/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include #include "SkAutoMalloc.h" #include "SkImageGenerator.h" #include "SkPictureData.h" #include "SkPictureRecord.h" #include "SkReadBuffer.h" #include "SkTextBlob.h" #include "SkTypeface.h" #include "SkWriteBuffer.h" #if SK_SUPPORT_GPU #include "GrContext.h" #endif template int SafeCount(const T* obj) { return obj ? obj->count() : 0; } SkPictureData::SkPictureData(const SkPictInfo& info) : fInfo(info) { this->init(); } void SkPictureData::initForPlayback() const { // ensure that the paths bounds are pre-computed for (int i = 0; i < fPaths.count(); i++) { fPaths[i].updateBoundsCache(); } } SkPictureData::SkPictureData(const SkPictureRecord& record, const SkPictInfo& info) : fInfo(info) { this->init(); fOpData = record.opData(); fContentInfo.set(record.fContentInfo); fPaints = record.fPaints; fPaths.reset(record.fPaths.count()); record.fPaths.foreach([this](const SkPath& path, int n) { // These indices are logically 1-based, but we need to serialize them // 0-based to keep the deserializing SkPictureData::getPath() working. fPaths[n-1] = path; }); this->initForPlayback(); const SkTDArray& pictures = record.getPictureRefs(); fPictureCount = pictures.count(); if (fPictureCount > 0) { fPictureRefs = new const SkPicture* [fPictureCount]; for (int i = 0; i < fPictureCount; i++) { fPictureRefs[i] = pictures[i]; fPictureRefs[i]->ref(); } } const SkTDArray& drawables = record.getDrawableRefs(); fDrawableCount = drawables.count(); if (fDrawableCount > 0) { fDrawableRefs = new SkDrawable* [fDrawableCount]; for (int i = 0; i < fDrawableCount; i++) { fDrawableRefs[i] = drawables[i]; fDrawableRefs[i]->ref(); } } // templatize to consolidate with similar picture logic? const SkTDArray& blobs = record.getTextBlobRefs(); fTextBlobCount = blobs.count(); if (fTextBlobCount > 0) { fTextBlobRefs = new const SkTextBlob* [fTextBlobCount]; for (int i = 0; i < fTextBlobCount; ++i) { fTextBlobRefs[i] = SkRef(blobs[i]); } } const SkTDArray& verts = record.getVerticesRefs(); fVerticesCount = verts.count(); if (fVerticesCount > 0) { fVerticesRefs = new const SkVertices* [fVerticesCount]; for (int i = 0; i < fVerticesCount; ++i) { fVerticesRefs[i] = SkRef(verts[i]); } } const SkTDArray& imgs = record.getImageRefs(); fImageCount = imgs.count(); if (fImageCount > 0) { fImageRefs = new const SkImage* [fImageCount]; for (int i = 0; i < fImageCount; ++i) { fImageRefs[i] = SkRef(imgs[i]); } } } void SkPictureData::init() { fPictureRefs = nullptr; fPictureCount = 0; fDrawableRefs = nullptr; fDrawableCount = 0; fTextBlobRefs = nullptr; fTextBlobCount = 0; fVerticesRefs = nullptr; fVerticesCount = 0; fImageRefs = nullptr; fImageCount = 0; fFactoryPlayback = nullptr; } SkPictureData::~SkPictureData() { for (int i = 0; i < fPictureCount; i++) { fPictureRefs[i]->unref(); } delete[] fPictureRefs; for (int i = 0; i < fDrawableCount; i++) { fDrawableRefs[i]->unref(); } if (fDrawableCount > 0) { SkASSERT(fDrawableRefs); delete[] fDrawableRefs; } for (int i = 0; i < fTextBlobCount; i++) { fTextBlobRefs[i]->unref(); } delete[] fTextBlobRefs; for (int i = 0; i < fVerticesCount; i++) { fVerticesRefs[i]->unref(); } delete[] fVerticesRefs; for (int i = 0; i < fImageCount; i++) { fImageRefs[i]->unref(); } delete[] fImageRefs; delete fFactoryPlayback; } /////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// #include "SkStream.h" static size_t compute_chunk_size(SkFlattenable::Factory* array, int count) { size_t size = 4; // for 'count' for (int i = 0; i < count; i++) { const char* name = SkFlattenable::FactoryToName(array[i]); if (nullptr == name || 0 == *name) { size += SkWStream::SizeOfPackedUInt(0); } else { size_t len = strlen(name); size += SkWStream::SizeOfPackedUInt(len); size += len; } } return size; } static void write_tag_size(SkWriteBuffer& buffer, uint32_t tag, size_t size) { buffer.writeUInt(tag); buffer.writeUInt(SkToU32(size)); } static void write_tag_size(SkWStream* stream, uint32_t tag, size_t size) { stream->write32(tag); stream->write32(SkToU32(size)); } void SkPictureData::WriteFactories(SkWStream* stream, const SkFactorySet& rec) { int count = rec.count(); SkAutoSTMalloc<16, SkFlattenable::Factory> storage(count); SkFlattenable::Factory* array = (SkFlattenable::Factory*)storage.get(); rec.copyToArray(array); size_t size = compute_chunk_size(array, count); // TODO: write_tag_size should really take a size_t write_tag_size(stream, SK_PICT_FACTORY_TAG, (uint32_t) size); SkDEBUGCODE(size_t start = stream->bytesWritten()); stream->write32(count); for (int i = 0; i < count; i++) { const char* name = SkFlattenable::FactoryToName(array[i]); if (nullptr == name || 0 == *name) { stream->writePackedUInt(0); } else { size_t len = strlen(name); stream->writePackedUInt(len); stream->write(name, len); } } SkASSERT(size == (stream->bytesWritten() - start)); } void SkPictureData::WriteTypefaces(SkWStream* stream, const SkRefCntSet& rec) { int count = rec.count(); write_tag_size(stream, SK_PICT_TYPEFACE_TAG, count); SkAutoSTMalloc<16, SkTypeface*> storage(count); SkTypeface** array = (SkTypeface**)storage.get(); rec.copyToArray((SkRefCnt**)array); for (int i = 0; i < count; i++) { array[i]->serialize(stream); } } void SkPictureData::flattenToBuffer(SkWriteBuffer& buffer) const { int i, n; if ((n = fPaints.count()) > 0) { write_tag_size(buffer, SK_PICT_PAINT_BUFFER_TAG, n); for (i = 0; i < n; i++) { buffer.writePaint(fPaints[i]); } } if ((n = fPaths.count()) > 0) { write_tag_size(buffer, SK_PICT_PATH_BUFFER_TAG, n); buffer.writeInt(n); for (int i = 0; i < n; i++) { buffer.writePath(fPaths[i]); } } if (fTextBlobCount > 0) { write_tag_size(buffer, SK_PICT_TEXTBLOB_BUFFER_TAG, fTextBlobCount); for (i = 0; i < fTextBlobCount; ++i) { fTextBlobRefs[i]->flatten(buffer); } } if (fVerticesCount > 0) { write_tag_size(buffer, SK_PICT_VERTICES_BUFFER_TAG, fVerticesCount); for (i = 0; i < fVerticesCount; ++i) { buffer.writeDataAsByteArray(fVerticesRefs[i]->encode().get()); } } if (fImageCount > 0) { write_tag_size(buffer, SK_PICT_IMAGE_BUFFER_TAG, fImageCount); for (i = 0; i < fImageCount; ++i) { buffer.writeImage(fImageRefs[i]); } } } void SkPictureData::serialize(SkWStream* stream, const SkSerialProcs& procs, SkRefCntSet* topLevelTypeFaceSet) const { // This can happen at pretty much any time, so might as well do it first. write_tag_size(stream, SK_PICT_READER_TAG, fOpData->size()); stream->write(fOpData->bytes(), fOpData->size()); // We serialize all typefaces into the typeface section of the top-level picture. SkRefCntSet localTypefaceSet; SkRefCntSet* typefaceSet = topLevelTypeFaceSet ? topLevelTypeFaceSet : &localTypefaceSet; // We delay serializing the bulk of our data until after we've serialized // factories and typefaces by first serializing to an in-memory write buffer. SkFactorySet factSet; // buffer refs factSet, so factSet must come first. SkBinaryWriteBuffer buffer; buffer.setFactoryRecorder(&factSet); buffer.setSerialProcs(procs); buffer.setTypefaceRecorder(typefaceSet); this->flattenToBuffer(buffer); // Dummy serialize our sub-pictures for the side effect of filling // typefaceSet with typefaces from sub-pictures. struct DevNull: public SkWStream { DevNull() : fBytesWritten(0) {} size_t fBytesWritten; bool write(const void*, size_t size) override { fBytesWritten += size; return true; } size_t bytesWritten() const override { return fBytesWritten; } } devnull; for (int i = 0; i < fPictureCount; i++) { fPictureRefs[i]->serialize(&devnull, nullptr, typefaceSet); } // We need to write factories before we write the buffer. // We need to write typefaces before we write the buffer or any sub-picture. WriteFactories(stream, factSet); if (typefaceSet == &localTypefaceSet) { WriteTypefaces(stream, *typefaceSet); } // Write the buffer. write_tag_size(stream, SK_PICT_BUFFER_SIZE_TAG, buffer.bytesWritten()); buffer.writeToStream(stream); // Write sub-pictures by calling serialize again. if (fPictureCount > 0) { write_tag_size(stream, SK_PICT_PICTURE_TAG, fPictureCount); for (int i = 0; i < fPictureCount; i++) { fPictureRefs[i]->serialize(stream, &procs, typefaceSet); } } stream->write32(SK_PICT_EOF_TAG); } void SkPictureData::flatten(SkWriteBuffer& buffer) const { write_tag_size(buffer, SK_PICT_READER_TAG, fOpData->size()); buffer.writeByteArray(fOpData->bytes(), fOpData->size()); if (fPictureCount > 0) { write_tag_size(buffer, SK_PICT_PICTURE_TAG, fPictureCount); for (int i = 0; i < fPictureCount; i++) { fPictureRefs[i]->flatten(buffer); } } if (fDrawableCount > 0) { write_tag_size(buffer, SK_PICT_DRAWABLE_TAG, fDrawableCount); for (int i = 0; i < fDrawableCount; i++) { buffer.writeFlattenable(fDrawableRefs[i]); } } // Write this picture playback's data into a writebuffer this->flattenToBuffer(buffer); buffer.write32(SK_PICT_EOF_TAG); } /////////////////////////////////////////////////////////////////////////////// bool SkPictureData::parseStreamTag(SkStream* stream, uint32_t tag, uint32_t size, const SkDeserialProcs& procs, SkTypefacePlayback* topLevelTFPlayback) { /* * By the time we encounter BUFFER_SIZE_TAG, we need to have already seen * its dependents: FACTORY_TAG and TYPEFACE_TAG. These two are not required * but if they are present, they need to have been seen before the buffer. * * We assert that if/when we see either of these, that we have not yet seen * the buffer tag, because if we have, then its too-late to deal with the * factories or typefaces. */ SkDEBUGCODE(bool haveBuffer = false;) switch (tag) { case SK_PICT_READER_TAG: SkASSERT(nullptr == fOpData); fOpData = SkData::MakeFromStream(stream, size); if (!fOpData) { return false; } break; case SK_PICT_FACTORY_TAG: { SkASSERT(!haveBuffer); size = stream->readU32(); fFactoryPlayback = new SkFactoryPlayback(size); for (size_t i = 0; i < size; i++) { SkString str; const size_t len = stream->readPackedUInt(); str.resize(len); if (stream->read(str.writable_str(), len) != len) { return false; } fFactoryPlayback->base()[i] = SkFlattenable::NameToFactory(str.c_str()); } } break; case SK_PICT_TYPEFACE_TAG: { SkASSERT(!haveBuffer); const int count = SkToInt(size); fTFPlayback.setCount(count); for (int i = 0; i < count; i++) { sk_sp tf(SkTypeface::MakeDeserialize(stream)); if (!tf.get()) { // failed to deserialize // fTFPlayback asserts it never has a null, so we plop in // the default here. tf = SkTypeface::MakeDefault(); } fTFPlayback.set(i, tf.get()); } } break; case SK_PICT_PICTURE_TAG: { fPictureCount = 0; fPictureRefs = new const SkPicture* [size]; for (uint32_t i = 0; i < size; i++) { fPictureRefs[i] = SkPicture::MakeFromStream(stream, &procs, topLevelTFPlayback).release(); if (!fPictureRefs[i]) { return false; } fPictureCount++; } } break; case SK_PICT_BUFFER_SIZE_TAG: { SkAutoMalloc storage(size); if (stream->read(storage.get(), size) != size) { return false; } SkReadBuffer buffer(storage.get(), size); buffer.setVersion(fInfo.getVersion()); if (!fFactoryPlayback) { return false; } fFactoryPlayback->setupBuffer(buffer); buffer.setDeserialProcs(procs); if (fTFPlayback.count() > 0) { // .skp files <= v43 have typefaces serialized with each sub picture. fTFPlayback.setupBuffer(buffer); } else { // Newer .skp files serialize all typefaces with the top picture. topLevelTFPlayback->setupBuffer(buffer); } while (!buffer.eof() && buffer.isValid()) { tag = buffer.readUInt(); size = buffer.readUInt(); if (!this->parseBufferTag(buffer, tag, size)) { return false; } } if (!buffer.isValid()) { return false; } SkDEBUGCODE(haveBuffer = true;) } break; } return true; // success } static sk_sp create_image_from_buffer(SkReadBuffer& buffer) { return buffer.readImage(); } static sk_sp create_vertices_from_buffer(SkReadBuffer& buffer) { auto data = buffer.readByteArrayAsData(); return data ? SkVertices::Decode(data->data(), data->size()) : nullptr; } static sk_sp create_drawable_from_buffer(SkReadBuffer& buffer) { return sk_sp((SkDrawable*)buffer.readFlattenable(SkFlattenable::kSkDrawable_Type)); } template bool new_array_from_buffer(SkReadBuffer& buffer, uint32_t inCount, const T*** array, int* outCount, sk_sp (*factory)(SkReadBuffer&)) { if (!buffer.validate((0 == *outCount) && (nullptr == *array))) { return false; } if (0 == inCount) { return true; } if (!buffer.validate(SkTFitsIn(inCount))) { return false; } *outCount = inCount; *array = new const T* [*outCount]; bool success = true; int i = 0; for (; i < *outCount; i++) { (*array)[i] = factory(buffer).release(); if (nullptr == (*array)[i]) { success = false; break; } } if (!success) { // Delete all of the blobs that were already created (up to but excluding i): for (int j = 0; j < i; j++) { (*array)[j]->unref(); } // Delete the array delete[] * array; *array = nullptr; *outCount = 0; return false; } return true; } bool SkPictureData::parseBufferTag(SkReadBuffer& buffer, uint32_t tag, uint32_t size) { switch (tag) { case SK_PICT_PAINT_BUFFER_TAG: { if (!buffer.validate(SkTFitsIn(size))) { return false; } const int count = SkToInt(size); fPaints.reset(count); for (int i = 0; i < count; ++i) { buffer.readPaint(&fPaints[i]); } } break; case SK_PICT_PATH_BUFFER_TAG: if (size > 0) { const int count = buffer.readInt(); fPaths.reset(count); for (int i = 0; i < count; i++) { buffer.readPath(&fPaths[i]); } } break; case SK_PICT_TEXTBLOB_BUFFER_TAG: if (!new_array_from_buffer(buffer, size, &fTextBlobRefs, &fTextBlobCount, SkTextBlob::MakeFromBuffer)) { return false; } break; case SK_PICT_VERTICES_BUFFER_TAG: if (!new_array_from_buffer(buffer, size, &fVerticesRefs, &fVerticesCount, create_vertices_from_buffer)) { return false; } break; case SK_PICT_IMAGE_BUFFER_TAG: if (!new_array_from_buffer(buffer, size, &fImageRefs, &fImageCount, create_image_from_buffer)) { return false; } break; case SK_PICT_READER_TAG: { auto data(SkData::MakeUninitialized(size)); if (!buffer.readByteArray(data->writable_data(), size) || !buffer.validate(nullptr == fOpData)) { return false; } SkASSERT(nullptr == fOpData); fOpData = std::move(data); } break; case SK_PICT_PICTURE_TAG: if (!new_array_from_buffer(buffer, size, &fPictureRefs, &fPictureCount, SkPicture::MakeFromBuffer)) { return false; } break; case SK_PICT_DRAWABLE_TAG: if (!new_array_from_buffer(buffer, size, (const SkDrawable***)&fDrawableRefs, &fDrawableCount, create_drawable_from_buffer)) { return false; } break; default: // The tag was invalid. return false; } return true; // success } SkPictureData* SkPictureData::CreateFromStream(SkStream* stream, const SkPictInfo& info, const SkDeserialProcs& procs, SkTypefacePlayback* topLevelTFPlayback) { std::unique_ptr data(new SkPictureData(info)); if (!topLevelTFPlayback) { topLevelTFPlayback = &data->fTFPlayback; } if (!data->parseStream(stream, procs, topLevelTFPlayback)) { return nullptr; } return data.release(); } SkPictureData* SkPictureData::CreateFromBuffer(SkReadBuffer& buffer, const SkPictInfo& info) { std::unique_ptr data(new SkPictureData(info)); buffer.setVersion(info.getVersion()); if (!data->parseBuffer(buffer)) { return nullptr; } return data.release(); } bool SkPictureData::parseStream(SkStream* stream, const SkDeserialProcs& procs, SkTypefacePlayback* topLevelTFPlayback) { for (;;) { uint32_t tag = stream->readU32(); if (SK_PICT_EOF_TAG == tag) { break; } uint32_t size = stream->readU32(); if (!this->parseStreamTag(stream, tag, size, procs, topLevelTFPlayback)) { return false; // we're invalid } } return true; } bool SkPictureData::parseBuffer(SkReadBuffer& buffer) { for (;;) { uint32_t tag = buffer.readUInt(); if (SK_PICT_EOF_TAG == tag) { break; } uint32_t size = buffer.readUInt(); if (!this->parseBufferTag(buffer, tag, size)) { return false; // we're invalid } } return true; } /////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// #if SK_SUPPORT_GPU bool SkPictureData::suitableForGpuRasterization(GrContext* context, const char **reason, int sampleCount) const { return fContentInfo.suitableForGpuRasterization(context, reason, sampleCount); } bool SkPictureData::suitableForGpuRasterization(GrContext* context, const char **reason, GrPixelConfig config, SkScalar dpi) const { if (context != nullptr) { return this->suitableForGpuRasterization(context, reason, context->getRecommendedSampleCount(config, dpi)); } else { return this->suitableForGpuRasterization(nullptr, reason); } } bool SkPictureData::suitableForLayerOptimization() const { return fContentInfo.numLayers() > 0; } #endif ///////////////////////////////////////////////////////////////////////////////