()) == heapSize); // needed to create typeface playback deepCopyInfo->controller.setupPlaybacks(); deepCopyInfo->initialized = true; } fPaints = SkTRefArray::Create(paintCount); SkASSERT(deepCopyInfo->paintData.count() == paintCount); SkBitmapHeap* bmHeap = deepCopyInfo->controller.getBitmapHeap(); SkTypefacePlayback* tfPlayback = deepCopyInfo->controller.getTypefacePlayback(); for (int i = 0; i < paintCount; i++) { if (deepCopyInfo->paintData[i]) { deepCopyInfo->paintData[i]->unflatten( &fPaints->writableAt(i), bmHeap, tfPlayback); } else { // needs_deep_copy was false, so just need to assign fPaints->writableAt(i) = src.fPaints->at(i); } } } else { fBitmaps = SkSafeRef(src.fBitmaps); fPaints = SkSafeRef(src.fPaints); } fPictureCount = src.fPictureCount; fPictureRefs = SkNEW_ARRAY(SkPicture*, fPictureCount); for (int i = 0; i < fPictureCount; i++) { if (deepCopyInfo) { fPictureRefs[i] = src.fPictureRefs[i]->clone(); } else { fPictureRefs[i] = src.fPictureRefs[i]; fPictureRefs[i]->ref(); } } } void SkPicturePlayback::init() { fBitmaps = NULL; fPaints = NULL; fPictureRefs = NULL; fPictureCount = 0; fOpData = NULL; fFactoryPlayback = NULL; fBoundingHierarchy = NULL; fStateTree = NULL; fCachedActiveOps = NULL; fCurOffset = 0; } SkPicturePlayback::~SkPicturePlayback() { SkSafeUnref(fOpData); SkSafeUnref(fBitmaps); SkSafeUnref(fPaints); SkSafeUnref(fBoundingHierarchy); SkSafeUnref(fStateTree); SkDELETE(fCachedActiveOps); for (int i = 0; i < fPictureCount; i++) { fPictureRefs[i]->unref(); } SkDELETE_ARRAY(fPictureRefs); SkDELETE(fFactoryPlayback); } void SkPicturePlayback::dumpSize() const { SkDebugf("--- picture size: ops=%d bitmaps=%d [%d] paints=%d [%d] paths=%d\n", fOpData->size(), SafeCount(fBitmaps), SafeCount(fBitmaps) * sizeof(SkBitmap), SafeCount(fPaints), SafeCount(fPaints) * sizeof(SkPaint), SafeCount(fPathHeap.get())); } bool SkPicturePlayback::containsBitmaps() const { if (fBitmaps && fBitmaps->count() > 0) { return true; } for (int i = 0; i < fPictureCount; ++i) { if (fPictureRefs[i]->willPlayBackBitmaps()) { return true; } } return false; } /////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// #include "SkStream.h" static void write_tag_size(SkWriteBuffer& buffer, uint32_t tag, uint32_t size) { buffer.writeUInt(tag); buffer.writeUInt(size); } static void write_tag_size(SkWStream* stream, uint32_t tag, uint32_t size) { stream->write32(tag); stream->write32(size); } static size_t compute_chunk_size(SkFlattenable::Factory* array, int count) { size_t size = 4; // for 'count' for (int i = 0; i < count; i++) { const char* name = SkFlattenable::FactoryToName(array[i]); if (NULL == name || 0 == *name) { size += SkWStream::SizeOfPackedUInt(0); } else { size_t len = strlen(name); size += SkWStream::SizeOfPackedUInt(len); size += len; } } return size; } static void write_factories(SkWStream* stream, const SkFactorySet& rec) { int count = rec.count(); SkAutoSTMalloc<16, SkFlattenable::Factory> storage(count); SkFlattenable::Factory* array = (SkFlattenable::Factory*)storage.get(); rec.copyToArray(array); size_t size = compute_chunk_size(array, count); // TODO: write_tag_size should really take a size_t write_tag_size(stream, SK_PICT_FACTORY_TAG, (uint32_t) size); SkDEBUGCODE(size_t start = stream->bytesWritten()); stream->write32(count); for (int i = 0; i < count; i++) { const char* name = SkFlattenable::FactoryToName(array[i]); // SkDebugf("---- write factories [%d] %p <%s>\n", i, array[i], name); if (NULL == name || 0 == *name) { stream->writePackedUInt(0); } else { uint32_t len = strlen(name); stream->writePackedUInt(len); stream->write(name, len); } } SkASSERT(size == (stream->bytesWritten() - start)); } static void write_typefaces(SkWStream* stream, const SkRefCntSet& rec) { int count = rec.count(); write_tag_size(stream, SK_PICT_TYPEFACE_TAG, count); SkAutoSTMalloc<16, SkTypeface*> storage(count); SkTypeface** array = (SkTypeface**)storage.get(); rec.copyToArray((SkRefCnt**)array); for (int i = 0; i < count; i++) { array[i]->serialize(stream); } } void SkPicturePlayback::flattenToBuffer(SkWriteBuffer& buffer) const { int i, n; if ((n = SafeCount(fBitmaps)) > 0) { write_tag_size(buffer, SK_PICT_BITMAP_BUFFER_TAG, n); for (i = 0; i < n; i++) { buffer.writeBitmap((*fBitmaps)[i]); } } if ((n = SafeCount(fPaints)) > 0) { write_tag_size(buffer, SK_PICT_PAINT_BUFFER_TAG, n); for (i = 0; i < n; i++) { buffer.writePaint((*fPaints)[i]); } } if ((n = SafeCount(fPathHeap.get())) > 0) { write_tag_size(buffer, SK_PICT_PATH_BUFFER_TAG, n); fPathHeap->flatten(buffer); } } void SkPicturePlayback::serialize(SkWStream* stream, SkPicture::EncodeBitmap encoder) const { write_tag_size(stream, SK_PICT_READER_TAG, fOpData->size()); stream->write(fOpData->bytes(), fOpData->size()); if (fPictureCount > 0) { write_tag_size(stream, SK_PICT_PICTURE_TAG, fPictureCount); for (int i = 0; i < fPictureCount; i++) { fPictureRefs[i]->serialize(stream, encoder); } } // Write some of our data into a writebuffer, and then serialize that // into our stream { SkRefCntSet typefaceSet; SkFactorySet factSet; SkWriteBuffer buffer(SkWriteBuffer::kCrossProcess_Flag); buffer.setTypefaceRecorder(&typefaceSet); buffer.setFactoryRecorder(&factSet); buffer.setBitmapEncoder(encoder); this->flattenToBuffer(buffer); // We have to write these two sets into the stream *before* we write // the buffer, since parsing that buffer will require that we already // have these sets available to use. write_factories(stream, factSet); write_typefaces(stream, typefaceSet); write_tag_size(stream, SK_PICT_BUFFER_SIZE_TAG, buffer.bytesWritten()); buffer.writeToStream(stream); } stream->write32(SK_PICT_EOF_TAG); } void SkPicturePlayback::flatten(SkWriteBuffer& buffer) const { write_tag_size(buffer, SK_PICT_READER_TAG, fOpData->size()); buffer.writeByteArray(fOpData->bytes(), fOpData->size()); if (fPictureCount > 0) { write_tag_size(buffer, SK_PICT_PICTURE_TAG, fPictureCount); for (int i = 0; i < fPictureCount; i++) { fPictureRefs[i]->flatten(buffer); } } // Write this picture playback's data into a writebuffer this->flattenToBuffer(buffer); buffer.write32(SK_PICT_EOF_TAG); } /////////////////////////////////////////////////////////////////////////////// /** * Return the corresponding SkReadBuffer flags, given a set of * SkPictInfo flags. */ static uint32_t pictInfoFlagsToReadBufferFlags(uint32_t pictInfoFlags) { static const struct { uint32_t fSrc; uint32_t fDst; } gSD[] = { { SkPictInfo::kCrossProcess_Flag, SkReadBuffer::kCrossProcess_Flag }, { SkPictInfo::kScalarIsFloat_Flag, SkReadBuffer::kScalarIsFloat_Flag }, { SkPictInfo::kPtrIs64Bit_Flag, SkReadBuffer::kPtrIs64Bit_Flag }, }; uint32_t rbMask = 0; for (size_t i = 0; i < SK_ARRAY_COUNT(gSD); ++i) { if (pictInfoFlags & gSD[i].fSrc) { rbMask |= gSD[i].fDst; } } return rbMask; } bool SkPicturePlayback::parseStreamTag(SkStream* stream, const SkPictInfo& info, uint32_t tag, size_t size, SkPicture::InstallPixelRefProc proc) { /* * By the time we encounter BUFFER_SIZE_TAG, we need to have already seen * its dependents: FACTORY_TAG and TYPEFACE_TAG. These two are not required * but if they are present, they need to have been seen before the buffer. * * We assert that if/when we see either of these, that we have not yet seen * the buffer tag, because if we have, then its too-late to deal with the * factories or typefaces. */ SkDEBUGCODE(bool haveBuffer = false;) switch (tag) { case SK_PICT_READER_TAG: { SkAutoMalloc storage(size); if (stream->read(storage.get(), size) != size) { return false; } SkASSERT(NULL == fOpData); fOpData = SkData::NewFromMalloc(storage.detach(), size); } break; case SK_PICT_FACTORY_TAG: { SkASSERT(!haveBuffer); // Remove this code when v21 and below are no longer supported. At the // same time add a new 'count' variable and use it rather then reusing 'size'. #ifndef DISABLE_V21_COMPATIBILITY_CODE if (info.fVersion >= 22) { // in v22 this tag's size represents the size of the chunk in bytes // and the number of factory strings is written out separately #endif size = stream->readU32(); #ifndef DISABLE_V21_COMPATIBILITY_CODE } #endif fFactoryPlayback = SkNEW_ARGS(SkFactoryPlayback, (size)); for (size_t i = 0; i < size; i++) { SkString str; const size_t len = stream->readPackedUInt(); str.resize(len); if (stream->read(str.writable_str(), len) != len) { return false; } fFactoryPlayback->base()[i] = SkFlattenable::NameToFactory(str.c_str()); } } break; case SK_PICT_TYPEFACE_TAG: { SkASSERT(!haveBuffer); fTFPlayback.setCount(size); for (size_t i = 0; i < size; i++) { SkAutoTUnref tf(SkTypeface::Deserialize(stream)); if (!tf.get()) { // failed to deserialize // fTFPlayback asserts it never has a null, so we plop in // the default here. tf.reset(SkTypeface::RefDefault()); } fTFPlayback.set(i, tf); } } break; case SK_PICT_PICTURE_TAG: { fPictureCount = size; fPictureRefs = SkNEW_ARRAY(SkPicture*, fPictureCount); bool success = true; int i = 0; for ( ; i < fPictureCount; i++) { fPictureRefs[i] = SkPicture::CreateFromStream(stream, proc); if (NULL == fPictureRefs[i]) { success = false; break; } } if (!success) { // Delete all of the pictures that were already created (up to but excluding i): for (int j = 0; j < i; j++) { fPictureRefs[j]->unref(); } // Delete the array SkDELETE_ARRAY(fPictureRefs); fPictureCount = 0; return false; } } break; case SK_PICT_BUFFER_SIZE_TAG: { SkAutoMalloc storage(size); if (stream->read(storage.get(), size) != size) { return false; } SkReadBuffer buffer(storage.get(), size); buffer.setFlags(pictInfoFlagsToReadBufferFlags(info.fFlags)); fFactoryPlayback->setupBuffer(buffer); fTFPlayback.setupBuffer(buffer); buffer.setBitmapDecoder(proc); while (!buffer.eof()) { tag = buffer.readUInt(); size = buffer.readUInt(); if (!this->parseBufferTag(buffer, tag, size)) { return false; } } SkDEBUGCODE(haveBuffer = true;) } break; } return true; // success } bool SkPicturePlayback::parseBufferTag(SkReadBuffer& buffer, uint32_t tag, size_t size) { switch (tag) { case SK_PICT_BITMAP_BUFFER_TAG: { fBitmaps = SkTRefArray::Create(size); for (size_t i = 0; i < size; ++i) { SkBitmap* bm = &fBitmaps->writableAt(i); buffer.readBitmap(bm); bm->setImmutable(); } } break; case SK_PICT_PAINT_BUFFER_TAG: { fPaints = SkTRefArray::Create(size); for (size_t i = 0; i < size; ++i) { buffer.readPaint(&fPaints->writableAt(i)); } } break; case SK_PICT_PATH_BUFFER_TAG: if (size > 0) { fPathHeap.reset(SkNEW_ARGS(SkPathHeap, (buffer))); } break; case SK_PICT_READER_TAG: { SkAutoMalloc storage(size); if (!buffer.readByteArray(storage.get(), size) || !buffer.validate(NULL == fOpData)) { return false; } SkASSERT(NULL == fOpData); fOpData = SkData::NewFromMalloc(storage.detach(), size); } break; case SK_PICT_PICTURE_TAG: { if (!buffer.validate((0 == fPictureCount) && (NULL == fPictureRefs))) { return false; } fPictureCount = size; fPictureRefs = SkNEW_ARRAY(SkPicture*, fPictureCount); bool success = true; int i = 0; for ( ; i < fPictureCount; i++) { fPictureRefs[i] = SkPicture::CreateFromBuffer(buffer); if (NULL == fPictureRefs[i]) { success = false; break; } } if (!success) { // Delete all of the pictures that were already created (up to but excluding i): for (int j = 0; j < i; j++) { fPictureRefs[j]->unref(); } // Delete the array SkDELETE_ARRAY(fPictureRefs); fPictureCount = 0; return false; } } break; default: // The tag was invalid. return false; } return true; // success } SkPicturePlayback* SkPicturePlayback::CreateFromStream(SkStream* stream, const SkPictInfo& info, SkPicture::InstallPixelRefProc proc) { SkAutoTDelete playback(SkNEW(SkPicturePlayback)); if (!playback->parseStream(stream, info, proc)) { return NULL; } return playback.detach(); } SkPicturePlayback* SkPicturePlayback::CreateFromBuffer(SkReadBuffer& buffer) { SkAutoTDelete playback(SkNEW(SkPicturePlayback)); if (!playback->parseBuffer(buffer)) { return NULL; } return playback.detach(); } bool SkPicturePlayback::parseStream(SkStream* stream, const SkPictInfo& info, SkPicture::InstallPixelRefProc proc) { for (;;) { uint32_t tag = stream->readU32(); if (SK_PICT_EOF_TAG == tag) { break; } uint32_t size = stream->readU32(); if (!this->parseStreamTag(stream, info, tag, size, proc)) { return false; // we're invalid } } return true; } bool SkPicturePlayback::parseBuffer(SkReadBuffer& buffer) { for (;;) { uint32_t tag = buffer.readUInt(); if (SK_PICT_EOF_TAG == tag) { break; } uint32_t size = buffer.readUInt(); if (!this->parseBufferTag(buffer, tag, size)) { return false; // we're invalid } } return true; } /////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// #ifdef SPEW_CLIP_SKIPPING struct SkipClipRec { int fCount; size_t fSize; SkipClipRec() { fCount = 0; fSize = 0; } void recordSkip(size_t bytes) { fCount += 1; fSize += bytes; } }; #endif #ifdef SK_DEVELOPER bool SkPicturePlayback::preDraw(int opIndex, int type) { return false; } void SkPicturePlayback::postDraw(int opIndex) { } #endif /* * Read the next op code and chunk size from 'reader'. The returned size * is the entire size of the chunk (including the opcode). Thus, the * offset just prior to calling read_op_and_size + 'size' is the offset * to the next chunk's op code. This also means that the size of a chunk * with no arguments (just an opcode) will be 4. */ static DrawType read_op_and_size(SkReader32* reader, uint32_t* size) { uint32_t temp = reader->readInt(); uint32_t op; if (((uint8_t) temp) == temp) { // old skp file - no size information op = temp; *size = 0; } else { UNPACK_8_24(temp, op, *size); if (MASK_24 == *size) { *size = reader->readInt(); } } return (DrawType) op; } // The activeOps parameter is actually "const SkTDArray&". // It represents the operations about to be drawn, as generated by some spatial // subdivision helper class. It should already be in 'fOffset' sorted order. void SkPicturePlayback::preLoadBitmaps(const SkTDArray* activeOps) { if ((NULL != activeOps && 0 == activeOps->count()) || NULL == fBitmapUseOffsets) { return; } if (NULL == activeOps) { // going to need everything return; } SkTDArray active; SkAutoTDeleteArray needToCheck(new bool[fBitmapUseOffsets->numIDs()]); for (int i = 0; i < fBitmapUseOffsets->numIDs(); ++i) { needToCheck.get()[i] = true; } uint32_t max = ((SkPictureStateTree::Draw*)(*activeOps)[(*activeOps).count()-1])->fOffset; for (int i = 0; i < activeOps->count(); ++i) { SkPictureStateTree::Draw* draw = (SkPictureStateTree::Draw*) (*activeOps)[i]; for (int j = 0; j < fBitmapUseOffsets->numIDs(); ++j) { if (!needToCheck.get()[j]) { continue; } if (!fBitmapUseOffsets->overlap(j, draw->fOffset, max)) { needToCheck.get()[j] = false; continue; } if (!fBitmapUseOffsets->includes(j, draw->fOffset)) { continue; } *active.append() = j; needToCheck.get()[j] = false; } } for (int i = 0; i < active.count(); ++i) { SkDebugf("preload texture %d\n", active[i]); } } uint32_t SkPicturePlayback::CachedOperationList::offset(int index) const { SkASSERT(index < fOps.count()); return ((SkPictureStateTree::Draw*)fOps[index])->fOffset; } const SkMatrix& SkPicturePlayback::CachedOperationList::matrix(int index) const { SkASSERT(index < fOps.count()); return *((SkPictureStateTree::Draw*)fOps[index])->fMatrix; } const SkPicture::OperationList& SkPicturePlayback::getActiveOps(const SkIRect& query) { if (NULL == fStateTree || NULL == fBoundingHierarchy) { return SkPicture::OperationList::InvalidList(); } if (NULL == fCachedActiveOps) { fCachedActiveOps = SkNEW(CachedOperationList); } if (query == fCachedActiveOps->fCacheQueryRect) { return *fCachedActiveOps; } fCachedActiveOps->fOps.rewind(); fBoundingHierarchy->search(query, &(fCachedActiveOps->fOps)); if (0 != fCachedActiveOps->fOps.count()) { SkTQSort( reinterpret_cast(fCachedActiveOps->fOps.begin()), reinterpret_cast(fCachedActiveOps->fOps.end()-1)); } fCachedActiveOps->fCacheQueryRect = query; return *fCachedActiveOps; } class SkAutoResetOpID { public: SkAutoResetOpID(SkPicturePlayback* playback) : fPlayback(playback) { } ~SkAutoResetOpID() { if (NULL != fPlayback) { fPlayback->resetOpID(); } } private: SkPicturePlayback* fPlayback; }; void SkPicturePlayback::draw(SkCanvas& canvas, SkDrawPictureCallback* callback) { SkAutoResetOpID aroi(this); SkASSERT(0 == fCurOffset); #ifdef ENABLE_TIME_DRAW SkAutoTime at("SkPicture::draw", 50); #endif #ifdef SPEW_CLIP_SKIPPING SkipClipRec skipRect, skipRRect, skipRegion, skipPath, skipCull; int opCount = 0; #endif #ifdef SK_BUILD_FOR_ANDROID SkAutoMutexAcquire autoMutex(fDrawMutex); #endif // kDrawComplete will be the signal that we have reached the end of // the command stream static const uint32_t kDrawComplete = SK_MaxU32; SkReader32 reader(fOpData->bytes(), fOpData->size()); TextContainer text; const SkTDArray* activeOps = NULL; if (NULL != fStateTree && NULL != fBoundingHierarchy) { SkRect clipBounds; if (canvas.getClipBounds(&clipBounds)) { SkIRect query; clipBounds.roundOut(&query); const SkPicture::OperationList& activeOpsList = this->getActiveOps(query); if (activeOpsList.valid()) { if (0 == activeOpsList.numOps()) { return; // nothing to draw } // Since the opList is valid we know it is our derived class activeOps = &((const CachedOperationList&)activeOpsList).fOps; } } } SkPictureStateTree::Iterator it = (NULL == activeOps) ? SkPictureStateTree::Iterator() : fStateTree->getIterator(*activeOps, &canvas); if (it.isValid()) { uint32_t skipTo = it.draw(); if (kDrawComplete == skipTo) { return; } reader.setOffset(skipTo); } this->preLoadBitmaps(activeOps); // Record this, so we can concat w/ it if we encounter a setMatrix() SkMatrix initialMatrix = canvas.getTotalMatrix(); int originalSaveCount = canvas.getSaveCount(); #ifdef SK_BUILD_FOR_ANDROID fAbortCurrentPlayback = false; #endif #ifdef SK_DEVELOPER int opIndex = -1; #endif while (!reader.eof()) { if (callback && callback->abortDrawing()) { canvas.restoreToCount(originalSaveCount); return; } #ifdef SK_BUILD_FOR_ANDROID if (fAbortCurrentPlayback) { return; } #endif #ifdef SPEW_CLIP_SKIPPING opCount++; #endif fCurOffset = reader.offset(); uint32_t size; DrawType op = read_op_and_size(&reader, &size); size_t skipTo = 0; if (NOOP == op) { // NOOPs are to be ignored - do not propagate them any further skipTo = fCurOffset + size; #ifdef SK_DEVELOPER } else { opIndex++; if (this->preDraw(opIndex, op)) { skipTo = fCurOffset + size; } #endif } if (0 != skipTo) { if (it.isValid()) { // If using a bounding box hierarchy, advance the state tree // iterator until at or after skipTo uint32_t adjustedSkipTo; do { adjustedSkipTo = it.draw(); } while (adjustedSkipTo < skipTo); skipTo = adjustedSkipTo; } if (kDrawComplete == skipTo) { break; } reader.setOffset(skipTo); continue; } switch (op) { case CLIP_PATH: { const SkPath& path = getPath(reader); uint32_t packed = reader.readInt(); SkRegion::Op regionOp = ClipParams_unpackRegionOp(packed); bool doAA = ClipParams_unpackDoAA(packed); size_t offsetToRestore = reader.readInt(); SkASSERT(!offsetToRestore || \ offsetToRestore >= reader.offset()); canvas.clipPath(path, regionOp, doAA); if (canvas.isClipEmpty() && offsetToRestore) { #ifdef SPEW_CLIP_SKIPPING skipPath.recordSkip(offsetToRestore - reader.offset()); #endif reader.setOffset(offsetToRestore); } } break; case CLIP_REGION: { SkRegion region; this->getRegion(reader, ®ion); uint32_t packed = reader.readInt(); SkRegion::Op regionOp = ClipParams_unpackRegionOp(packed); size_t offsetToRestore = reader.readInt(); SkASSERT(!offsetToRestore || \ offsetToRestore >= reader.offset()); canvas.clipRegion(region, regionOp); if (canvas.isClipEmpty() && offsetToRestore) { #ifdef SPEW_CLIP_SKIPPING skipRegion.recordSkip(offsetToRestore - reader.offset()); #endif reader.setOffset(offsetToRestore); } } break; case CLIP_RECT: { const SkRect& rect = reader.skipT(); uint32_t packed = reader.readInt(); SkRegion::Op regionOp = ClipParams_unpackRegionOp(packed); bool doAA = ClipParams_unpackDoAA(packed); size_t offsetToRestore = reader.readInt(); SkASSERT(!offsetToRestore || \ offsetToRestore >= reader.offset()); canvas.clipRect(rect, regionOp, doAA); if (canvas.isClipEmpty() && offsetToRestore) { #ifdef SPEW_CLIP_SKIPPING skipRect.recordSkip(offsetToRestore - reader.offset()); #endif reader.setOffset(offsetToRestore); } } break; case CLIP_RRECT: { SkRRect rrect; reader.readRRect(&rrect); uint32_t packed = reader.readInt(); SkRegion::Op regionOp = ClipParams_unpackRegionOp(packed); bool doAA = ClipParams_unpackDoAA(packed); size_t offsetToRestore = reader.readInt(); SkASSERT(!offsetToRestore || \ offsetToRestore >= reader.offset()); canvas.clipRRect(rrect, regionOp, doAA); if (canvas.isClipEmpty() && offsetToRestore) { #ifdef SPEW_CLIP_SKIPPING skipRRect.recordSkip(offsetToRestore - reader.offset()); #endif reader.setOffset(offsetToRestore); } } break; case PUSH_CULL: { const SkRect& cullRect = reader.skipT(); size_t offsetToRestore = reader.readInt(); if (offsetToRestore && canvas.quickReject(cullRect)) { #ifdef SPEW_CLIP_SKIPPING skipCull.recordSkip(offsetToRestore - reader.offset()); #endif reader.setOffset(offsetToRestore); } else { canvas.pushCull(cullRect); } } break; case POP_CULL: canvas.popCull(); break; case CONCAT: { SkMatrix matrix; this->getMatrix(reader, &matrix); canvas.concat(matrix); break; } case DRAW_BITMAP: { const SkPaint* paint = this->getPaint(reader); const SkBitmap& bitmap = this->getBitmap(reader); const SkPoint& loc = reader.skipT(); canvas.drawBitmap(bitmap, loc.fX, loc.fY, paint); } break; case DRAW_BITMAP_RECT_TO_RECT: { const SkPaint* paint = this->getPaint(reader); const SkBitmap& bitmap = this->getBitmap(reader); const SkRect* src = this->getRectPtr(reader); // may be null const SkRect& dst = reader.skipT(); // required SkCanvas::DrawBitmapRectFlags flags; flags = (SkCanvas::DrawBitmapRectFlags) reader.readInt(); canvas.drawBitmapRectToRect(bitmap, src, dst, paint, flags); } break; case DRAW_BITMAP_MATRIX: { const SkPaint* paint = this->getPaint(reader); const SkBitmap& bitmap = this->getBitmap(reader); SkMatrix matrix; this->getMatrix(reader, &matrix); canvas.drawBitmapMatrix(bitmap, matrix, paint); } break; case DRAW_BITMAP_NINE: { const SkPaint* paint = this->getPaint(reader); const SkBitmap& bitmap = this->getBitmap(reader); const SkIRect& src = reader.skipT(); const SkRect& dst = reader.skipT(); canvas.drawBitmapNine(bitmap, src, dst, paint); } break; case DRAW_CLEAR: canvas.clear(reader.readInt()); break; case DRAW_DATA: { size_t length = reader.readInt(); canvas.drawData(reader.skip(length), length); // skip handles padding the read out to a multiple of 4 } break; case DRAW_DRRECT: { const SkPaint& paint = *this->getPaint(reader); SkRRect outer, inner; reader.readRRect(&outer); reader.readRRect(&inner); canvas.drawDRRect(outer, inner, paint); } break; case BEGIN_COMMENT_GROUP: { const char* desc = reader.readString(); canvas.beginCommentGroup(desc); } break; case COMMENT: { const char* kywd = reader.readString(); const char* value = reader.readString(); canvas.addComment(kywd, value); } break; case END_COMMENT_GROUP: { canvas.endCommentGroup(); } break; case DRAW_OVAL: { const SkPaint& paint = *this->getPaint(reader); canvas.drawOval(reader.skipT(), paint); } break; case DRAW_PAINT: canvas.drawPaint(*this->getPaint(reader)); break; case DRAW_PATH: { const SkPaint& paint = *this->getPaint(reader); canvas.drawPath(getPath(reader), paint); } break; case DRAW_PICTURE: canvas.drawPicture(this->getPicture(reader)); break; case DRAW_POINTS: { const SkPaint& paint = *this->getPaint(reader); SkCanvas::PointMode mode = (SkCanvas::PointMode)reader.readInt(); size_t count = reader.readInt(); const SkPoint* pts = (const SkPoint*)reader.skip(sizeof(SkPoint) * count); canvas.drawPoints(mode, count, pts, paint); } break; case DRAW_POS_TEXT: { const SkPaint& paint = *this->getPaint(reader); getText(reader, &text); size_t points = reader.readInt(); const SkPoint* pos = (const SkPoint*)reader.skip(points * sizeof(SkPoint)); canvas.drawPosText(text.text(), text.length(), pos, paint); } break; case DRAW_POS_TEXT_TOP_BOTTOM: { const SkPaint& paint = *this->getPaint(reader); getText(reader, &text); size_t points = reader.readInt(); const SkPoint* pos = (const SkPoint*)reader.skip(points * sizeof(SkPoint)); const SkScalar top = reader.readScalar(); const SkScalar bottom = reader.readScalar(); if (!canvas.quickRejectY(top, bottom)) { canvas.drawPosText(text.text(), text.length(), pos, paint); } } break; case DRAW_POS_TEXT_H: { const SkPaint& paint = *this->getPaint(reader); getText(reader, &text); size_t xCount = reader.readInt(); const SkScalar constY = reader.readScalar(); const SkScalar* xpos = (const SkScalar*)reader.skip(xCount * sizeof(SkScalar)); canvas.drawPosTextH(text.text(), text.length(), xpos, constY, paint); } break; case DRAW_POS_TEXT_H_TOP_BOTTOM: { const SkPaint& paint = *this->getPaint(reader); getText(reader, &text); size_t xCount = reader.readInt(); const SkScalar* xpos = (const SkScalar*)reader.skip((3 + xCount) * sizeof(SkScalar)); const SkScalar top = *xpos++; const SkScalar bottom = *xpos++; const SkScalar constY = *xpos++; if (!canvas.quickRejectY(top, bottom)) { canvas.drawPosTextH(text.text(), text.length(), xpos, constY, paint); } } break; case DRAW_RECT: { const SkPaint& paint = *this->getPaint(reader); canvas.drawRect(reader.skipT(), paint); } break; case DRAW_RRECT: { const SkPaint& paint = *this->getPaint(reader); SkRRect rrect; reader.readRRect(&rrect); canvas.drawRRect(rrect, paint); } break; case DRAW_SPRITE: { const SkPaint* paint = this->getPaint(reader); const SkBitmap& bitmap = this->getBitmap(reader); int left = reader.readInt(); int top = reader.readInt(); canvas.drawSprite(bitmap, left, top, paint); } break; case DRAW_TEXT: { const SkPaint& paint = *this->getPaint(reader); this->getText(reader, &text); SkScalar x = reader.readScalar(); SkScalar y = reader.readScalar(); canvas.drawText(text.text(), text.length(), x, y, paint); } break; case DRAW_TEXT_TOP_BOTTOM: { const SkPaint& paint = *this->getPaint(reader); this->getText(reader, &text); const SkScalar* ptr = (const SkScalar*)reader.skip(4 * sizeof(SkScalar)); // ptr[0] == x // ptr[1] == y // ptr[2] == top // ptr[3] == bottom if (!canvas.quickRejectY(ptr[2], ptr[3])) { canvas.drawText(text.text(), text.length(), ptr[0], ptr[1], paint); } } break; case DRAW_TEXT_ON_PATH: { const SkPaint& paint = *this->getPaint(reader); getText(reader, &text); const SkPath& path = this->getPath(reader); SkMatrix matrix; this->getMatrix(reader, &matrix); canvas.drawTextOnPath(text.text(), text.length(), path, &matrix, paint); } break; case DRAW_VERTICES: { SkAutoTUnref xfer; const SkPaint& paint = *this->getPaint(reader); DrawVertexFlags flags = (DrawVertexFlags)reader.readInt(); SkCanvas::VertexMode vmode = (SkCanvas::VertexMode)reader.readInt(); int vCount = reader.readInt(); const SkPoint* verts = (const SkPoint*)reader.skip( vCount * sizeof(SkPoint)); const SkPoint* texs = NULL; const SkColor* colors = NULL; const uint16_t* indices = NULL; int iCount = 0; if (flags & DRAW_VERTICES_HAS_TEXS) { texs = (const SkPoint*)reader.skip( vCount * sizeof(SkPoint)); } if (flags & DRAW_VERTICES_HAS_COLORS) { colors = (const SkColor*)reader.skip( vCount * sizeof(SkColor)); } if (flags & DRAW_VERTICES_HAS_INDICES) { iCount = reader.readInt(); indices = (const uint16_t*)reader.skip( iCount * sizeof(uint16_t)); } if (flags & DRAW_VERTICES_HAS_XFER) { int mode = reader.readInt(); if (mode < 0 || mode > SkXfermode::kLastMode) { mode = SkXfermode::kModulate_Mode; } xfer.reset(SkXfermode::Create((SkXfermode::Mode)mode)); } canvas.drawVertices(vmode, vCount, verts, texs, colors, xfer, indices, iCount, paint); } break; case RESTORE: canvas.restore(); break; case ROTATE: canvas.rotate(reader.readScalar()); break; case SAVE: canvas.save((SkCanvas::SaveFlags) reader.readInt()); break; case SAVE_LAYER: { const SkRect* boundsPtr = this->getRectPtr(reader); const SkPaint* paint = this->getPaint(reader); canvas.saveLayer(boundsPtr, paint, (SkCanvas::SaveFlags) reader.readInt()); } break; case SCALE: { SkScalar sx = reader.readScalar(); SkScalar sy = reader.readScalar(); canvas.scale(sx, sy); } break; case SET_MATRIX: { SkMatrix matrix; this->getMatrix(reader, &matrix); matrix.postConcat(initialMatrix); canvas.setMatrix(matrix); } break; case SKEW: { SkScalar sx = reader.readScalar(); SkScalar sy = reader.readScalar(); canvas.skew(sx, sy); } break; case TRANSLATE: { SkScalar dx = reader.readScalar(); SkScalar dy = reader.readScalar(); canvas.translate(dx, dy); } break; default: SkASSERT(0); } #ifdef SK_DEVELOPER this->postDraw(opIndex); #endif if (it.isValid()) { uint32_t skipTo = it.draw(); if (kDrawComplete == skipTo) { break; } reader.setOffset(skipTo); } } #ifdef SPEW_CLIP_SKIPPING { size_t size = skipRect.fSize + skipRRect.fSize + skipPath.fSize + skipRegion.fSize + skipCull.fSize; SkDebugf("--- Clip skips %d%% rect:%d rrect:%d path:%d rgn:%d cull:%d\n", size * 100 / reader.offset(), skipRect.fCount, skipRRect.fCount, skipPath.fCount, skipRegion.fCount, skipCull.fCount); SkDebugf("--- Total ops: %d\n", opCount); } #endif // this->dumpSize(); } /////////////////////////////////////////////////////////////////////////////// #ifdef SK_DEBUG_SIZE int SkPicturePlayback::size(size_t* sizePtr) { int objects = bitmaps(sizePtr); objects += paints(sizePtr); objects += paths(sizePtr); objects += pictures(sizePtr); objects += regions(sizePtr); *sizePtr = fOpData.size(); return objects; } int SkPicturePlayback::bitmaps(size_t* size) { size_t result = 0; for (int index = 0; index < fBitmapCount; index++) { // const SkBitmap& bitmap = fBitmaps[index]; result += sizeof(SkBitmap); // bitmap->size(); } *size = result; return fBitmapCount; } int SkPicturePlayback::paints(size_t* size) { size_t result = 0; for (int index = 0; index < fPaintCount; index++) { // const SkPaint& paint = fPaints[index]; result += sizeof(SkPaint); // paint->size(); } *size = result; return fPaintCount; } int SkPicturePlayback::paths(size_t* size) { size_t result = 0; for (int index = 0; index < fPathCount; index++) { const SkPath& path = fPaths[index]; result += path.flatten(NULL); } *size = result; return fPathCount; } #endif #ifdef SK_DEBUG_DUMP void SkPicturePlayback::dumpBitmap(const SkBitmap& bitmap) const { char pBuffer[DUMP_BUFFER_SIZE]; char* bufferPtr = pBuffer; bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer), "BitmapData bitmap%p = {", &bitmap); bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer), "{kWidth, %d}, ", bitmap.width()); bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer), "{kHeight, %d}, ", bitmap.height()); bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer), "{kRowBytes, %d}, ", bitmap.rowBytes()); // start here; SkDebugf("%s{0}};\n", pBuffer); } void dumpMatrix(const SkMatrix& matrix) const { SkMatrix defaultMatrix; defaultMatrix.reset(); char pBuffer[DUMP_BUFFER_SIZE]; char* bufferPtr = pBuffer; bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer), "MatrixData matrix%p = {", &matrix); SkScalar scaleX = matrix.getScaleX(); if (scaleX != defaultMatrix.getScaleX()) bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer), "{kScaleX, %g}, ", SkScalarToFloat(scaleX)); SkScalar scaleY = matrix.getScaleY(); if (scaleY != defaultMatrix.getScaleY()) bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer), "{kScaleY, %g}, ", SkScalarToFloat(scaleY)); SkScalar skewX = matrix.getSkewX(); if (skewX != defaultMatrix.getSkewX()) bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer), "{kSkewX, %g}, ", SkScalarToFloat(skewX)); SkScalar skewY = matrix.getSkewY(); if (skewY != defaultMatrix.getSkewY()) bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer), "{kSkewY, %g}, ", SkScalarToFloat(skewY)); SkScalar translateX = matrix.getTranslateX(); if (translateX != defaultMatrix.getTranslateX()) bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer), "{kTranslateX, %g}, ", SkScalarToFloat(translateX)); SkScalar translateY = matrix.getTranslateY(); if (translateY != defaultMatrix.getTranslateY()) bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer), "{kTranslateY, %g}, ", SkScalarToFloat(translateY)); SkScalar perspX = matrix.getPerspX(); if (perspX != defaultMatrix.getPerspX()) bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer), "{kPerspX, %g}, ", perspX); SkScalar perspY = matrix.getPerspY(); if (perspY != defaultMatrix.getPerspY()) bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer), "{kPerspY, %g}, ", perspY); SkDebugf("%s{0}};\n", pBuffer); } void dumpPaint(const SkPaint& paint) const { SkPaint defaultPaint; char pBuffer[DUMP_BUFFER_SIZE]; char* bufferPtr = pBuffer; bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer), "PaintPointers paintPtrs%p = {", &paint); const SkTypeface* typeface = paint.getTypeface(); if (typeface != defaultPaint.getTypeface()) bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer), "{kTypeface, %p}, ", typeface); const SkPathEffect* pathEffect = paint.getPathEffect(); if (pathEffect != defaultPaint.getPathEffect()) bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer), "{kPathEffect, %p}, ", pathEffect); const SkShader* shader = paint.getShader(); if (shader != defaultPaint.getShader()) bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer), "{kShader, %p}, ", shader); const SkXfermode* xfermode = paint.getXfermode(); if (xfermode != defaultPaint.getXfermode()) bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer), "{kXfermode, %p}, ", xfermode); const SkMaskFilter* maskFilter = paint.getMaskFilter(); if (maskFilter != defaultPaint.getMaskFilter()) bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer), "{kMaskFilter, %p}, ", maskFilter); const SkColorFilter* colorFilter = paint.getColorFilter(); if (colorFilter != defaultPaint.getColorFilter()) bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer), "{kColorFilter, %p}, ", colorFilter); const SkRasterizer* rasterizer = paint.getRasterizer(); if (rasterizer != defaultPaint.getRasterizer()) bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer), "{kRasterizer, %p}, ", rasterizer); const SkDrawLooper* drawLooper = paint.getLooper(); if (drawLooper != defaultPaint.getLooper()) bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer), "{kDrawLooper, %p}, ", drawLooper); SkDebugf("%s{0}};\n", pBuffer); bufferPtr = pBuffer; bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer), "PaintScalars paintScalars%p = {", &paint); SkScalar textSize = paint.getTextSize(); if (textSize != defaultPaint.getTextSize()) bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer), "{kTextSize, %g}, ", SkScalarToFloat(textSize)); SkScalar textScaleX = paint.getTextScaleX(); if (textScaleX != defaultPaint.getTextScaleX()) bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer), "{kTextScaleX, %g}, ", SkScalarToFloat(textScaleX)); SkScalar textSkewX = paint.getTextSkewX(); if (textSkewX != defaultPaint.getTextSkewX()) bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer), "{kTextSkewX, %g}, ", SkScalarToFloat(textSkewX)); SkScalar strokeWidth = paint.getStrokeWidth(); if (strokeWidth != defaultPaint.getStrokeWidth()) bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer), "{kStrokeWidth, %g}, ", SkScalarToFloat(strokeWidth)); SkScalar strokeMiter = paint.getStrokeMiter(); if (strokeMiter != defaultPaint.getStrokeMiter()) bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer), "{kStrokeMiter, %g}, ", SkScalarToFloat(strokeMiter)); SkDebugf("%s{0}};\n", pBuffer); bufferPtr = pBuffer; bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer), "PaintInts = paintInts%p = {", &paint); unsigned color = paint.getColor(); if (color != defaultPaint.getColor()) bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer), "{kColor, 0x%x}, ", color); unsigned flags = paint.getFlags(); if (flags != defaultPaint.getFlags()) bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer), "{kFlags, 0x%x}, ", flags); int align = paint.getTextAlign(); if (align != defaultPaint.getTextAlign()) bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer), "{kAlign, 0x%x}, ", align); int strokeCap = paint.getStrokeCap(); if (strokeCap != defaultPaint.getStrokeCap()) bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer), "{kStrokeCap, 0x%x}, ", strokeCap); int strokeJoin = paint.getStrokeJoin(); if (strokeJoin != defaultPaint.getStrokeJoin()) bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer), "{kAlign, 0x%x}, ", strokeJoin); int style = paint.getStyle(); if (style != defaultPaint.getStyle()) bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer), "{kStyle, 0x%x}, ", style); int textEncoding = paint.getTextEncoding(); if (textEncoding != defaultPaint.getTextEncoding()) bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer), "{kTextEncoding, 0x%x}, ", textEncoding); SkDebugf("%s{0}};\n", pBuffer); SkDebugf("PaintData paint%p = {paintPtrs%p, paintScalars%p, paintInts%p};\n", &paint, &paint, &paint, &paint); } void SkPicturePlayback::dumpPath(const SkPath& path) const { SkDebugf("path dump unimplemented\n"); } void SkPicturePlayback::dumpPicture(const SkPicture& picture) const { SkDebugf("picture dump unimplemented\n"); } void SkPicturePlayback::dumpRegion(const SkRegion& region) const { SkDebugf("region dump unimplemented\n"); } int SkPicturePlayback::dumpDrawType(char* bufferPtr, char* buffer, DrawType drawType) { return snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - buffer), "k%s, ", DrawTypeToString(drawType)); } int SkPicturePlayback::dumpInt(char* bufferPtr, char* buffer, char* name) { return snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - buffer), "%s:%d, ", name, getInt()); } int SkPicturePlayback::dumpRect(char* bufferPtr, char* buffer, char* name) { const SkRect* rect = fReader.skipRect(); return snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - buffer), "%s:{l:%g t:%g r:%g b:%g}, ", name, SkScalarToFloat(rect.fLeft), SkScalarToFloat(rect.fTop), SkScalarToFloat(rect.fRight), SkScalarToFloat(rect.fBottom)); } int SkPicturePlayback::dumpPoint(char* bufferPtr, char* buffer, char* name) { SkPoint pt; getPoint(&pt); return snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - buffer), "%s:{x:%g y:%g}, ", name, SkScalarToFloat(pt.fX), SkScalarToFloat(pt.fY)); } void SkPicturePlayback::dumpPointArray(char** bufferPtrPtr, char* buffer, int count) { char* bufferPtr = *bufferPtrPtr; const SkPoint* pts = (const SkPoint*)fReadStream.getAtPos(); fReadStream.skip(sizeof(SkPoint) * count); bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - buffer), "count:%d {", count); for (int index = 0; index < count; index++) bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - buffer), "{x:%g y:%g}, ", SkScalarToFloat(pts[index].fX), SkScalarToFloat(pts[index].fY)); bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - buffer), "} "); *bufferPtrPtr = bufferPtr; } int SkPicturePlayback::dumpPtr(char* bufferPtr, char* buffer, char* name, void* ptr) { return snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - buffer), "%s:%p, ", name, ptr); } int SkPicturePlayback::dumpRectPtr(char* bufferPtr, char* buffer, char* name) { char result; fReadStream.read(&result, sizeof(result)); if (result) return dumpRect(bufferPtr, buffer, name); else return snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - buffer), "%s:NULL, ", name); } int SkPicturePlayback::dumpScalar(char* bufferPtr, char* buffer, char* name) { return snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - buffer), "%s:%d, ", name, getScalar()); } void SkPicturePlayback::dumpText(char** bufferPtrPtr, char* buffer) { char* bufferPtr = *bufferPtrPtr; int length = getInt(); bufferPtr += dumpDrawType(bufferPtr, buffer); fReadStream.skipToAlign4(); char* text = (char*) fReadStream.getAtPos(); fReadStream.skip(length); bufferPtr += dumpInt(bufferPtr, buffer, "length"); int limit = DUMP_BUFFER_SIZE - (bufferPtr - buffer) - 2; length >>= 1; if (limit > length) limit = length; if (limit > 0) { *bufferPtr++ = '"'; for (int index = 0; index < limit; index++) { *bufferPtr++ = *(unsigned short*) text; text += sizeof(unsigned short); } *bufferPtr++ = '"'; } *bufferPtrPtr = bufferPtr; } #define DUMP_DRAWTYPE(drawType) \ bufferPtr += dumpDrawType(bufferPtr, buffer, drawType) #define DUMP_INT(name) \ bufferPtr += dumpInt(bufferPtr, buffer, #name) #define DUMP_RECT_PTR(name) \ bufferPtr += dumpRectPtr(bufferPtr, buffer, #name) #define DUMP_POINT(name) \ bufferPtr += dumpRect(bufferPtr, buffer, #name) #define DUMP_RECT(name) \ bufferPtr += dumpRect(bufferPtr, buffer, #name) #define DUMP_POINT_ARRAY(count) \ dumpPointArray(&bufferPtr, buffer, count) #define DUMP_PTR(name, ptr) \ bufferPtr += dumpPtr(bufferPtr, buffer, #name, (void*) ptr) #define DUMP_SCALAR(name) \ bufferPtr += dumpScalar(bufferPtr, buffer, #name) #define DUMP_TEXT() \ dumpText(&bufferPtr, buffer) void SkPicturePlayback::dumpStream() { SkDebugf("RecordStream stream = {\n"); DrawType drawType; TextContainer text; fReadStream.rewind(); char buffer[DUMP_BUFFER_SIZE], * bufferPtr; while (fReadStream.read(&drawType, sizeof(drawType))) { bufferPtr = buffer; DUMP_DRAWTYPE(drawType); switch (drawType) { case CLIP_PATH: { DUMP_PTR(SkPath, &getPath()); DUMP_INT(SkRegion::Op); DUMP_INT(offsetToRestore); } break; case CLIP_REGION: { DUMP_INT(SkRegion::Op); DUMP_INT(offsetToRestore); } break; case CLIP_RECT: { DUMP_RECT(rect); DUMP_INT(SkRegion::Op); DUMP_INT(offsetToRestore); } break; case CONCAT: break; case DRAW_BITMAP: { DUMP_PTR(SkPaint, getPaint()); DUMP_PTR(SkBitmap, &getBitmap()); DUMP_SCALAR(left); DUMP_SCALAR(top); } break; case DRAW_PAINT: DUMP_PTR(SkPaint, getPaint()); break; case DRAW_PATH: { DUMP_PTR(SkPaint, getPaint()); DUMP_PTR(SkPath, &getPath()); } break; case DRAW_PICTURE: { DUMP_PTR(SkPicture, &getPicture()); } break; case DRAW_POINTS: { DUMP_PTR(SkPaint, getPaint()); (void)getInt(); // PointMode size_t count = getInt(); fReadStream.skipToAlign4(); DUMP_POINT_ARRAY(count); } break; case DRAW_POS_TEXT: { DUMP_PTR(SkPaint, getPaint()); DUMP_TEXT(); size_t points = getInt(); fReadStream.skipToAlign4(); DUMP_POINT_ARRAY(points); } break; case DRAW_POS_TEXT_H: { DUMP_PTR(SkPaint, getPaint()); DUMP_TEXT(); size_t points = getInt(); fReadStream.skipToAlign4(); DUMP_SCALAR(top); DUMP_SCALAR(bottom); DUMP_SCALAR(constY); DUMP_POINT_ARRAY(points); } break; case DRAW_RECT: { DUMP_PTR(SkPaint, getPaint()); DUMP_RECT(rect); } break; case DRAW_SPRITE: { DUMP_PTR(SkPaint, getPaint()); DUMP_PTR(SkBitmap, &getBitmap()); DUMP_SCALAR(left); DUMP_SCALAR(top); } break; case DRAW_TEXT: { DUMP_PTR(SkPaint, getPaint()); DUMP_TEXT(); DUMP_SCALAR(x); DUMP_SCALAR(y); } break; case DRAW_TEXT_ON_PATH: { DUMP_PTR(SkPaint, getPaint()); DUMP_TEXT(); DUMP_PTR(SkPath, &getPath()); } break; case RESTORE: break; case ROTATE: DUMP_SCALAR(rotate); break; case SAVE: DUMP_INT(SkCanvas::SaveFlags); break; case SAVE_LAYER: { DUMP_RECT_PTR(layer); DUMP_PTR(SkPaint, getPaint()); DUMP_INT(SkCanvas::SaveFlags); } break; case SCALE: { DUMP_SCALAR(sx); DUMP_SCALAR(sy); } break; case SKEW: { DUMP_SCALAR(sx); DUMP_SCALAR(sy); } break; case TRANSLATE: { DUMP_SCALAR(dx); DUMP_SCALAR(dy); } break; default: SkASSERT(0); } SkDebugf("%s\n", buffer); } } void SkPicturePlayback::dump() const { char pBuffer[DUMP_BUFFER_SIZE]; char* bufferPtr = pBuffer; int index; if (fBitmapCount > 0) SkDebugf("// bitmaps (%d)\n", fBitmapCount); for (index = 0; index < fBitmapCount; index++) { const SkBitmap& bitmap = fBitmaps[index]; dumpBitmap(bitmap); } if (fBitmapCount > 0) bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer), "Bitmaps bitmaps = {"); for (index = 0; index < fBitmapCount; index++) bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer), "bitmap%p, ", &fBitmaps[index]); if (fBitmapCount > 0) SkDebugf("%s0};\n", pBuffer); if (fPaintCount > 0) SkDebugf("// paints (%d)\n", fPaintCount); for (index = 0; index < fPaintCount; index++) { const SkPaint& paint = fPaints[index]; dumpPaint(paint); } bufferPtr = pBuffer; if (fPaintCount > 0) bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer), "Paints paints = {"); for (index = 0; index < fPaintCount; index++) bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer), "paint%p, ", &fPaints[index]); if (fPaintCount > 0) SkDebugf("%s0};\n", pBuffer); for (index = 0; index < fPathCount; index++) { const SkPath& path = fPaths[index]; dumpPath(path); } bufferPtr = pBuffer; if (fPathCount > 0) bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer), "Paths paths = {"); for (index = 0; index < fPathCount; index++) bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer), "path%p, ", &fPaths[index]); if (fPathCount > 0) SkDebugf("%s0};\n", pBuffer); for (index = 0; index < fPictureCount; index++) { dumpPicture(*fPictureRefs[index]); } bufferPtr = pBuffer; if (fPictureCount > 0) bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer), "Pictures pictures = {"); for (index = 0; index < fPictureCount; index++) bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer), "picture%p, ", fPictureRefs[index]); if (fPictureCount > 0) SkDebugf("%s0};\n", pBuffer); const_cast(this)->dumpStream(); } #endif